
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/261399182

CPU-Based	Real-Time	Surface	and	Solid
Voxelization	for	Incomplete	Point	Cloud

CONFERENCE	PAPER	·	AUGUST	2014

DOI:	10.1109/ICPR.2014.475

CITATIONS

2

READS

160

2	AUTHORS:

Frederic	Garcia

IEE	S.A.

37	PUBLICATIONS			80	CITATIONS			

SEE	PROFILE

Björn	Ottersten

University	of	Luxembourg

563	PUBLICATIONS			10,639	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Frederic	Garcia

Retrieved	on:	29	February	2016

https://www.researchgate.net/publication/261399182_CPU-Based_Real-Time_Surface_and_Solid_Voxelization_for_Incomplete_Point_Cloud?enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw%3D%3D&el=1_x_2
https://www.researchgate.net/publication/261399182_CPU-Based_Real-Time_Surface_and_Solid_Voxelization_for_Incomplete_Point_Cloud?enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Frederic_Garcia?enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Frederic_Garcia?enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw%3D%3D&el=1_x_5
https://www.researchgate.net/profile/Frederic_Garcia?enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Bjoern_Ottersten?enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Bjoern_Ottersten?enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Luxembourg?enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Bjoern_Ottersten?enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw%3D%3D&el=1_x_7

CPU-Based Real-Time Surface and Solid
Voxelization for Incomplete Point Cloud

Frederic Garcia and Björn Ottersten

Interdisciplinary Centre for Security Reliability and Trust (SnT)
University of Luxembourg

{frederic.garcia, bjorn.ottersten}@uni.lu

Abstract—This paper presents a surface and solid voxelization
approach for incomplete point cloud datasets. Voxelization stands
for a discrete approximation of 3-D objects into a volumetric
representation, a process which is commonly employed in com-
puter graphics and increasingly being used in computer vision.
In contrast to surface voxelization, solid voxelization not only
set those voxels related to the object surface but also those
voxels considered to be inside the object. To that end, we first
approximate the given point set, usually describing the external
object surface, to an axis-aligned voxel grid. Then, we slice-wise
construct a shell containing all surface voxels along each grid-
axis pair. Finally, voxels inside the constructed shell are set. Solid
voxelization results from the combination of all slices, resulting
in a watertight and gap-free representation of the object. The
experimental results show a high performance when voxelizing
point cloud datasets, independently of the object’s complexity,
robust to noise, and handling large portions of data missing.

Keywords—voxelization, point cloud, curve-skeleton, skele-
tonization, distance transform, real-time.

I. INTRODUCTION

Voxelization is an indispensable stage in computational
sciences and particularly in computer graphics to model geo-
metric scenes into their equivalent discrete voxel-based repre-
sentations [1], [2]. By doing so, complex scenes with thousands
of polygons are approximated to a discrete 3-D voxel grid, fa-
cilitating the task of many computer graphics algorithms such
as volume visualization or object collision [3], [4]. As opposed
to meshes in computer graphics, object boundaries in computer
vision are described in a three-dimensional coordinate system
by 3-D points, usually defined by their Cartesian coordinates
x, y, z, with respect to a given origin. Surface voxelization is
typically rather slow when treating polygonal meshes since not
only those voxels corresponding to mesh vertexes are set but
also the ones intersected by mesh edges. In contrast, voxelizing
a set of 3-D points or point cloud data set directly results
from setting those voxels containing at least one 3-D point [5].
This straightforward operation not only reduces the point cloud
complexity but enables for fast geometric processing, i.e., fast
data access and manipulation.

In this paper, we address the ill-posed problem of solid
voxelization, i.e., setting all voxels considered to be inside
the object. By doing so, further processing steps such as the
computation of the volumetric distance field [6] or complex
3-D descriptors, i.e., curve-skeletons [7], are significantly

This work was supported by the National Research Fund, Luxembourg,
under the CORE project C11/BM/1204105/FAVE/Ottersten.

simplified. A common strategy for solid voxelization of point
clouds is to transform the point set to a polygon mesh and
then to apply fast mesh voxelization approaches based on
graphic hardware [4], [8], [9], or mesh voxelization approaches
that propagate the state of a voxel to its surrounding visible
voxels [3]. Instead, we propose a new surface and solid
point cloud voxelization approach resulting in a watertight
and gap-free volumetric representation, avoiding imprecise or
even incorrect set voxel due to wrong point cloud to mesh
conversion, which is prominent to happen in the presence of
large amount of missing data.

The remainder of the paper is organized as follows: Sec-
tion II covers the literature review on surface and solid vox-
elization approaches for point cloud datasets. In Section III we
introduce a slice-wise surface and solid voxelization approach
for scanned point cloud datasets. In Section IV, we evaluate
the proposed voxelization approach on our own synthetic
3-D point sets and on the Stanford 3-D data sets. Finally,
concluding remarks are given in Section V.

II. BACKGROUND AND RELATED WORK

Analogous to a pixel, which represents a value in a 2-D
grid, a voxel is a volumetric element that represents values in
a regular 3-D grid. Voxelization is thus the approximation of a
given point cloud P to a voxel-based volumetric representation
V of the occupied space [5]. In practice, point clouds are
usually created from 3-D scanners such as Time-of-Flight or
RGB-D cameras and thus, all points pi ∈ P only describe the
underlying scanned surface of the object. Consequently, the
voxelization of a scanned point cloud, to which we refer as
surface voxelization, results in a 3-D grid of voxels where only
those voxels describing the object surface are set. In general,
surface voxelization is addressed by spatial decomposition
techniques such as kd-trees or octrees [5], [10], [11], from
which a resulting volumetric representation enables fast access
to point locations and to their corresponding neighbors, i.e.,
without re-computing distances between each other every time.
However, more complex geometric processing, e.g., extracting
3-D object descriptors such as curve-skeletons [7], [12], or
computing volumetric distance fields [6]; need to consider not
only those voxels representing the external object surface but
also those voxels considered to be interior to the object, i.e.,
solid voxelization. Voxelization is a necessary step in graphic
computing for data simplification, visibility determination,
or collision detection. Consequently, fast and robust octree-
based voxelization approaches can be directly applied to point

https://www.researchgate.net/publication/261452626_Real-time_3D_skeletonisation_in_computer_vision-based_human_pose_estimation_using_GPGPU?el=1_x_8&enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw==
https://www.researchgate.net/publication/242937774_Complete_Polygonal_Scene_Voxelization?el=1_x_8&enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw==
https://www.researchgate.net/publication/242937774_Complete_Polygonal_Scene_Voxelization?el=1_x_8&enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw==
https://www.researchgate.net/publication/220632141_Fundamentals_of_Surface_Voxelization?el=1_x_8&enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw==

cloud datasets after being transformed to polygonal meshes.
Octree representations are intended for fast access to voxel
locations, with a major advantage of being an organized and
space-efficient data structure. Schwarz et al. [4] proposed a
novel octree-based sparse voxelization approach that uses data-
parallel algorithms on graphics hardware. In their octree-based
representation, voxels close to the solid’s boundary are stored
by finest-level voxels whereas uniform interior and exterior
regions are represented by coarser-level voxels (see Fig. 1),
addressing the problem of high memory consumption of high-
resolution grids. In [3], the authors proposed an alternative
polygonal scene to octree-based voxelization approach. In this
case, the authors propagate the status of a voxel (inside/outside
the object) to the surrounding visible voxels. However, the
conversion from scanned point clouds to polygonal meshes
used to be imprecise or even incorrect [13] and thus, polygonal
mesh-based approaches [3], [4], [8] may fail. Indeed, self
occlusions, changes in ambient light conditions, or object
material, lead to large portions of data missing with point
density variations, i.e., the closest the object surface to the
sensing system, the higher the point density, which hampers the
point set to polygonal mesh conversion. Besides, this situation
is aggravated when modeling complex and dynamic scenes
using a multi-view system. In this case, the resulting point
cloud after registration has to be re-sampled to account for
point redundancy as well as for registration inaccuracies. An
alternative approach for voxelizing incomplete point clouds is
constructing a convex hull [14]. Numerous algorithms such as
Gift Wrap [15] or QuickHull [16] can be found in the literature
and are commonly used to compute the convex hull of a
finite set of points with an optimal time complexity. However,
convex hull-based approaches fail when setting interior voxels
of a concave object, i.e., a hand. Next, we propose a new
surface and solid voxelization approach to represent scanned
point cloud datasets in real-time.

Fig. 1: Surface and solid voxelization using octree representa-
tion.

III. PROPOSED APPROACH FOR SURFACE AND SOLID
VOXELIZATION

Given a point cloud P represented in
a three-dimensional Euclidean space E3 ≡
p(x, y, z)|1 ≤ x ≤ X, 1 ≤ y ≤ Y, 1 ≤ z ≤ Z, and describing
a set of 3-D points, we first create a bounding
3-D grid of voxels V with size I × J × K, i.e.,
V ≡ v(i, j, k)|1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K with I ,
J , K being positive integers and v(i, j, k) ∈ 0, 1, i.e., non-
object and object voxel respectively. In image visualization,

Fig. 2: In black color, the bounding 3-D grid of voxels V with
fixed width (λ = 3 cm). In purple color, the object points.

non-object voxels will not be displayed. V has to be big
enough to fit the entire point set, but no bigger to avoid
inefficiency, as shown in Fig. 2. To do so, we iterate
through all points pi = (px, py, pz) ∈ P to find the
minimum qmin = (pxmin

, pymin
, pzmin

) and maximum
qmax = (pxmax , pymax , pzmax) 3-D point coordinates to
which we constraint the size of V . Note that the dimensions
of V along each orthogonal axis might not coincide. We fix
the voxel width to λ, which defines the size of each voxel
side and thus, the resolution and accuracy of the discrete
voxel representation. The choose of λ depends on further
geometric processing, e.g., to compute the curve-skeleton of
a human body, a voxel of 1 cubic centimeter in size ensures
that important details like the fingers are not lost. Thus, λ
needs to be chosen as the best trade-off between accuracy
and processing time.

A. Surface Voxelization

We propose to map each pi = (px, py, pz) to the closest
voxel vi = (vi, vj , vk). To do so, we first translate P to the
origin of V using the offset vector qmin. Then, we solidify a
shell representing the external object surface by approximating
all pi to the geometric center of their respective voxel vi, i.e.,

vi =

{
1 if pi ∈ [vi,vi + λ]
0 otherwise. (1)

An alternative approach to represent the underlying surface
more accurately considers the centroid of the n points con-
tained in a voxel vi as voxels coordinates, i.e.,

vi =
1

n
·

n∑
i=1

pi. (2)

However, the gain in accuracy is not worth compared to the
increase in processing time (for a well chosen λ). In Fig. 3a
we show the scanned pi (in purple color) contained in a
selected voxel-slice of V . Their surface voxelization is shown
in Fig. 3b (surface object voxels in red color), whereas the
solid voxelization is shown in Fig. 3c (interior object voxels
in blue color).

https://www.researchgate.net/publication/2641780_The_QuickHull_Algorithm_for_Convex_Hulls?el=1_x_8&enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw==
https://www.researchgate.net/publication/261452626_Real-time_3D_skeletonisation_in_computer_vision-based_human_pose_estimation_using_GPGPU?el=1_x_8&enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw==
https://www.researchgate.net/publication/242937774_Complete_Polygonal_Scene_Voxelization?el=1_x_8&enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw==
https://www.researchgate.net/publication/242937774_Complete_Polygonal_Scene_Voxelization?el=1_x_8&enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw==
https://www.researchgate.net/publication/261318236_A_systematic_approach_for_Cad_model_generation_Of_hole_features_from_point_cloud_data?el=1_x_8&enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw==

(a) Scanned points. (b) Surface voxelization. (c) Solid voxelization.

Fig. 3: Selected voxel-slice from V (λ = 1 cm) to illustrate
(a) the scanned points pi, (b) their surface voxelization, and
(c) their solid voxelization.

B. Solid Voxelization

Although surface voxelization is pretty straightforward,
solid voxelization presents a higher complexity entailing to
wrong results in the presence of shell holes. Furthermore,
solid voxelization is known to be time consuming [1], [3].
In the following, we propose a high-performance 2-step solid
voxelization approach based on the use of the 3-D grid of
voxels V introduced in Section III.

1) Step 1, complete shell: In order to avoid wrong solid
voxelization results, we first solidify the shell of surface
voxels representing the object surface (previously set during
the surface voxelization stage). Let us consider the slices from
J and K axes of V , i.e., Vjk

i , with i = 0, 1, · · · , I − 1, as
illustrated in Fig.4. For each slice Vjk

i , we create an array
of voxels A containing all surface voxels. Then we sort
them according to their relative distances using the method

Fig. 4: Selected voxel-slice from the J and K axes Vjk
i (in

red color).

Algorithm 1 Sorting surface voxels

1: new(A∗)
2: new(A′)
3: forward ← true
4: currVoxel ← A[0]
5: nextVoxel ← NULL
6: erase(A,A[0]) . remove A[0] from A
7: insert(A′,A[0]) . appends A[0] to the front of A′
8: while !empty(A) do
9: dist ← inf

10: for i ← 1 ... |A| − 1 do
11: distAux ← d(currVoxel,A[i])
12: if distAux < dist then
13: dist ← distAux
14: nextVoxel ← A[i]
15: end if
16: end for
17: if dist < ε then
18: if forward then
19: pushBack(A′,nextVoxel) . appends nextVoxel

to the end of A′
20: else
21: insert(A′,nextVoxel)
22: end if
23: currVoxel ← nextVoxel
24: erase(A, nextVoxel)
25: else
26: if forward then
27: currVoxel ← A′[0]
28: forward ← false
29: else
30: insert(A∗,A′)
31: clear(A′) . empty A′
32: forward ← true
33: currVoxel ← A[0]
34: erase(A,A[0])
35: insert(A′,A[0])
36: end if
37: end if
38: end while
39: if !empty(A′) then
40: insert(A∗,A′)
41: end if
42: return A∗

proposed in Algorithm 1, in which d(x,y) = ‖x − y‖2 and
A∗ = {A1,A2, . . . ,An}, being n the total number of arrays
with sorted voxels. ε is the maximum allowed distance between
two nearest voxels. Its value is related to the density of the
initial point cloud P . Too small values of ε yield to non-
complete shells, whereas too big ε values might merge non-
desired object parts, e.g., both legs or the arms and the torso,
in the case of a human model. Finally, we iterate through each
array in A∗ setting those non-object voxels intersected by the
line segment bounded by each voxel pair (vi,vi+1).

2) Step 2, shell filling: Once the shell is complete, we
proceed by updating their interior voxels to object voxels (1
value). To do so, we iterate row-by-row each voxel-slice Vjk

i
propagating the voxel state (object or non-object voxel) to the
next voxels as described in Algorithm 2. By using this pretty

https://www.researchgate.net/publication/242937774_Complete_Polygonal_Scene_Voxelization?el=1_x_8&enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw==
https://www.researchgate.net/publication/220632141_Fundamentals_of_Surface_Voxelization?el=1_x_8&enrichId=rgreq-bc376d4c-9875-4a61-a3e1-2cc2f44cb6b3&enrichSource=Y292ZXJQYWdlOzI2MTM5OTE4MjtBUzoxMDQ5Mjk0ODYxODAzNTlAMTQwMjAyODU0NzYyMw==

Algorithm 2 Shell filling

1: i ← n . n is the selected slice
2: for k ← 0 ... K − 1 do
3: setVoxel ← false
4: value ← 0
5: for j ← 1 ... J − 1 do
6: if setVoxel == true then
7: v(i, j, k) ← 1
8: end if
9: value ← v(i, j, k)

10: if value == 1 and value != v(i, j, k − 1) then
11: if setVoxel == false then . transition starts
12: setVoxel ← true
13: else . transition ends
14: setVoxel ← false
15: end if
16: end if
17: end for
18: end for

simple scan line algorithm, interior object voxels are efficiently
set. The same procedure is repeated for Vik and Vij slices. The
final result is shown in Fig. 5c.

(a) Scanned points. (b) Surface voxelization. (c) Solid voxelization.

Fig. 5: View of half of the human model to show (a) the
scanned points, (b) their surface voxelization, and (c) their
solid voxelization.

IV. EXPERIMENTAL RESULTS

In the following we test the proposed surface and solid
voxelization approach on our own synthetic data and on the
Stanford 3D Scanning Repository 1. All reported results have
been obtained using a Mobile Intel R© QM67 Express Chipset
with an integrated graphic card Intel R© HD Graphics 3000. The
proposed approach has been implemented in C++ language
using the OpenCV [17] and PCL [18] libraries. Our synthetic
data has been generated using V-Rep [19], a very versatile
robot simulator tool in which the user can replicate real
scenarios. Fig. 6 shows the simulated scene in which we
have replicated the multi-view sensing system of our computer
vision laboratory. For the synthetic data evaluation we have
used the Bill human model with four different configurations,

1Stanford 3D Scanning Repository, http://graphics.stanford.edu/data/3Dscanrep/

Fig. 6: V-Rep scene to generate synthetic data.

i.e., standing, working, walking, and sitting, as shown in first
column of Fig. 8. Table I reports the performance evaluation
for the proposed surface and solid voxelization approach on
both synthetic and Stanford data. Some visual results on
synthetic data are shown in the last two columns of Fig. 8.
Visual results for the Stanford 3-D models are shown in the
last two rows of Fig. 9. Reported values in Table I show a high
performance where most of the processing time is dedicated on
sorting surface voxels for shell completeness. An increase on
performance as well as on space-efficiency has been obtained
by adapting the size of V to the dimension of the given point
set.

When sorting surface voxels using Algorithm 1, multiple
shells from a given Vjk, Vik, or Vij slice, can be obtained.
This occurs when the distance between two nearest surface
voxels is bigger than ε, a parameter that we have set to 5 cm
in order to do not merge non-desired body parts. However,
shells that would cover a single body part might be split into
two or more shells, which yields to a wrong shell filling, as
illustrated in Fig. 7d. From our tests, this situation occurs when
voxelizing the Bill human model using vertical V slices, i.e.,

(a) (b) (c) (d)

Fig. 7: Example of wrong shell filling when considering Vjk

slices. (a) In yellow, selected Vjk
i . (b) Solid voxelization using

Vjk slices. (c) Surface voxelization of Vjk
i . (d) Wrong shell

filling (in red color).

TABLE I: Running time of the proposed surface and solid voxelization approach on both, the synthetic data shown in Fig. 8 and
the Stanford 3-D models shown in Fig. 9, along with the number of resulting voxels depending on the processed voxel-slice of
V (we set ε to 5 cm for the synthetic data and to 2 cm for the Stanford data. Units are in ms).

Model V size Selected voxel-slice Nb. surface voxels Nb. solid voxels Running time

Surface voxelization Solid voxelization Sort surface voxels

88× 42× 168

Vijk

15655

68234

3.2

43.6 290.3
Standing Bill Vij 67268 16.3 38.2

(23650 points) Vik 47574 14.0 160.3
Vjk 53200 13.3 91.8

54× 64× 161

Vijk

14406

64614

2.9

129.9 225.0
Working Bill Vij 62722 45.0 35.1

(21188 points) Vik 51413 42.4 97.3
Vjk 48591 42.5 92.6

54× 85× 168

Vijk

14039

61825

3.0

42.8 204.2
Walking Bill Vij 60162 15.7 33.4

(21293 points) Vik 47913 15.0 92.9
Vjk 53618 12.1 77.9

54× 72× 127

Vijk

12238

61016

2.4

34.7 175.5
Sitting Bill Vij 57722 12.8 36.9

(17085 points) Vik 45797 12.5 72.0
Vjk 75564 9.4 66.6

79× 61× 79

Vijk

15874

85110

4.7

91.6 265.1
Stanford Bunny Vij 78941 31.3 85.0
(34519 points) Vik 68697 30.9 106.8

Vjk 77662 29.4 73.3

103× 47× 74

Vijk

24089

42606

11.9

93.7 660.9
Dragon Vij 37355 30.6 192.2

(84969 points) Vik 29158 24.1 338.2
Vjk 32130 39.0 130.5

162× 109× 73

Vijk

34531

38332

18.8

303.2 929.7
Asian Dragon Vij 30882 103.0 372.0

(141644 points) Vik 28579 101.1 376.1
Vjk 29713 99.1 181.6

Vik or Vjk, with gaps of data above ε cm. We note that the best
solid voxelization results from Vij slices. However, shell filling
from Vij might also fail when voxelizing a human model lying
on the floor. We thus propose to combine the individual solid
voxelization from each Vij , Vik, and Vjk slices in a unique
volumetric grid Vijk.

V. CONCLUSION

A scheme to compute the surface and solid voxelization of
incomplete point cloud datasets has been described. Our main
contribution is in using an axis-aligned 3-D grid of voxels
to which we approximate the given point cloud set. Surface
voxelization directly results from approximating the point set
to the voxel grid. By doing so, we reduce the amount of
data to be treated, registration inaccuracies and noise within
depth measurements. We solidify the volumetric grid slice-
wise, i.e., we first determine a closing shell considering its
surface voxels and then we fill it by updating its interior
voxels. The combination of the filled shells results in an
accurate surface and solid voxelization of the given point set,
independently of its complexity. The experimental evaluation
shows a high-performance, which makes it practical for further
geometric processing such as the computation of distance fields
or extracting 3-D object descriptors such as curve-skeletons.
An extra runtime improvement can be obtained by launching
the shell filling procedure for each grid axes pair in parallel,

which would reduce its processing time approximatively by a
factor of 3 (for an equally dimensioned V).

REFERENCES

[1] D. Cohen-Or and A. Kaufman, “Fundamentals of surface voxelization,”
Graphical Models and Image Processing, vol. 57, no. 6, pp. 453–461,
1995.

[2] A. Kaufman, D. Cohen, and R. Yagel, “Volume graphics,” IEEE
Computer, vol. 26, no. 7, pp. 51–64, 1993.

[3] D. Haumont and N. Warze, “Complete polygonal scene voxelization,”
Journal of Graphics Tools, vol. 7, no. 3, pp. 27–41, 2002.

[4] M. Schwarz and H.-P. Seidel, “Fast parallel surface and solid voxeliza-
tion on gpus,” ACM Trans. Graph., vol. 29, no. 6, pp. 179:1–179:10,
2010.

[5] R. B. Rusu, “Semantic 3d object maps for everyday manipulation in
human living environments,” Ph.D. dissertation, Tecnische Universitatet
Muenchen, 2009.

[6] G. J. Grevera, “Distance transform algorithms and their implementation
and evaluation,” in Deformable Models, ser. Topics in Biomedical
Engineering. International Book Series. Springer New York, 2007,
pp. 33–60.

[7] C. Arcelli, G. Sanniti di Baja, and L. Serino, “Distance-driven skele-
tonization in voxel images,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 33, no. 4, pp. 709–720, 2011.

[8] R. Bakken and L. Eliassen, “Real-time 3d skeletonisation in computer
vision-based human pose estimation using gpgpu,” in IEEE Interna-
tional Conference on Image Processing Theory, Tools and Applications
(IPTA), 2012, pp. 61–67.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 8: Surface and solid voxelization on synthetic data.
1strow: Standing Bill. 2ndrow: Working Bill. 3rdrow: Walk-
ing Bill. 4throw: Sitting Bill. 1stcol.: point set. 2ndcol.:
volumetric grid. 3rdcol.: surface voxelization. 4thcol.: solid
voxelization.

[9] D. Zhao, C. Wei, B. Hujun, Z. Hongxin, and P. Qunsheng, “Real-
time voxelization for complex polygonal models,” in IEEE Pacific
Conference on Computer Graphics and Applications, 2004, pp. 43–50.

[10] C. Crassin and S. Green, “Octree-based sparse voxelization using the
gpu hardware rasterizer,” in OpenGL Insights. CRC Press, Patrick
Cozzi and Christophe Riccio, 2012.

[11] X. Wu, W. Liu, and T. Wang, “A new method on converting polygonal
meshes to volumetric datasets,” in IEEE International Conference on
Robotics, Intelligent Systems and Signal Processing, vol. 1, 2003, pp.
116–120.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 9: Surface and solid voxelization using the Stanford
3-D Scanning Repository. 1stcol.: Stanford Bunny. 2ndcol.:
Dragon. 3rdcol.: Asian Dragon. 1strow: point set. 2ndrow:
volumetric grid. 3rdrow: surface voxelization. 4throw: solid
voxelization.

[12] N. Cornea, D. Silver, and P. Min, “Curve-Skeleton Properties, Ap-
plications, and Algorithms,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 3, pp. 530–548, 2007.

[13] S. Kansal, J. Madan, and A. Singh, “A systematic approach for cad
model generation of hole features from point cloud data,” in IEEE 3rd
International Advance Computing Conference (IACC), 2013, pp. 1385–
1393.

[14] F. P. Preparata and M. I. Shamos, “Convex hulls: Basic algorithms,” in
Computational Geometry. Springer New York, 1985.

[15] T. H. Cormen, C. E. Leiserson, R. L. R. Rivest, and C. Stein, “Finding
the convex hull,” in Introduction to Algorithms. MIT Press and
McGraw-Hill, 2009.

[16] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull
algorithm for convex hulls,” ACM Trans. Math. Softw., vol. 22, no. 4,
pp. 469–483, 1996.

[17] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with
the OpenCV Library, 1st ed. O’Reilly Media, 2008.

[18] “Point Cloud Library (PCL),” http://pointclouds.org/, December 2013.
[19] “Virtual robot experimentation platform (v-rep),”

http://www.coppeliarobotics.com/, December 2013.

