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Abstract—In this paper we present a novel people detector that
employs discrete optimization for feature selection. Specifically,
we use binary integer programming to mine heterogeneous
features taking both detection performance and computation time
explicitly into consideration. The final trained detector exhibits
low Miss Rates with significant boost in frame rate. For example,
it achieves a2.6% less Miss Rate at10−4 FPPW compared to Dalal
and Triggs HOG detector with a 9.22x speed improvement.

I. Introduction

In modern era, computer vision is playing a significant role
in automated object perception; one such thriving role is au-
tomated people detection. Visual people detection,i.e., people
detection using visual cameras, is the most prominent mode
employed in the literature as cameras are cheap, versatile,and
provide rich color and texture information. It is indispensable
primarily in surveillance systems, human-machine interaction,
robotics, automotive industry, image/video indexing,etc. Ev-
idently, it is also one of the challenging tasks in computer
vision due to variations in peoples’ appearance, background
clutter, illumination, sensor motion, and so forth. In recent
years astounding progress have been made by the scientific
community [1], [2], but there is still room for improvement.

One important discipline where applications of visual peo-
ple detection is highly proliferating is robotics. In robotic
systems that entail people perception, the aforementioned
challenges are further exacerbated by real-time requirements,
limited computational resources, and sensor motion. A mobile
robot needs to be reactive during navigation/interaction in
human occupied environments. Thus, its people detection
module–which is one component of an entire functioning
system–should be fast. The advent of powerful camera systems
in the robotic community that provide high resolution omnidi-
rectional images,e.g., the Ladybug series [3] from Point Grey,
stresses this point further urging the need to give extra focus
on computation time during detector design.

In this work, we try to give explicit consideration to
computation time during detector design. Generally speaking,
balancing computation time and detection performance is
challenging; best detection results are obtained using complex
features and descriptors which are computationally expensive.
As an example, Histogram of Oriented Gradients (HOG) [4] is
the most discriminant feature thus far, but it is also computa-
tionally expensive compared to simple features like Haar vari-
ants [5]. Furthermore, most detectors that improve over HOG
either use complex human models,e.g., parts based models [6],
or consider various heterogeneous pool of features,e.g., [7],

[8], both of which contribute to added computation time unless
explicit computation considerations are made. In line withthis,
we present a person detector that uses heterogeneous pool
of features and makes explicit computation time vs detection
trade-off optimization to build a performant detector that leads
to a significant gain in computation time while maintaining
competitive detection performance.

Related Works: The entire literature in visual people
detection is overwhelming and a discussion on the different
techniques is beyond the scope of this paper (please refer
to [1], [2] for extensive surveys). We will focus on approaches
that use heterogeneous pool of features with sliding-window
detection paradigm. The best results in visual people detection
are obtained using heterogeneous pool of features [1], [2].Het-
erogeneous features help capture complementary information
useful to handle various detection challenges. For example:
Wojek et al. [8] used Haar, HOG, and shape context features.
They presented a comparative result obtained using boosting
techniques and SVMs as classifiers and demonstrated that the
combination of different features successfully outperformed in-
dividual variants and even the state-of-the-art at the time. Walk
et al. [7] also clearly showed they obtained the best detection
results when concatenating HOG, Histogram Of Flow [9], and
Color Self Similarity (CSS) features all together, rather than
individual features or a subset of them. Similar conclusions
were made by Schwartzet al. [10] and Hussain and Triggs [11]
using–HOG, color frequency, and co-occurrence features–and–
HOG, Local Binary (LBP) and Ternay (LTP) Pattern features–
respectively.

Given heterogeneous pool of features, different ways can
be used to build the final detector. Four main trends can be
observed in the literature: (1) Direct concatenation [7], [8]
in which the different features are concatenated to make one
high dimensional feature vector and an SVM used afterwards
for classification. This is computationally costly owing to
the complex feature and SVM weights applied in sliding
window detection. [11], [10] used dimensionality reduction
techniques after concatenation which improved detection per-
formance but not detection speed. (2) Direct boosting [12],
[8], [13] where an ensemble classifier is learned using the
entire heterogeneous pool of features. The problem here is in
boosting, on each iteration, the feature with the least weighted
classification error is added to the ensemble irrespective of its
computation time. This favors complex features resulting in
computationally costly detector. (3) Coarse-to-fine hierarchical
arrangement [14], [15] where a cascade is constructed using
cheap features at the initial stages and using complex features
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Fig. 1: Feature selection and classifier learning framework used at each node of a cascade.

at later stages. This approach is quite advantageous and tries to
find a balance between detection performance and speed. The
concern is, how to decide which features to use at the different
stages systematically? Both [14], [15] adopt a heuristic based
rule and use homogeneous family of features they deemed
cheap at the initial stages, and homogeneous complex features
at the latter. Finally, (4) via a computation time vs detection
trade-off. This notion has been considered by the works of
Wu and Nevatia [16], Jourdheuilet al. [17], and Mekonnen
et al. [18]. In all cases, they defined a criterion composed
of feature detection performance and computation time in a
multiplicative manner. But, considering a multiplicativefactor
masks the contributions from the respective objectives andis
not guaranteed to be optimal.

Our proposed framework falls in the 4th category; but, it
can also be considered as a variant of coarse-to-fine hierarchy
in which the exact features to use at each cascade node
are selected automatically via an optimization step. We use
five frequently used heterogeneous features, namely: Haar-like
features [5], Edge Orientation Histogram (EOH) [13], CSS [7],
Center Surround Local Binary Patterns (CS-LBP) [19], and
HOG [4] in a classical cascaded boosting configuration [5]
with an added explicit optimization step based on Binary
Integer Programming (BIP) to select a subset of features
that have the least combined computation time and achieve
a stipulated detection performance.

Contributions: This paper claims to make two important
contributions. First, it presents a BIP formulation to mine
heterogeneous features taking both detection performanceand
computation time into consideration. The authors assert this
optimization applied to heterogeneous features is unique in
the literature and makes a key contribution. Second, the
paper presents a thorough evaluation of the proposed per-
son detector–using both proprietary and public datasets–with
detailed analysis of its performance compared to alternative
approaches and the state-of-the-art.

II. Framework

The objective in this work is to develop a people detec-
tion framework based on heterogeneous features that capture
different facets of persons in an image. Our proposed detector
training framework takes discriminative power of each fea-
ture and its associated computation time into consideration
explicitly to select, and subsequently use, a subset of features
that fulfill the required detection performance and have the
minimum cumulative computation time.

As detection speed is one of our design focus, we adopt
the acclaimed Viola and Jones [5] attentional cascade detector
configuration in a sliding window paradigm. To train a strong
classifier at each node of the cascade, the framework depicted
in figure 1 is employed. For a given set of positive and
negative training samples (a total ofn samples denoted as
{(xi , yi)}i∈{1,...,n}): First, the features described in§ II-A are ex-
tracted resulting in the feature setF . For each feature a unique

weak learner is trained using the examples provided and is used
to characterize the discriminating power of the feature in terms
of True Positive Rate (TPR) and False Positive Rate (FPR).
Following, pareto-front analysis is used to select a subsetof
features,F̃ , taking their TPR, FPR, and computation time
into account. This step is necessary to reduce the overwhelm-
ing total number of features to a tractable size for discrete
optimization. Next, binary integer optimization, presented in
§ III, is used to retain a subset of features,F̂ , that have the
required performance—detection plus minimum computation
time. Finally, a nodal strong classifierH(·) is trained using the
retained feature set̂F with discrete AdaBoost. Specific design
choice motivations and brief descriptions of each block are
presented herein below.

A. Features

Five different feature families are considered, namely: Haar
like, CS-LBP, CSS, EOH, and HOG. This choice is motivated
by two aspects: (1) their frequent use in the literature for person
detection, and (2) their complementary nature. EOH and HOG
capture edge distributions, CSS focuses on color symmetry,
Haar-like and CS-LBP on intensity and texture variations. The
feature pool of each family is extracted from a 128×64 pixels
human template window.
Haar like: Here, the extended set proposed by Lienhart and
Maydt [20] which includes tilted variants, is used. The pool
is generated by extracting feature values at all positions and
scales in the template window with the extended Haar set.
CS-LBP: Computes per pixel CS-LBP [19] value by taking
and modulating the intensity difference of center symmetric
pixels for all the neighboring pixels. For each pixel, we
privilege a 3× 3 pixel region which results in a scalar integer
between 0 and 16. Then, considering a rectangular region
within the human template, a histogram with 16 bins is
computed to signify one feature of this family. For all possible
positions and scales of the rectangular region a distinct feature
(which is a histogram) is computed and added in to the set of
CS-LBP feature pool.
CSS: Color self similarity, proposed by Walket al. [7],
captures pairwise similarities of spatially localized color dis-
tributions and can be used to capture the left and right
symmetry of persons’ clothing (upper body and lower body).
The computation first starts by subdividing the given template
into non-overlapping regions called blocks. For each block
a 3× 3 × 3 HSV color histogram is constructed. Then, the
similarity of block with the rest of the blocks is determinedvia
histogram intersection. Instead of concatenating all computed
similarities like Walket al. [7], we define a single CSS feature
to be a vector of scalar values that are obtained by intersecting
the histogram of one block with the rest of the blocks. The
CSS feature pool set is then determined by computing this
vector for all blocks. By dividing the template into blocks of
8 × 8 pixels, a total of 128 feature vectors, each with 127
dimensions, are obtained.
EOH: This feature pool is generated exactly as described by
Geronimo et al. [13]: edge orientation histogram followed



by ratios of magnitude of two bins to get a single scalar
feature value and doing this for all positions and scales of
rectangular subregions for histogram computation within the
template window.
HOG: The HOG feature pool set is constructed as follows:
Given the template window, it is divided into overlapping
blocks and a 36 dimensional histogram of oriented gradients
is computed just like [4]. But, rather than concatenating all
block histograms to make one high dimensional feature, we
consider concatenating a subset spanning a rectangular region.
The HOG feature pool is generated by considering all possible
positions, width, and hight of the rectangular region. The
features range from a 36 dimensional vector, a single block,
to 3780 dimensional one, all blocks in the template.

Table I summarizes the total number of features, the scaled
maximum and minimum feature computation time (τmax and
τmin), and the exact weak learner used in each feature family.
For CS-LBP families Linear Discriminant Analysis combined
with a decision tree (which is trained after re-projection)is
privileged as SVM leads to overwhelming training period (due
to the high number of CS-LBP features).

TABLE I: Feature pool summary. Time is reported relatively as a multiple
of the smallest feature computation time,u = 0.0535µs.

Feature Type No of features τmin τmax Weak Learner

Haar like 672,406 1.0u 3.48u Decision Tree
EOH 712,960 4.83u 317.75u Decision Tree
CS-LBP 59,520 15.45u 393.64u LDA + Decision Tree
CSS 128 1017.94u 1017.94u SVM
HOG 3,360 489.72u 51420.56u SVM

B. Pareto-front extraction

Given all set of features,F , along with their trained asso-
ciated weak learners, and characterized by three parameters:
TPR, FPR, and computation time (τ), pareto-front analysis is
used to find the optimal solutions that make up the pareto
optimal set—the solutions that cannot be improved in one
objective function without deteriorating their performance in
at least one of the rest. The subset of features that are pareto
optimal with respect to TPR, FPR, and computation time,
denotedF̃ , are extracted and passed on to be used for the
discrete optimization step.

C. Feature selection and cascade classifier learning

The final and decisive feature selection step is performed
by the BIP optimizer and is discussed in§ III. This module
provides the setF̂ . Finally, the nodal strong classifier,H(·),
is built with discrete AdaBoost by using thêF feature set.

The complete classifier used for detection, however, con-
tains multiple nodes forming a cascade. The cascade construc-
tion starts with all positive training samples and a subset of
the negative training samples (equivalent to the positive ones)
to learn the set of relevant features and classifiers for the
initial cascade node. Once this is done, all negative training
samples in the dataset are tested with it. All those that get
classified correctly are rejected while all those labeled as
positive samples (false positives) are retained along withthe
positive samples for training the following nodes. This step is
repeated until all negative training samples are exhausted. This
data mining technique makes it possible to use vast number of
negative training samples.

III. D iscrete optimization feature selection

The BIP based feature selection applied to heterogeneous
features makes the core of this work’s contribution. The
detailed optimization formulation to select a subset of features
that fulfill a stipulated nodal FPRk, TPRk, with the minimum
combined computation time possible is provided as follows (k
denotes the node index):

Definition of parameters: The following are list of pa-
rameters used in the optimization specification (applies toa
cascade nodek). B = {0,1} denotes a binary set.

• N = {1, ...,n}: set of training sample indexes withn ∈
Z; a total ofn training samples indexed byi;

• M = {1, ...,m}: set of weak learners indexes withm ∈
Z; a total ofm weak learners indexed byj;

• y+ ∈ Bn, y+ =
{

y+i
}

i∈N
; y− ∈ Bn, y− =

{

y−i
}

i∈N

y+i =

{

1 if i is positive
0 otherwise y−i =

{

1 if i is negative
0 otherwise

• H ∈ Bnxm whereH =
{

hi, j

}

i∈N
j∈M

with hi, j ∈ {0,1}

hi, j =

{

1 if weak learnerj detects samplei as positive
0 otherwise

• TPRk ∈ [0,1]: minimum true positive rate set at the
considered node (k) of the cascade;

• FPRk ∈ [0,1]: maximum false positive rate at the
node;

• T ∈ Rm: with T =
{

τ j

}

j∈M
computation time of weak

learner j.

Decision Variables: In BIP, the decision variables are
restricted to binary values, values from the setB = {0,1}.
The BIP decision variables are the following.

• v ∈ Bm, v =
{

v j

}

j∈M
v j ∈ {0,1}: v j = 1 if weak learner

j is selected, elsev j = 0;

• t ∈ Bn, ti ∈ {0,1}: ti = 1 if a positive samplei has
been detected as positive (true positive) by at least
one selected weak learner, elseti = 0;

• f ∈ Bn, fi ∈ {0,1}: fi = 1 if a negative samplei has
been detected as positive (false positive) by at least
one selected classifier, elsefi = 0.

Let vector p, p = {pi}i∈N = Hv denote the total number
of weak learners that have labeled each training samplei as
positive.

Objective Function and Constraints:

min T
Tv (1)

s.t ti ≤ y+i · pi ∀i (2)
fi ≥ y−i · hi, j · v j ∀(i, j) (3)
‖t‖

1
≥ ‖y+‖

1
· TPRk (4)

‖f‖
1
≤ ‖y−‖

1
· FPRk (5)

v ∈ Bn; t = {ti}i∈N, f = { fi}i∈N; t, f ∈ Bn (6)
‖·‖

1
is l1 norm.



The objective function (1) aims at minimizing the computation
time. Constraints (2)-(5) express that a given rate of detection
quality has to be reached (depending on the number of true
and false positives). Constraints (2) linksv j and ti variables
(via pi) so that ti = 0 if positive imagei is not correctly
detected by at least one selected classifier. Constraints (3)
links v j and fi variables so thatfi = 1 if a negative image
i has been recognized as positive by at least one selected
classifier. Constraint (4) expresses that the stipulated TPRk of
true positives, obtained with the selected classifiers, hasto be
reached. Similarly, constraint (5) expresses that the stipulated
FPRk of false positives, obtained with the selected classifiers,
must not be exceeded. In this formulation, there are a total of
(n · (m+ 1) + 2) binary variables in the BIP, which could be
huge for largen and m values. The final subset of features
F̂ corresponds to only the selected features,i.e., non zerov
entry; since each feature indexed byj is associated with a
unique weak learnerh j , F̂ also represents the subset of weak
learners retained

IV. Experiments and Results

In this section the different experiments carried out to
investigate the performance of the proposed framework and
obtained results along with commentaries are presented. The
evaluation is focused on the following two aspects:

(1) Feature selection strategy evaluation:Here, the aim is to
analyze the pros and cons of using BIP over other simpler
alternatives. The proposed BIP based feature selection and
classifier learning strategy, labeled asBIP+AdaBoost, is com-
pared with two other modes. First,Pareto+AdaBoost which
discards the BIP block in the framework and directly trains a
nodal strong classifier with discrete adaboost using the features
retained by the pareto-front extraction block. And second,
Random+AdaBoost which directly builds a nodal classifier
using randomly sampled features from the total feature pool
(proportional to each feature pool family size) and AdaBoost.

(2) General comparative evaluation with the state-of-the-art:
In this part, the performance of the trained BIP+AdaBoost is
compared with the prominent approaches in the literature.

A. Evaluation Criteria

For detector performance evaluation, we use two ap-
proaches: (1) The per window approach, whereby a Detection
Error Trade-off (DET) curve with Miss Rate versus False
Positives Per Window (FPPW) is generated by using cropped
positive and negative windows; and (2) the per image ap-
proach which shows Miss Rate versus False Positives per
Image (FPPI). The first curve is used to compare experimental
variants of the proposed framework with respect to Dalal
and Triggs HOG [4](aspect 1), and the second is used to
determine how our best approach plays out compared to the
different techniques in the literature(aspect 2). To summarize
the performance, the Miss Rate at 10−4 FPPW and the log-
average miss rate are used in the first and second approaches
respectively.

Another criterion that is taken into account is the average
computation time. For a cascade detector the average compu-
tation time for a given candidate window is affected by the
FPR of each node. LetK be the total number of nodes in the

cascade, FPRk be the false positive rate andτk be the total
computation time of thekth node during detection. Assuming
the nodal FPR characteristics hold on a generic input image,
the average time spent on a test candidate window,Tav, can
be estimated asTav = τ0 +

∑K−1
k=1 (
∏k−1

z=0 FPRz)τk. Using Dalal
and Triggs [4] detector, which takesζHOG per window, as a
reference, theAverage Speed Up (ASU)over it is determined
as ASU = ζHOG

Tav
. Consequently, the ASU values reported

henceforth are with respect to Dalal and Triggs detector.

B. Dataset

For evaluation, two different datasets are considered: The
Ladybug dataset1, which is a proprietary dataset compiled
from indoor laboratory environment using theLadybug2spher-
ical camera; and theINRIA public dataset [4], a publicly
available dataset most predominantly used for benchmarking
people detectors in the literature. A detailed descriptionis not
provided here due to space considerations, but table II summa-
rizes the actual data used for training and testing purposes. The
Ladybug dataset is used for training and testing the framework
using cropped windows. On the INRIA dataset cropped win-
dows are used for training. For testing, both cropped windows
and full images are used for a per window and full image
evaluation respectively. In both datasets, the cropped negative
windows are uniformly sampled from provided person free full
images.

TABLE II: Summary of the different dataset used for training and testing.

Dataset
Training Test

pos win. neg win. pos win. neg win. full images

Ladybug1 1, 990 488, 992 1, 000 319, 653 –
INRIA [4] 2 , 416 2.55× 106 1, 132 2.00× 106 288

C. Training

Each cascade node training (learning) is governed by two
provided parameters: the nodal TPRk and FPRk for node k
(TPRk is always 1.0). The training is done so the final trained
nodal classifier conforms to these stipulated performance re-
quirements. Each cascade node is built using a subset of the
total negative training samples and all positive samples. This
set is initially divided into a 60% training and a 40% validation
set. The weak learners are trained using the 60% training set.
Then, TPR and FPR values corresponding to each weak learner
are determined based on the validation set. All subsequent
computations,i.e., pareto-front analysis and feature selection
via BIP are performed using the weak learners performance
conferred on the validation set. Once the pertinent features are
selected, the corresponding weak learners are re-trained using
the combined training and validation set within the discrete
AdaBoost to build the per node final strong classifier,i.e.,H(·).
The complete cascaded classifier is then learned as explained in
§ II-C. For the associated weak learners, decision trees of depth
2, 3, and 3 are used for Haar like, EOH, and LBP features,
respectively, after detection performance and over-fitting trade
off analysis on a validation set.

D. Results and Discussions2

Ladybug Dataset: The main results obtained with the
Ladybug dataset are depicted in figure 2 and summarized in

1Please see http://homepages.laas.fr/aamekonn/ladybug dataset/
2All figures in this section are best viewed in color.



table III. Clearly Pareto+AdaBoost results in the best detection
performance, 2.9% MR, followed by Dalal and Triggs detector
trained on this dataset, 3.0%, at 10−4 FPPW. In terms of de-
tection, BIP+AdaBoost trails behind Random+AdaBoost with
marginal loss. But, the most important result to notice is that
BIP+AdaBoost results in a drastic 42.7x speed up over Dalal
and Triggs with only a 7% loss in MR at 10−4 FPPW. The main
reason for this speed up is that BIP+AdaBoost systematically
uses cheap features in the intial stages of the cascade and only
starts using computationally expensive features at later stages.
The trained classifier has 10 cascade nodes with CSS features
initially appearing at the 6th node and HOG at the final stage.
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Fig. 2: DET of different detectors trained and tested on the Ladybug dataset.

Apparently, Pareto+AdaBoost and Random+AdaBoost re-
sult in worsened speeds. This is because AdaBoost always
privileges the most discriminant feature, irrespective ofcom-
putation cost, from the pool of features passed to it, and both
pareto front extraction and random sampling are likely to pass
such kind of complex features. Hence, the set of features
selected in the first node result in a set that is effectively
computationally demanding than Dalal and Triggs detector.
These results are obtained using a fixed nodal FPR of 0.5 for
all constructed nodes and the obtained results are very precise
that altering the FPR is not necessary.

TABLE III: Summary of the cascade detector trained on the Ladybug
dataset. Miss Rate is reported at 10−4 FPPW.

Detector Feature Proportion MR ASU

Haar CSLBP CSS EOH HOG

Dalal and Triggs [4] – – – – 100% 3.0% 1.0x

Pareto+ AdaBoost 10.7% 0.0% 0.0% 0.0% 83.7% 2.9% 0.7x

Random+ AdaBoost 51.6% 6.2% 1.5% 36.0% 4.7% 8.0% 0.6x

BIP + AdaBoost 54.3% 8.6% 8.5% 25.7% 2.8% 10.0% 42.7x

INRIA Dataset: Similar results obtained for the INRIA
dataset are shown in figure 3 and summarized in table IV. As
this dataset is challenging, two variants of the BIP+AdaBoost
classifier are trained. In the first case, a fixed nodal FPR of
0.5 is used for all nodes, calledBIP+AdaBoost(Fix). In the
second case, an adaptive FPR is employed which starts at 0.3
in the initial stage and continues training nodes, whenevera
solution for the BIP optimization does not exist, this constraint
is relaxed/incremented by 0.1 and the procedure continues
from that node likewise until all negative samples are depleted.
This is calledBIP+AdaBoost(Ad). Again, the best detection
results at 10−4 FPPW are obtained by the Random+AdaBoost
and Pareto+AdaBoost variants. But, this time both variants of
BIP+AdaBoost beat Dalal and Triggs detector at 10−4 by more
than 2%. On top of this, the BIP+AdaBoost(Fix) achieves a

15.6x speed up while that of BIP+AdaBoost(Ad) trails with a
9.22x speed up.
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Fig. 3: DET of different detectors trained and tested on the INRIA dataset.

As the initial FPR constraints are stringent on the
BIP+AdaBoost(Ad) variant, it will favor relatively discrim-
inative features with increased computation time. But, this
also contributes to its superior detection performance, over
BIP+AdaBoost(Fix), throughout the FPPW range shown in
figure 3. Observe in table IV, there are more proportions
of Haar like features (5.4% more) and less proportions of
HOG features (2.0% less) in the fixed variant compared to
the adaptive variant resulting in the increase speed up.

TABLE IV: Summary of the cascade detector trained on the INRIA
datasets. Miss Rate is reported at 10−4 FPPW.

Detector Feature Proportion MR ASU

Haar CSLBP CSS EOH HOG

Dalal and Triggs [4] – – – – 100% 11.0% 1.0x

Pareto+ AdaBoost 42.8% 14.5% 7.8% 25.6% 9.3% 7.0% 0.4x

Random+ AdaBoost 26.3% 10.8% 3.7% 53.5% 5.6% 6.0% 0.4x

BIP + AdaBoost (Fix) 60.4% 10.8% 8.0% 9.7% 11.0% 8.0% 15.6x

BIP + AdaBoost (Ad) 55.0% 14.6% 8.1% 9.3% 13.0% 7.4% 9.22x

Figure 5 shows histogram of the selected features, with
relative proportions, for the first 9 nodes of both the fixed
and adaptive variants. Clearly, the fixed variant initiallyuses
cheaper features and increases along the cascade both in num-
ber and complexity. On the contrary, for the variable variant,
complex features appear in the initial nodes and increase in
number along the cascade. Figure 4 illustrates a few of the
selected features overlaid on an average human gradient image
for BIP+AdaBoost(Ad). Observe that all selected features
capture discriminant facets of people.

Fig. 5: Histogram of selected features in the first 9 nodes of the model
trained on the INRIA dataset using both fixed FPR of 0.5 and adaptive FPR.

Finally, figure 6 shows the comparative evaluation of
BIP+AdaBoost (Ad) detector on the INRIA dataset using
the full image evaluation criteria. Comparative evaluations
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Fig. 4: Sample depictions (overlaid on an average human gradient image) of the heterogeneous features selected at different nodes of the cascade trained on
the INRIA dataset using an adaptive FPR. Black rectangular regions show Haar features, blue is for CS-LBP, green boxes represent CSS features and their
position indicates the reference block, and finally, violetshows the spatial region spanned by the concatenated HOG blocks.

Fig. 6: Comparative full image evaluation on the INRIA test set.

are taken from [1]; the reader is referred to this survey for
explanation of each detector (as space does not permit here).
To generate these results, a Pairwise Max non-maximal sup-
pression [1] with an overlap threshold of 0.65 is used. Again,
here, BIP+AdaBoost(Ad) does well achieving a log-average
miss rate of 47%. At lower FPPI values, less than 0.1 FPPW,
the BIP variant consistently supersedes Dalal and Triggs HOG.
Using the computation speed reported in [1] for people more
than 100 pixels in a 640×480 image, our detectors achieves 2.3
frames per second (fps) for the adaptive variant, and 3.9 fps
for the fixed FPR variant trained on the INRIA dataset. These
values are amongst the top best only exceeded byFPDW
which achieves approximately 6.0 fps. But, actuallyFPDW
uses the underlying principles ofChnFeatsand optimizes the
detection process by approximating the features over scale
space. Similar techniques can be used to further improve the
fps of our detector. On the other hand, the model trained on
the Ladybug dataset, achieves 10.6 fps on the simpler dataset.
This is an added advantage as a majority of the methods in the
state-of-the-art do not have the ability to automatically change
the complexity of the trained detector based on the dataset;
examples include Dalal and Triggs HOG andHogLbp which
have fixed size feature vector irrespective of dataset.

V. Conclusions

In conclusion, a novel framework based on heterogeneous
pool of features and discrete optimization for developing a
computation time and detection performance optimized person
detector has been presented. The proposed framework has been
validated thoroughly using proprietary and public datasets. The
results obtained conform to our aims and result in a faster
detector with competitive detection performance amongst the
state-of-the-art.

In the near future, we plan to investigate ways to achieve
more faster versions of the detector by focusing on implemen-
tation optimization and specialized accelerator hardwares like
Graphical Processing Units (GPUs).
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