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Abstract—It is common for CCTV operators to overlook inter-
esting events taking place within the crowd due to large number
of people in the crowded scene (i.e. marathon, rally). Thus,
there is a dire need to automate the detection of salient crowd
regions acquiring immediate attention for a more effective and
proactive surveillance. This paper proposes a novel framework
to identify and localize salient regions in a crowd scene, by
transforming low-level features extracted from crowd motion
field into a global similarity structure. The global similarity
structure representation allows the discovery of the intrinsic
manifold of the motion dynamics, which could not be captured
by the low-level representation. Ranking is then performed on
the global similarity structure to identify a set of extrema.
The proposed approach is unsupervised so learning stage is
eliminated. Experimental results on public datasets demonstrates
the effectiveness of exploiting such extrema in identifying salient
regions in various crowd scenarios that exhibit crowding, local
irregular motion, and unique motion areas such as sources and
sinks.

I. INTRODUCTION

The increasing demands for security and public safety by the
society has lead to an enormous growth in the deployment of
CCTV in public spaces [1], [2]. The recent Boston Marathon
bombing, in particular, has ignited a pressing interest for
automated video content analysis to assist the law enforcement
in preventing such events to be happened again. The inves-
tigation surrounding the bombing was a missed opportunity
to use technology to detect the abnormal behavior of the
suspect, which leads to the tragedy [3]. However, one must
understand that at large events such as rallies and marathons,
where crowds of hundreds or even thousands gather, video
monitoring is a daunting task due to the large variations of
crowd densities and severe occlusions. Moreover, the attention
span of human has been shown to deteriorate after 20 minutes
and manual monitoring task requires demanding, prolonged
cognitive attention [4]. Therefore, major research efforts are
emerging towards developing solutions to identify interesting
or salient regions, which could ultimately lead to unfavorable
events, as a cue to direct the attention of the security personnel.

The definition of interesting region in crowd has been caus-
ing much debates in the literature due to the subjective nature
and complexity of the human behaviors. Some researchers
consider any deviation from the ordinary observed events as
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Fig. 1. Three-dimensional embedding of the global similarity structure
obtained using multi-dimensional scaling. The color of each point represents
the ranking score, where the extrema correspond to salient regions.

anomaly, whereas others consider rare or outstanding event
as interesting. Finding interesting regions in a given scene is
generally accomplished by firstly learning an activity model of
the scene, followed by using the learned model to identify the
anomalies [5]–[8]. In this study, we take a different perspective
to detect the interesting regions in extremely crowded scenes.
In contrast to existing studies, our method alleviates the need
for a learned model. In particular, we assume that the motion
of individuals tend to follow the regular or dominant flow of
a particular region due to the physical structure of the scene,
and the social conventions of the crowd dynamics. With this
assumption, we consider interesting regions as extrema in the
underlying crowd motion dynamics in the scene. Detecting
these extrema is accomplished in an unsupervised manner.

In contrast to existing methods [9], [10], which use low-
level features for crowd motion representation, we project the
low-level features extracted from the motion field into a global
similarity structure, which captures the pairwise similarity of
the crowd motion of all pixels (or particles that are spatially
distributed on the image plane). Such a structure allows the
discovery of intrinsic manifold of the motion dynamics as
shown in Fig. 1. With the manifold, ranking is performed
by the iterated graph Laplacian approach. The extrema of the
rank scores are employed as an indicator of salient motion
dynamics or unstable motion in the dense crowd scenes. The
aforementioned approach is purely unsupervised, eliminating
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the requirement of a learning stage as to [5]–[8].
Experimental results on public datasets demonstrate the

capability of the proposed method in detecting and localizing
a broad scope of crowd salient motions caused by crowding,
sources and sinks, and local irregular motion. The crowding is
defined as potential clogging or bottlenecks that are typically
affected by the physical structure of the environment. For
example, near junctions where the crowd density builds up and
thus, preventing smooth motion amongst individuals. Sources
and sinks refer to regions where individuals in a crowd enter or
leave the scene. Finally, local irregular motion is triggered by
flow instability of individuals or a small groups maneuvering
against the dominant flow in the scene.

II. RELATED WORK

Existing methods can be divided into two main approaches.
The first approach analyzes crowd behaviors or activities
based on the motion of individuals, where tracking of their
trajectories is required [7], [8], [11]–[15]. Commonly, the
tracking approaches keep track of each individual motion and
further apply a statistical model of the trajectories to identify
the semantics or geometric structures of the scene, such as the
walking paths, sources and sinks. Then, the learned semantics
are compared to the query trajectories to detect anomaly.
While in principle individuals should be tracked from the time
they enter a scene, till the time they exit the scene to infer
such semantics, it is inevitable that tracking tends to fail due
to occlusion, clutter background and irregular motion in the
crowded scenes. Therefore, the aforementioned methods work
well, up to a certain extent, in sparse crowd scenes. They tend
to fail in dense crowd scenes (Fig. 1), where target tracking
is extremely challenging.

In order to alleviate the need to track individuals in the
scene, researchers have proposed holistic approach for activity
analysis and behavior understanding in the crowded scenes.
Rather than computing the trajectories of individuals, this
approach builds a crowd motion model using the instantaneous
motions of the entire scene such as the flow field [16], [17].
The flow field is then fed into an hidden Markov model
to learn the inherent dynamics of the motion patterns [16],
or clustering methods for motion segmentation [17]. Ali et
al. [9] apply the Lagrangian particle dynamics based on the
crowd flow field to estimate the stability of a particular region.
Their method able to detect regions with unstable motion
by discovering the abnormality in the segmented flow fields.
Similarly, [18] proposed another representation of the low-
level features extracted from the optical flow using a multi-
scale approach to identify interesting regions. Since these
methods use only the direction and speed as the motion
features, their scenarios are limited to those events that are
occurred due to the variation in motion direction and speed
only. Example of these detections include an individual moves
at a faster speed than the group, or moving at the opposite
direction. Their method are not able to cope with other type
of saliency such as crowding, or unique motion areas such as
the sources and sinks.

Detection and localization of salient regions by using spec-
tral analysis is proposed in [10]. In contrast to other methods,
their method suppress dominant flows with a focus on the
motion flows that deviate from the norm. While their method
deal with unstable crowd flow, their experiments were limited
to the detection of simulated instability, and not real-world
public scenes. In the closest work to ours, Solmaz et al. [19]
propose a linear approximation of the dynamical system to
categorize different crowd behaviors using the eigenvalues
over an interval of time. Their methods show promising results
in detecting and classifying five different scenarios of saliency,
which includes the bottleneck, lane, arch, fountainhead and
blocking. In comparison to [19], our method is more sensitive
in detecting such salient regions, while having the capability
of highlighting the location of the triggering event accurately.

In summary, the main contribution of this study is that we
propose the transformation of low-level motion features into
global similarity structure. The structure allows the discovery
of the intrinsic manifold of the motion dynamics in crowded
scenes, which could not be captured by the low-level rep-
resentation as to [9], [10]. Moreover, contrary to the state-
of-the art solutions [5]–[8], the presented manifold requires
(1) no tracking, as we exploit optical flow representation,
and (2) no prior information or model learning to identify
interesting/salient regions in the crowded scenes, as we employ
extrema in the intrinsic manifold of motion dynamics as an
indicator of saliency.

III. PROPOSED FRAMEWORK

The pipeline of the proposed framework is illustrated in
Fig. 2.

A. Crowd Motion Field

The proposed framework represents the crowd motion field
of each frame using the optical flow. Specifically, given a
crowd video sequence, the velocity field at each point, V (p) =
(up, vp) is estimated using the dense optical flow algorithm as
to [20], where each pixel in a given frame is considered as a
point or particle1, p = (x, y). Both the horizontal and vertical
flow components, u and v, of the extracted optical flow field
are then accumulated, and an averaged flow, V , is calculated
within an interval of time, comprising |τ | frames.

V = {u, v} = {1

τ

t+τ∑
t

up,
1

τ

t+τ∑
t

vp} (1)

The proposed interval-based average representation is per-
formed to obtain smooth and consistent fields, where incon-
sistent velocity components (noise) are often reduced if not
removed during the averaging step.

B. Feature Representation

Using the crowd motion field, we extract two features to rep-
resent a broader definition of the crowd dynamics denoted as
the stability and phase shift maps. These maps are the results

1One could also consider a spatial block of pixels as a particle.



(a) Input video sequence (b) Motion flow estimation

(c) (Left) stability map and (Right) phase shift map reveals the global
similarity structure of the scence. The width and height of the map are
the number of pixels of a video frame.

(d) The ranking results, where red and blue color indicate the extrema
with interesting dynamics.

Fig. 2. Outputs from the key steps in crowd saliency detection. Best viewed
in color.

of transformation of the low-level feature space into global
similarity structure space. Next we describe the computation
of each map in detail.

1) Stability Map: The mean optical flow field appears to
be a good indicator for the dominant flow of individuals in
crowd, but may not be sensitive enough to capture subtle
interaction and motion flows that deviate from the norm. To
this end, we apply particle advection to the mean flow field.
The resulting pathlines from the advection process allows
quantification of the motion dynamics, which is derived later
from the separation coefficients between particles. The basic
idea of particle advection is to approximate the ‘transport’
quantity by a set of particles as proposed in [21]. In this
context, advection is applied to keep track of the velocity
changes for each point, p along its velocity field defined by
(u, v).

d~xp
dt

= up(t0, t, x0, xp) (2)

d~yp
dt

= vp(t0, t, y0, yp) (3)

where (x0, y0) represents the initial position of point p at time
t0, while (xp, yp) denotes its position at time t0 + t. Unlike
the conventional optical flow representation that captures the
velocity of a pixel in two consecutive frames, the advected
flow field captures the velocity of a particle in τ consecutive
frames. The trace of particles over time forms a pathline.
We make assumption on the initial position of p as the

mean velocity fields, and perform cubic interpolation of the
neighboring flow field to compute the robust velocity of
particles.

We adopted the Jacobian method as in [22] to measure the
separation between each pathline which are seeded spatially
close to a point, p, within a time instance, τ . The Jacobian is
computed by the partial derivatives of d~xp and d~yp, where:

∇F t(p) =

[
∂d~xp

∂xp

∂d ~xp

∂yp
∂d~yp
∂xp

∂d ~yp
∂yp

]
(4)

According to the theory of linear stability analysis in [23],
the square root of the largest eigenvalue, λt(p) of F t(p)TF t(p)
indicates the maximum offset or displacement if the particle’s
seeding location is shifted by one unit as it satisfies the
condition that lnλt(p) > 0. In the context of this study, a
large eigenvalue indicates that the query point is unstable, and
vice versa for a small eigenvalue. Since we are only interested
in regions that have interesting motion dynamics, based on the
eigenvalue, we can compute the stability of a point using Eq.
5. In practice, τ should depend on the rate of change of the
flow field, with a higher rate of change of flow field resulting
in smaller time scales and vice versa. In our experiments, we
fixed τ = 50 frames at 25fps.

φt =
1

| τ |
log
√
λt(p) (5)

This is followed by transforming the low-level feature
comprising the stability coefficient, which in this study acts as
an indicator of unstable motion, into global similarity structure
space. The stability map is computed by taking the difference
between the stability of each point, i, with every other point,
j, in the given scene:

sti,j = φti − φtj (6)

where si,j is the (i, j) element in the stability map denoted
by S ∈ Rh×w, and h and w represent the height and weight
of the given frame.

2) Phase Shift Map: In order to uncover the collective flow
of the crowd, one of the simplest way is ‘grouping’ points in
the velocity field, V , according to the phase similarity. Here,
we anticipated that connecting ‘grouped’ points with respect
to the gradual changes of the velocity phase, we can uncover
important motion characteristic of the crowd.

The phase shift map is denoted by Θ ∈ Rh×w. Each element
θti,j ∈ Θ is obtained as the phase difference of the mean flow
vector between points:

θti,j = arccos
V
t

i · V
t

j∥∥∥V ti∥∥∥∥∥∥V tj∥∥∥ (7)

where the phase difference, θti,j , between two points are
measured by the shortest great-circle distance, hence θti,j is
bounded by [0, π]. The rational of projecting the velocity
phase to the global similarity structure is to reveal the intrinsic



relationship of each point, p, with the other points on the same
video sequence.

C. Saliency Detection by Manifold Ranking

In the following, we will explain the steps to detect the
salient motion regions within the crowd scene by performing
ranking on the intrinsic manifold [24] uncovered by the global
similarity feature maps, i.e. the stability and phase shift maps.

For each video sequence, we represent the set of data points
R = {r1, r2, . . . , rn}, in the form of a weighted k-nearest
neighbors (kNN) undirected network graph G = 〈V,E〉. Note
that each data point, r = (st, θt)

T, is an integrated feature
comprising the global similarity structure representation of
scaled stability and phase change, where st and θt are scaled
to [0, 1]. Each vertex, υi, in the graph represents a data point,
ri. Two vertices are connected by an edge E weighted by a
pairwise affinity matrix, Wij , which is defined as:

Wij = exp

(
−dist2(ri, rj)

σiσj

)
(8)

where i 6= j and Wii = 0 to avoid self reinforcement during
the manifold ranking [24]. σi and σj are the local scaling
parameters [25]. The selection of σi is given as:

σi = dist(ri, rk) (9)

where rk is the k-th neighbor of data point ri. The distance
metric, dist, denotes the Euclidean distance. Given the affinity
matrix, Wij , we can then represent the connected graph, G,
using the normalized Laplacian matrix, L = D− 1

2WD− 1
2 ,

where D is the diagonal matrix with Dii =
∑
jWij .

We assume the typical and uninteresting motions dominate
a scene. Thus, selecting a random set of m ‘query’ points,
Q = {q1,q2, . . . ,qm} can well capture the dominant crowd
behavior of the scene2. By performing ranking, we can detect
extrema as data points with the highest and lowest rank
scores, deviating from the query points. Such extrema suggest
interesting regions caused by crowding, local irregular motion
and sources and sinks.

To detect the extrema, we label each query successively
with a positive label +1. Its label is then propagated to all
other unlabeled instances, {ri}, of which their initial labels are
assigned as 0. More precisely, we compute a rank score vector
for each query qi, individually, denoted as ci = (c1i , ..., c

n
i )

T,
via the Laplacian graph, L, using the close form equation:

ci = (I − αL)−1y (10)

where I is an identity matrix and α is a scaling parameter in
the range of [0, 1]. The vector y is the initial label assignment
of data points, which is given as y = (y1, ..., yn)

T, in which
yi = +1 if ri = qi, and yi = 0 otherwise. Note that qj
where j 6= i has initial label assigned as 0 too. We repeat
the same ranking process for all query points Q. The final

2The selection of those random points can be repeated to generate more
queries, accordingly. In this study, we set m = 100. Evaluation with varying
query points generated consistent rank score.

(a) Original image (b) Our method

(c) Loy et al. [10] (d) Ali et al. [9]

Fig. 3. Comparisons on the corrupted pilgrimage sequence, where synthetic
noise was added to simulate unstable motion. Best viewed in color.

rank score vector, C, is the average of m rank score vectors,
i.e. C = 1

m

∑m
i=1 ci. Extrema are data points with the highest

and the lowest rank scores in C.

IV. EXPERIMENTS

We used the benchmark datasets obtained from [8]–[10],
[19] to evaluate the proposed framework. The sequences are
diverse, representing dense crowd in the public spaces in
various scenarios such as pilgrimage, station, marathon, rallies
and stadium. In addition, the sequences have different field of
views, resolutions, and exhibit a multitude of motion behaviors
that cover both the obvious and subtle instabilities.

A. Qualitative Analysis

1) Instability Detection: A set of two sequences comprising
a pilgrimage and marathon scenes were used to test the capa-
bility of the proposed system in detecting instability. Following
the studies [9], [10], we introduced synthetic noise into the
2 sequences to simulate the unstable region as enclosed in
the blue bounding box shown in Fig. 3 and the red box
in Fig. 4, respectively. We observe that all three methods (
[9], [10] and ours) are able to identify the unstable region,
as shown in Fig. 3-4. However, in addition to the synthetic
noise, our proposed method is able to identify other regions
that exhibit unique motion dynamics as highlighted by the
colored regions. After scrutinizing our results, we notice that
these areas correspond to the exit and turning point around
the Kaaba in Fig. 3, where there is potential slowdown in the
pace of individuals, thus resulting in salient motion dynamics
within these regions. Similarly, the proposed method is able
to detect the sink region in the marathon sequence in Fig.
4, where the crowd exit from the field of view. The results
demonstrate the effectiveness of the global similarity structure
in capturing the intrinsic structure of the crowd motion.

To further evaluate the robustness of the proposed method
in dealing with inconsistent and subtle crowd motion, we
tested the three methods again on the original sequences of



(a) Original image (b) Our method

(c) Loy et al. [10] (d) Ali et al. [9]

Fig. 4. Comparisons on the corrupted marathon sequence, where synthetic
noise was added to simulate unstable motion. Best viewed in color.

(a) Original image (b) Our method

(c) Loy et al. [10] (d) Ali et al. [9]

Fig. 5. Comparisons on the original pilgrimage sequence (without synthetic
noise). Best viewed in color.

pilgrimage and marathon, without any synthetic noise. The
results in Fig. 5 show that [9], [10] do not have any detection
for these sequences. In contrast, our method is capable of
detecting the sink region, as well as the potential overcrowding
regions along the bridge’s edge. Note that the results herein are
consistent with the sequences with synthetic noise since our
method detect similar interesting regions. The results, again,
show that subtle motion can be more effectively discovered by
employing the global similarity structure of the crowd motion
rather than using the low-level flow field [9], [10]

2) Local Irregular Motion Detection: Another comparison
is performed between our work and Solmaz et al. [19] using
the sequence obtained from an underground station as depicted
in Fig. 7. This sequence contains obvious source and sink
regions, which are detected as bottleneck and fountainhead
in [19]. The results demonstrate that our method is able to
detect similar regions as in [19], with the addition of another
source region at the bottom right of the scene, which is not

(a) Original image (b) Our method

(c) Loy et al. [10] (d) Ali et al. [9]

Fig. 6. Comparisons on the original marathon sequence (without synthetic
noise). Best viewed in color.

(a) Original image (b) Solmaz et al. [19]

(c) Our method

Fig. 7. Comparison with the state-of-the-art method [19] on the station
sequence. Best viewed in color.

detected by [19]. In addition, our method detected the irregular
motion of someone walking into the scene from the bottom
left corner of the scene. This is not the case in [19], where
their detection does not highlight accurately the location of the
triggering event. Note that while our method is able to detect
salient/interesting motion dynamics, we do not characterize
them into the different categories.

We further tested our method on sequences with local
irregular motion caused by individuals moving against the
dominant crowd flow such as that shown in Fig. 8. This
scenario is to mimic the Boston Marathon Person Finder page
launched by Google, which aims to identify individuals that
seem suspicious. Through the proposed global similarity struc-
ture of the crowd motion, our method detects such anomaly
consistently and effectively, as illustrated in Fig. 8.



Fig. 8. Example detections on local irregular motion. Our output is
highlighted in the blue bounding box on the right column. First row: Our
method detect an individual walking across the scene, while the rest of the
crowd is seated. Second row: Our method detect an individual maneuvering
through an extremely crowded scene. Best viewed in color.

B. Quantitative Analysis

We compared our detections against manually labeled in-
teresting regions from all the sequences obtained from the
public datasets. Most of the related studies [9], [10], merely
provide qualitative results and the implementations are not
shared publicly; leading to difficulties in performing a compre-
hensive evaluation quantitatively. We determined the regions
with interesting motion dynamics as per video basis and we
employed the F-measure according to the score measurement
of the well-known PASCAL challenge [26]. That is, if the
detected region overlaps the ground truth region by more than
50%, then the detection is considered as the correct salient
region.

For clarity, we present our detection results according to
different interesting motion categories, i.e. crowding, sources
and sinks and local irregular motion, as shown in Table I. In
general, the proposed method performs exceptionally well with
only several false detections that are due to ambiguous local
motion, e.g. random hand waving motion in a crowded scene.
Our method fail in scenarios where the stability and phase
features are derived from inaccurate flow field due to strong
illumination. Specifically, the proposed ranking algorithm pro-
duce erroneous connected graphs, leading to mis-detections.

V. CONCLUSION

We have demonstrated that the transformation of the low-
level flow field descriptors, stability and phase changes, into
the global similarity structure, is an effective indicator for
salient motion dynamics and irregularities in the crowded
scenes. In particular, experimental results have shown that the
method is effective in detecting sources and sinks, crowding,
and local irregular motions from various surveillance scenar-
ios. Importantly, accurate detection is achieved in the crowded
scenes without tracking, prior information or model learning.
Though the manifold projection is capable of discovering
intrinsic structure of the motion dynamics, the basis of our
manifold is optical flow. Thus, it is limited by the known

TABLE I
SUMMARY OF THE CROWD SALIENCY DETECTION RESULTS.

Motion Category Total # # of # of Missed # of False
of Labelled Region Detection Detection Detection

Crowding 13 12 1 0
Sources & Sinks 19 14 5 0
Local Irregularity 43 47 2 6

drawbacks of optical flow estimation. Future investigation
includes identifying low-level features that are more robust
towards characterising motion in extremely crowded scenes.
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