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Abstract—Semi-supervised learning is an important and active
topic of research in pattern recognition. For classification using
linear discriminant analysis specifically, several semi-supervised
variants have been proposed. Using any one of these methods
is not guaranteed to outperform the supervised classifier which
does not take the additional unlabeled data into account. In
this work we compare traditional Expectation Maximization
type approaches for semi-supervised linear discriminant analysis
with approaches based on intrinsic constraints and propose a
new principled approach for semi-supervised linear discriminant
analysis, using so-called implicit constraints. We explore the
relationships between these methods and consider the question if
and in what sense we can expect improvement in performance
over the supervised procedure. The constraint based approaches
are more robust to misspecification of the model, and may
outperform alternatives that make more assumptions on the data
in terms of the log-likelihood of unseen objects.

I. INTRODUCTION

In many real-world pattern recognition tasks, obtaining
labeled examples to train classification algorithms is much
more expensive than obtaining unlabeled examples. These
tasks include document and image classification [1] where
unlabeled objects can easily be downloaded from the web,
part of speech tagging [2], protein function prediction [3] and
many others. Using unlabeled data to improve the training of
a classification procedure, however, requires semi-supervised
variants of supervised classifiers to make use of this additional
unlabeled data. Research into semi-supervised learning has
therefore seen an increasing amount of interest in the last
decade [4].

In supervised learning adding additional labeled training
data improves performance for most classification routines.
This does not generally hold for semi-supervised learning [5].
Adding additional unlabeled data may actually deteriorate clas-
sification performance. This can happen when the underlying
assumptions of the model do not hold. In effect, disregarding
the unlabeled data can lead to a better solution.

In this work we consider linear discriminant analysis
(LDA) applied to classification. Several semi-supervised adap-
tations of this supervised procedure have been proposed.
These approaches may suffer from the problem that additional
unlabeled data degrade performance. To counter this problem,
[6] introduced moment constrained LDA, which offers a more
robust type of semi-supervised LDA. The recently introduced
idea of implicitly constrained estimation [7], is another method

that relies on constraints given by the unlabeled data. We com-
pare these two approaches to other semi-supervised methods,
in particular, expectation maximization and self-learning, and
empirically study in what sense we can expect improvement
by employing any of these semi-supervised methods.

The contributions of this work are the following:

• Introduce a new, principled approach to semi-
supervised LDA: implicitly constrained LDA

• Offer a comparison of semi-supervised versions of
linear discriminant analysis

• Explore ways in which we can expect these semi-
supervised methods to offer improvements over the
supervised variant, in particular in terms of the log
likelihood

The rest of this paper is organized as follows. After
discussing related work, we introduce several approaches to
semi-supervised linear discriminant analysis. These methods
are then compared on an illustrative toy problem and in an
empirical study using several benchmark datasets. We end with
a discussion of the results and conclude.

II. RELATED WORK

Some of the earliest work on semi-supervised learning
was done by [8], [9] who studied the self-learning approach
applied to linear discriminant analysis. This has later also been
referred to as Yarowsky’s algorithm [10]. This approach is
closely related to Expectation Maximization [11], where, in
a generative model, the unknown labels are integrated out of
the likelihood function and the resulting marginal likelihood
is maximized [12]. More recent work on discriminative semi-
supervised learning has focussed on introducing assumptions
that relate unlabeled data to the labeled objects [4]. These
assumptions usually take the form of either a manifold as-
sumption [13], encoding that labels change smoothly in a
low-dimensional manifold, or a low-density class separation
assumption used in, for instance, transductive support vector
machines [14], [15] and entropy regularization [16].

Work on semi-supervised LDA has tried to incorporate
unlabeled data by leveraging the increase in accuracy of
estimators of quantities that do not rely on labels. An approach
relying on the more accurate estimate of the total covariance
matrix of both labeled and unlabeled objects is taken for di-
mensionality reduction in Normalized LDA, proposed by [17]
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and similar work by [18]. In addition to this covariance matrix,
[6] also include the more accurate estimate of the overal mean
of the data and propose two solutions to solve a subsequent
optimization problem. Building on these results, in [7] we
introduced implicitly constrained least squares classification,
a semi-supervised adaptation of least squares classification.
Since this procedure proved both theoretically and practically
successful for a discriminative classifier, here we consider
whether the idea of implicitly constrained semi-supervised
learning can be extended to generative classifiers such as LDA.

III. METHODS

We will first introduce linear discriminant analysis as a
supervised classification algorithm and discuss different semi-
supervised procedures. We will consider 2-class classification
problems, where we are given an Nl × d design matrix X,
where Nl is the number of labeled objects and d is the number
of features. For these observations we are given a label vector
y = {0, 1}Nl . Additionally, in the semi-supervised setting we
have an Nu×d design matrix Xu without a corresponding yu
for the unlabeled observations.

A. Supervised LDA

In supervised linear discriminant analysis, we model the
2 classes as having multivariate normal distributions with the
same covariance matrix Σ and differing means µ1 and µ2.
To estimate the parameters of this model, we maximize the
likelihood, or, equivalently, the log likelihood function:

L(θ|X,y) =

Nl∑
i=1

yi log(π1N (xi|µ1,Σ))

+ (1− yi) log(π2N (xi|µ2,Σ)) (1)

where θ = (π1, π2,µ1,µ2,Σ), N (xi|µ,Σ) denotes the den-
sity of a multivariate normal distribution with mean µ and
covariance Σ evaluated at xi and πc denotes the prior proba-
bility for class c. The closed form solution to this maximization
is given by the estimators:

π̂1 =

∑Nl
i=1 yi
Nl

, π̂2 =

∑Nl
i=1(1− yi)
Nl

µ̂1 =

∑Nl
i=1 yixi∑Nl
i=1 yi

, µ̂2 =

∑Nl
i=1(1− yi)xi∑Nl
i=1(1− yi)

Σ̂ =
1

Nl

Nl∑
i=1

yi(xi − µ1)(xi − µ1)T

+ (1− yi)(xi − µ2)(xi − µ2)T (2)

Where the maximum likelihood estimator Σ̂ is a biased
estimator for the covariance matrix. Given a set of labeled
objects (X,y), we can estimate these parameters and find the
posterior for a new object x using:

p(c = 1|x) =
π1N (x|µ̂1, Σ̂)∑2
c=1 πcN (x|µ̂c, Σ̂)

(3)

This posterior distribution can be employed for classification
by assigning objects to the class for which its posterior is high-
est. We now consider several adaptations of this classification
procedure to the semi-supervised setting.

B. Self-Learning LDA (SLLDA)

A common and straightforward adaptation of any super-
vised learning algorithm to the semi-supervised setting is self-
learning, also known as bootstrapping or Yarowsky’s algorithm
[8], [10]. Starting out with a classifier trained on the labeled
data only, labels are predicted for the unlabeled objects. These
objects, with their imputed labels are then used in the next
iteration to retrain the classifier. This new classifier is now
used to relabel the unlabeled objects. This is done until the
predicted labels on the unlabeled objects converge. [11] studies
the underlying loss that this procedure minimizes and proves
its convergence.

C. Expectation Maximization LDA (EMLDA)

Assuming the mixture model of Equation (1) and treating
the unobserved labels yu as latent variables, a possible adap-
tation of this model is to add a term for the unlabeled data to
the objective function and to integrate out the unknown labels,
yu, to find the marginal likelihood:

l(θ|X,y,Xu) =

Nl∏
i=1

(π1N (xi|µ1,Σ))
yi (π2N (xi|µ2,Σ))

1−yi

×
Nu∏
i=1

2∑
c=1

πcN (xi|µc,Σ)

(4)

Maximizing this marginal likelihood, or equivalently, the log of
this function is harder then the supervised objective in Equation
(1), since the expression contains a log over a sum. However,
we can solve this optimization problem using the well-known
expectation maximization (EM) algorithm [12], [1]. In EM,
the log over the sum is bounded from below through Jensen’s
inequality. In the M step of the algorithm, we maximize this
bound by updating the parameters using the imputed labels
obtained in the E step. In practice, the M step consists of the
same update as in Equation (2), where the sum is no longer
over the labeled objects but also the unlabeled objects using the
imputed posteriors, or responsibilities, from the E step. In the
E step the lower bound is made tight by updating the imputed
labels using the posterior under the new parameter estimates.
This is done until convergence. In effect this procedure is
very similar to self-learning, where instead of hard labels, a
probability over labelings is used. Both self-learning and EM
suffer from the problem of wrongly imputed labels that can
reinforce their wrongly imputed values because the parameters
are updated as if they were the true labels.

D. Moment Constrained LDA (MCLDA)

An alternative to the EM-like approaches like EMLDA
and SLLDA was proposed by [19] in the form of moment
constrained parameter estimation. The main idea is that there
are certain constraints that link parameters that are calculated
using feature values alone, with parameters which require the
labels. In the case of LDA [6], for instance, the overal mean
of the data is linked to the means of the two classes through:

µt = π1µ1 + π2µ2 (5)

Were µt is the overal mean on all the data and therefore
does not depend on the labels. The total covariance matrix



Σt is linked to the within-class covariance matrix Σ and
between-class covariance matrix Σb, the covariance matrix of
the means. Only the latter two rely on the labels:

Σt = Σ + Σb (6)

Recognizing that the unlabeled data allow us to more ac-
curately estimate the parameters in these constraints that do
not rely on the labels, [6] points out that this more accurate
estimate will generally violate the constraints, meaning the
other label-dependent estimates should be updated accordingly.

An ad hoc way to update the parameters based on these
more accurate estimates [6] leads to the following updated
moment constrained estimators:

µ̂MC
c = µ̂c −

2∑
j=1

π̂jµ̂j − µ̂t (7)

Σ̂MC = Θ̂
1
2 Σ̂

1
2
t Σ̂Σ̂

1
2
t Θ̂

1
2 (8)

where µ̂t and Θ̂ are the overal mean and overal covariance
estimated on all labeled and unlabeled data, while Σ̂t is the
overal covariance estimated on the labeled data alone.

Alternatively and slightly more formally, [20] forces the
constraints to be satisfied by maximizing the likelihood on
the labeled objects under the constraints in Equations (5) and
(6). This leads to a non-convex objective function that can be
solved numerically. In this work we use the simpler ad hoc
constraints.

E. Implicitly Constrained LDA (ICLDA)

The former approach requires the identification of specific
constraints. Ideally, we would like these constraints to emerge
implicitly from a choice of supervised learner and a given set
of unlabeled objects. Implicitly constrained semi-supervised
learning attempts to do just that. The underlying intuition is
that if we could enumerate all possible 2Nu labelings, and
train the corresponding classifiers, the classifier based on the
true but unknown labels is in this set. This classifier would
generally outperform the supervised classifier. Two problems
arise:

1) How do we find a classifier in this set that is close
to the one based on the true but unknown labels?

2) How do we efficiently traverse this enormous set of
possible labelings without having to enumerate them
all?

As for the first problem: a safe way to know how well
a solution performs in terms of our supervised objective is
to estimate its performance using the labeled objects. We
therefore propose the following objective:

arg max
(π1,π2,µ1,µ2,Σ)∈Cθ

L(π1, π2,µ1,µ2,Σ|X,y) (9)

where

Cθ =
{

arg maxL(π1, π2,µ1,µ2,Σ|Xe,ye) : yu ∈ [0, 1]Nu
}

and Xe = [XTXu]T ,ye = [yTyTu ]T are the design matrix
and class vector extended with the unlabeled data. This can
be interpreted as optimizing the same objective function as

supervised LDA, with the additional constraint that the solution
has to attainable by a particular assignment of responsibilities
(partial assignments to classes) for the unlabeled objects.

As for the second problem: since, for a given imputed
labeling, we have a closed form solution for the parameters,
the gradient of the supervised loss (9) with respect to the
responsibilities yu can be found using

∂L(θ|X,y)

∂yu
=
∂L(θ|X,y)

∂θ

∂φ(yu)

∂yu
(10)

where φ(yu) = θ is the function that has as input a par-
ticular labeling of the points, and outputs the parameters
θ = (π1, π2,µ1,µ2,Σ), similar to Equation (2).

This can be used to efficiently move through the set of
solutions using a simple gradient ascent procedure that takes
into account the [0, 1] bounds on the responsibilities.

IV. EXPERIMENTAL SETUP AND RESULTS

We present simulations on an illustrative toy dataset and a
set of benchmark datasets. Other than the classifiers covered
in the previous section, we also include the LDA classifier
trained using all labels of the unlabeled data (LDAoracle) as
an upper bound on the performance of any semi-supervised
procedure. The experiments can be reproduced using code
from the authors’ website.

A. Toy problems

To illustrate the behaviour of ICLDA when compared to
EMLDA we consider two toy datasets. In both cases we have
two multivariate normal distributions centered at respectively
µ1 = [1, 1]T and µ2 = [−1,−1]T and equal covariance Σ =
0.61, with 1 the 2×2 identity matrix. An example is given in
Figure 1. In the bottom row, these two gaussians correspond
to the different classes. In the top row, we consider the case
where the decision boundary is actually perpendicular to the
boundary in the other setting. This means that the bottom row
corresponds exactly to the assumptions of EM, while this is not
the case in the top row. Figure 1 illustrates what happens in a
particular sample from this problem were we draw 10 labeled
and 990 unlabeled objects. When the assumption does not hold,
EMLDA forces the decision boundary to fall between the two
gaussian clusters leading to a much worse solution then the
supervised LDA based on only a few labeled examples. The
ICLDA solution does not deviate from the correct boundary
by much. When the assumptions do hold, EMLDA finds the
correct boundary, as expected, while ICLDA only does minor
adjustments in this case.

While one could claim that ICLDA is more robust, one
could also expect ICLDA to never lead to any improvements.
Figure 2 shows the results when resampling from the data
distribution in the second example and shows that ICLDA does
lead to improvement on average in the second dataset, while
not making the mistake in the first dataset where the LDA
assumptions do not hold.

B. Simulations on Benchmark datasets

We test the behaviour of the considered procedures using
datasets from the UCI machine learning repository [21], as
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Fig. 1. Behaviour on the two-class two dimensional gaussian datasets, with 10 labeled objects and 990 unlabeled objects. The first row shows the scatterplot
and the trained responsibilities for respectively ICLDA and EMLDA on a dataset where the decision boundary does not adhere to the assumptions of EMLDA.
The second row shows the results when the decision boundary is in between the two Gaussian classes. The black line indicates the decision boundary of a
supervised learner trained using only the labeled data. Note that in the first row, the responsibilities of EM are very different from the true labels, while IC is
not as sensitive to this problem.
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Fig. 2. Semi-supervised learning curve on the Gaussian data set using 500
repeats. The shaded regions indicate one standard error around the mean. Since
their assumptions hold exactly, SLLDA and EMLDA work very well. ICLDA
also outperforms the supervised LDA.

TABLE I. DESCRIPTION OF THE DATASETS USED IN THE EXPERIMENTS

Name # Objects #Features Source
Haberman 305 4 [21]

Ionosphere 351 33 [21]
Parkinsons 195 20 [21]

Pima 768 9 [21]
Sonar 208 61 [21]

SPECT 265 23 [21]
SPECTF 265 45 [21]

Transfusion 748 4 [21]
WDBC 568 30 [21]

BCI 400 118 [4]

well as from [4]. Their characteristics can be found in Table
I.

A cross-validation experiment was carried out as follows.
Each of the datasets were split into 10 folds. Every fold was
used as a validation set once, while the other nine folds were
used for training. The data in these nine folds was randomly
split into a labeled and an unlabeled part, where the labeled
part had max(2d, 10) objects, while the rest was used as
unlabeled objects. This procedure was repeated 20 times and
the average error and average negative log likelihood (the loss
function of LDA) on the test set was determined. The results
can be found in Tables II and III.

To study the behaviour of these classifiers for differing
amount of unlabeled data, we estimated semi-supervised learn-
ing curves by randomly drawing max(2d, 10) labeled objects
from the datasets, and using an increasing randomly chosen
set as unlabeled data. The remaining objects formed the test
set. This procedure was repeated 500 times and the average
and standard error of the classification error and negative log
likelihood were determined. The learning curves for 3 datasets
can be found in Figure 3.

We find that overal in terms of error rates (Table II),
MCLDA seems to perform best, being both more robust than
the EM approaches as well as effective in using the unlabeled
information in improving error rates. While ICLDA is robust
and has the best performance on 2 of the datasets, it is
conservative in that it does not show improvements in terms
of the classification error for many datasets where the other
classifiers do offer improvements.

The picture is markedly different when we consider the log
likelihood criterion that supervised LDA optimizes, evaluated
on the test set (Table III). Here ICLDA outperforms all other



TABLE II. AVERAGE 10-FOLD CROSS-VALIDATION ERROR AND ITS STANDARD DEVIATION OVER 20 REPEATS. INDICATED IN bold IS WHETHER A
SEMI-SUPERVISED CLASSIFIER SIGNIFICANTLY OUTPERFORM THE SUPERVISED LDA CLASSIFIER, AS MEASURED USING A t-TEST WITH A 0.05

SIGNIFICANCE LEVEL. UNDERLINED INDICATES WHETHER A SEMI-SUPERVISED CLASSIFIER IS (SIGNIFICANTLY) BEST AMONG THE FOUR
SEMI-SUPERVISED CLASSIFIERS CONSIDERED.

Dataset LDA LDAoracle MCLDA EMLDA SLLDA ICLDA
Haberman 0.37± 0.04 0.25± 0.00 0.36± 0.03 0.47± 0.08 0.36± 0.04 0.37± 0.04
Ionosphere 0.21± 0.02 0.15± 0.01 0.18± 0.02 0.57± 0.04 0.20± 0.02 0.18± 0.01
Parkinsons 0.27± 0.03 0.15± 0.01 0.22± 0.03 0.41± 0.05 0.26± 0.03 0.23± 0.03
Pima 0.34± 0.03 0.23± 0.00 0.32± 0.02 0.37± 0.03 0.35± 0.02 0.31± 0.02
Sonar 0.29± 0.02 0.26± 0.02 0.28± 0.02 0.35± 0.02 0.29± 0.02 0.28± 0.02
SPECT 0.31± 0.03 0.18± 0.01 0.25± 0.02 0.62± 0.03 0.33± 0.03 0.30± 0.03
SPECTF 0.32± 0.03 0.24± 0.01 0.28± 0.03 0.28± 0.05 0.34± 0.03 0.33± 0.03
Transfusion 0.34± 0.03 0.23± 0.00 0.32± 0.03 0.52± 0.09 0.37± 0.05 0.33± 0.03
WDBC 0.11± 0.01 0.04± 0.00 0.09± 0.01 0.38± 0.05 0.09± 0.01 0.08± 0.01
BCI 0.21± 0.01 0.16± 0.01 0.20± 0.01 0.21± 0.02 0.21± 0.02 0.20± 0.01

TABLE III. AVERAGE 10-FOLD CROSS-VALIDATION NEGATIVE LOG-LIKELIHOOD (LOSS) AND ITS STANDARD DEVIATION OVER 20 REPEATS.
INDICATED IN bold IS WHETHER A SEMI-SUPERVISED CLASSIFIER SIGNIFICANTLY OUTPERFORM THE SUPERVISED LDA CLASSIFIER, AS MEASURED
USING A t-TEST WITH A 0.05 SIGNIFICANCE LEVEL. UNDERLINED INDICATES WHETHER A SEMI-SUPERVISED CLASSIFIER IS (SIGNIFICANTLY) BEST

AMONG THE FOUR SEMI-SUPERVISED CLASSIFIERS CONSIDERED.

Dataset LDA LDAoracle MCLDA EMLDA SLLDA ICLDA
Haberman 15.88± 4.37 10.37± 0.02 11.66± 2.45 12.02± 0.35 12.08± 0.20 10.89± 0.16
Ionosphere 199.58± 29.66 21.38± 0.34 25.93± 1.44 22.55± 0.40 22.80± 0.40 22.22± 0.33
Parkinsons −40.76± 11.11 −71.87± 0.32 −71.05± 0.40 −71.12± 0.40 −71.03± 0.38 −71.44± 0.31
Pima 41.98± 2.99 29.88± 0.02 31.74± 0.99 31.95± 0.35 32.07± 0.36 30.50± 0.13
Sonar −59.86± 1.08 −83.05± 0.59 −82.23± 0.57 −82.85± 0.55 −82.20± 0.60 −82.58± 0.57
SPECT 27.65± 1.89 10.74± 0.09 11.30± 0.17 12.63± 0.18 11.84± 0.20 11.19± 0.13
SPECTF 178.42± 2.48 148.13± 0.68 148.78± 0.69 148.44± 0.69 149.18± 0.72 148.67± 0.71
Transfusion 17.00± 2.61 11.48± 0.02 12.23± 0.54 16.27± 0.53 14.21± 0.47 11.88± 0.17
WDBC 33.15± 15.14 −28.06± 1.29 −26.73± 1.23 −26.67± 1.32 −27.78± 1.28 −27.86± 1.28
BCI 6.99± 1.04 −21.04± 0.41 −20.38± 0.40 −20.39± 0.46 −20.44± 0.45 −20.74± 0.41
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Fig. 3. Learning curves for increasing amounts of unlabeled data for the error rate as well as the loss (negative log likelihood) for three datasets using 500
repeats. The shaded regions indicate one standard error around the mean.

methods on the majority of the datasets.

V. DISCUSSION

The results show that ICLDA provides the safest option
among the semi-supervised approaches to LDA that we con-
sidered. At least in terms of the log-likelihood, it provides the
best performance by far. A particularly interesting observation
is that the implicit constraints, in many a case, seem to add a
lot to the constraints that MCLDA enforces, as also the latter

classifier is consistently outperformed by ICLDA in terms of
the log likelihoods achieved on the test set. As yet, we have
no full understanding in what way the implicit constraints add
restrictions beyond the moment constraints, apart from the fact
that the former are stricter than the latter. A deeper insight into
this issue might cast further light on the workings of ICLDA.

While it is the safest version, ICLDA may be too safe, in
that it does not attain performance improvement in terms of
classification error in many cases where MCLDA or the EM



approaches do offer improvements. In terms of the loss on
the test set, however, ICLDA is the best performing method.
Since this is the objective minimized by supervised LDA as
well, perhaps this is the best we could hope for in a true semi-
supervised adaptation of LDA. We found similar empirical and
theoretical performance results in terms of improvements in the
loss on the test set when applying the implicitly constrained
framework to the least squares classifier [7]. How then, this
improvement in “surrogate” loss relates to the eventual goal
of classification error, is unclear, especially for a non-margin
based loss function such as the negative log likelihood [22].
However, since ICLDA does offer the best behaviour of super-
vised LDA’s loss on the test set, ICLDA could be considered
a step towards a principled semi-supervised version of LDA.

An open question regarding the objective function associ-
ated with ICLDA is to what extent it is convex. The solution in
terms of the responsibility vector yu is non-unique: different
labelings of the points can lead to the same parameters. In
terms of the parameters, however, the optimization seems to
converge to a unique global optimum. While we do not have
a formal proof of this, as in the case of implicitly constrained
least squares classification, we conjecture that the objective
function is convex in the parameters, at least in the case
in which we choose to parameterize LDA by means of its
canonical parameters [23]. In this case, LDA does lead to a
convex optimization problem.

We find that the behaviour of EMLDA is more erratic
than that of SLLDA. The hard label assignments could have
a regularizing effect on the semi-supervised solutions, making
self-learning a good and fast alternative to self-learning. Note
that safer versions of SLLDA and EMLDA could be obtained
by introducing a weight parameter to control the influence of
the unlabeled data [8]. In the limited labeled data setting, it is
hard to correctly set this parameter. While this may help when
dealing with larger sample sizes, the constraint approaches
bring us closer to methods that always perform at least as
well as their supervised counterpart.

VI. CONCLUSION

ICLDA is a principled and robust adaptation of LDA to
the semi-supervised setting. In terms of error rates, it may
be overly conservative. When measured in terms of the loss
on the test set, however, it outperforms other semi-supervised
methods. It therefore seems that there are opportunities for
robust semi-supervised learners, although the performance
criterion that we should consider may not be the error rate,
but rather the loss that the supervised learner minimizes [24].
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