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Abstract—In this paper we present a novel people detector that  [8], both of which contribute to added computation time gsle
employs discrete optimization for feature selection. Specifically, explicit computation considerations are made. In line ik,
we use binary integer programming to mine heterogeneous we present a person detector that uses heterogeneous pool
features taking both detection performance and computation tine o features and makes explicit computation time vs detactio
explicitly into consideration. The final trained detector exhibits trade-df optimization to build a performant detector that leads

low Miss Rates with significant boost in frame rate. For example, P L : : : L
it achieves a2.6% less Miss Rate atL0™* FPPW compared to Dalal to a S|gr_1|f|cant gain in computation time while maintaining
competitive detection performance.

and Triggs HOG detector with a 9.22x speed improvement.

Related Works: The entire literature in visual people
I.  INTRODUCTION detection is overwhelming and a discussion on thiéedint
techniques is beyond the scope of this paper (please refer
to [1], [2] for extensive surveys). We will focus on approash
that use heterogeneous pool of features with sliding-windo
detection paradigm. The best results in visual people tetec
Sre obtained using heterogeneous pool of features [1]Het:
erogeneous features help capture complementary infamati
S . ook useful to handle various detection challenges. For example
primarily in surveillance systems, human-machine inB0a¢  \yqiek et al. [8] used Haar, HOG, and shape context features.
robotics, automotive industry, imagedeo indexing,etc EV-  Thay presented a comparative result obtained using bgpstin
idently, it is also one of the challenging tasks in computeris pniques and SVMs as classifiers and demonstrated that the
vision d_ue to variations in peoplles appearance, backgroungq,mpination of derent features successfully outperformed in-
clutter, illumination, sensor motion, and so forth. In nece

di h b de by th -~ _dividual variants and even the state-of-the-art at the. .tk
years astounding progress have been made by the scientii¢ 51 17] also clearly showed they obtained the best detection
community [1], [2], but there is still room for improvement.

results when concatenating HOG, Histogram Of Flow [9], and

One important discipline where applications of visual peo-Color Self Similarity (CSS) features all together, rathieart
ple detection is highly proliferating is robotics. In rolmot individual features or a subset of them. _S|m|lar c_onclusmn
systems that entail people perception, the aforementioneere made by Schwartt al.[10] and Hussain and Triggs [11]
challenges are further exacerbated by real-time requinesne Using—HOG, color frequency, and co-occurrence features—a
limited computational resources, and sensor motion. A teobi HOG, Local Binary (LBP) and Ternay (LTP) Pattern features—
robot needs to be reactive during navigafioteraction in  respectively.
human occupied environments. Thus, its people detection . .
module—which is one component of an entire functioning, CVen heterogeneous pool of featuresfefent ways can
system—should be fast. The advent of powerful camera systent?e used to build the final detector. Four main trends can be

in the robotic community that provide high resolution ominid OPServed in the literature: (1) Direct concatenation [B] [
rectional imagese.g, the Ladybug series [3] from Point Grey, in which the diferent features are concatenated to make one

stresses this point further urging the need to give extrasoc high d|m¢n5|qnal feat_urg vector and_an SVM used aft.erwards
on computation time during detector design. for classification. This is computatl_onally costly owing to
the complex feature and SVM weights applied in sliding
In this work, we try to give explicit consideration to window detection. [11], [10] used dimensionality reduntio
computation time during detector design. Generally spggki techniques after concatenation which improved detecte&m p
balancing computation time and detection performance i$ormance but not detection speed. (2) Direct boosting [12],
challenging; best detection results are obtained usingptexm [8], [13] where an ensemble classifier is learned using the
features and descriptors which are computationally expens entire heterogeneous pool of features. The problem here is i
As an example, Histogram of Oriented Gradients (HOG) [4] isboosting, on each iteration, the feature with the least tei
the most discriminant feature thus far, but it is also coraput classification error is added to the ensemble irrespecfivts o
tionally expensive compared to simple features like Haair va computation time. This favors complex features resulting i
ants [5]. Furthermore, most detectors that improve over HOGomputationally costly detector. (3) Coarse-to-fine highnical
either use complex human modedsy, parts based models [6], arrangement [14], [15] where a cascade is constructed using
or consider various heterogeneous pool of featueas, [7], cheap features at the initial stages and using complexrisatu

In modern era, computer vision is playing a significant role
in automated object perception; one such thriving role is au
tomated people detection. Visual people detecti@n, people
detection using visual cameras, is the most prominent mod
employed in the literature as cameras are cheap, versatite,
provide rich color and texture information. It is indispabhke
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Fig. 1: Feature selection and classifier learning framework usedeit ode of a cascade.

at later stages. This approach is quite advantageous asddri weak learner is trained using the examples provided anckid us
find a balance between detection performance and speed. Ttecharacterize the discriminating power of the featureeimts
concern is, how to decide which features to use at tiferédint  of True Positive Rate (TPR) and False Positive Rate (FPR).
stages systematically? Both [14], [15] adopt a heuristigeda Following, pareto-front analysis is used to select a sub$et
rule and use homogeneous family of features they deeme@atures,#, taking their TPR, FPR, and computation time
cheap at the initial stages, and homogeneous complex ésaturinto account. This step is necessary to reduce the overwhelm
at the latter. Finally, (4) via a computation time vs detatti ing total number of features to a tractable size for discrete
trade-df. This notion has been considered by the works ofoptimization. Next, binary integer optimization, presshtin

Wu and Nevatia [16], Jourdheudt al. [17], and Mekonnen § llI, is used to retain a subset of featurés, that have the

et al. [18]. In all cases, they defined a criterion composedrequired performance—detection plus minimum computation
of feature detection performance and computation time in aime. Finally, a nodal strong classifiéf(-) is trained using the
multiplicative manner. But, considering a multiplicatifector  retained feature st with discrete AdaBoost. Specific design
masks the contributions from the respective objectivesiand choice motivations and brief descriptions of each block are
not guaranteed to be optimal. presented herein below.

Our proposed framework falls in thé"4category; but, it A Features

can also be considered as a variant of coarse-to-fine higrarc ) . - .
in which the exact features to use at each cascade node Five different feature families are considered, namely: Haar

are selected automatically via an optimization step. We usike, CS-LBP, CSS, EOH, and HOG. This choice is motivated

five frequently used heterogeneous features, namely: kkaar- PY tWo aspects: (1) their frequent use in the literature &wspn
features [5], Edge Orientation Histogram (EOH) [13], CSE [7 detection, and (2) their complementary nature. EOH and HOG
Center Surround Local Binary Patterns (CS-LBP) [19], andc@pture edge distributions, CSS focuses on color symmetry,
HOG [4] in a classical cascaded boosting configuration [5}1@ar-like and CS-LBP on intensity and texture variatiorise T
with an added explicit optimization step based on Binaryf€ature pool of each family is extracted from a 224 pixels
Integer Programming (BIP) to select a subset of feature§uman template window.

that have the least combined computation time and achievg@ar like: Here, the extended set proposed by Lienhart and
a stipulated detection performance. Maydt [20] which includes tilted variants, is used. The pool

o _ _ _ is generated by extracting feature values at all positions a

Contributions: This paper claims to make two important scales in the template window with the extended Haar set.
contributions. First, it presents a BIP formulation to mineCS-LBP: Computes per pixel CS-LBP [19] value by taking
heterogeneous features taking both detection performamde and modulating the intensity fiiérence of center symmetric
computation time into consideration. The authors assest th pixels for all the neighboring pixels. For each pixel, we
optimization applied to heterogeneous features is unique iprivilege a 3x 3 pixel region which results in a scalar integer
the literature and makes a key contribution. Second, th@etween 0 and 16. Then, considering a rectangular region
paper presents a thorough evaluation of the proposed pefithin the human template, a histogram with 16 bins is
son detector-using both proprietary and public datasétis—w computed to signify one feature of this family. For all poési
detailed analysis of its performance compared to alter@ati positions and scales of the rectangular region a distirattife

approaches and the state-of-the-art. (which is a histogram) is computed and added in to the set of
CS-LBP feature pool.
II.  FRAMEWORK CSS: Color self similarity, proposed by Wallet al. [7],

The objective in this work is to develop a people detec_captures pairwise similarities of spatially localized arotlis-

tion framework based on heterogeneous features that e:aptu'iribwonS and can t?e used to capture the left and right
mmetry of persons’ clothing (upper body and lower body).

different facets of persons in an image. Our proposed detect o - .
training framework takes discriminative power of each fea—%/]e computation first starts by subdwviding the given terpla

ture and its associated computation time into consideratio"© non-overlapping regions called blocks. For each block

explicitly to select, and subsequently use, a subset ofifeat a 3x 3 x 3 HSV color histogram is constructed. Then, the

that fulfill the required detection performance and have themilarity of block with the rest of the blocks is determinad
minimum cumulative computation time. istogram intersection. Instead of concatenating all asegb

similarities like Walket al.[7], we define a single CSS feature
As detection speed is one of our design focus, we adopb be a vector of scalar values that are obtained by intengpect

the acclaimed Viola and Jones [5] attentional cascade tetec the histogram of one block with the rest of the blocks. The

configuration in a sliding window paradigm. To train a strongCSS feature pool set is then determined by computing this

classifier at each node of the cascade, the framework ddpicterector for all blocks. By dividing the template into blocké o

in figure 1 is employed. For a given set of positive and8 x 8 pixels, a total of 128 feature vectors, each with 127

negative training samples (a total af samples denoted as dimensions, are obtained.

{(%, ¥)}ie1...ny): First, the features described §nll-A are ex- ~ EOH: This feature pool is generated exactly as described by

,,,,,

tracted resulting in the feature s&t For each feature a unigue Geronimo et al. [13]: edge orientation histogram followed



by ratios of magnitude of two bins to get a single scalar [ll.  DISCRETE OPTIMIZATION FEATURE SELECTION
feature value and doing this for all positions and scales of
rectangular subregions for histogram computation withia t
template window.

HOG: The HOG feature pool set is constructed as follows
Given the template window, it is divided into overlapping
blocks and a 36 dimensional histogram of oriented gradientg
is computed just like [4]. But, rather than concatenatinlg al
block histograms to make one high dimensional feature, we Definition of parameters: The following are list of pa-
consider concatenating a subset spanning a rectangulanreg rameters used in the optimization specification (applies to
The HOG feature pool is generated by considering all possiblcascade nodk). B = {0, 1} denotes a binary set.

positions, width, and hight of the rectangular region. The

features range from a 36 dimensional vector, a single block, ® N ={1,..,n}: set of training sample indexes withe

The BIP based feature selection applied to heterogeneous
features makes the core of this work’s contribution. The
.(detailed optimization formulation to select a subset ofufess

‘that fulfill a stipulated nodal FRR TPR, with the minimum
ombined computation time possible is provided as follokvs (
enotes the node index):

to 3780 dimensional one, all blocks in the template. Z, a total ofn training samples indexed hy
Table | summarizes the total number of features, the scaled ® M = {1,...,m}: set of weak learners indexes withe
maximum and minimum feature computation time,{, and Z; a total of m weak learners indexed by

Tmin), and the exact weak learner used in each feature family. " _—— o —
For CS-LBP families Linear Discriminant Analysis combined ~ ° y eBLy = {yr}ieN’ y €BLYy = {yi—}ieN
with a decision tree (which is trained after re-projectios)

privileged as SVM leads to overwhelming training periodedu +_J 1 ifiispositive [ 1 ifiis negative
to the high number of CS-LBP features). Y =1 0 otherwise Y =1 0 otherwise
TABLE |. Feature pool summary. T|me is reported relatively as a multiple e HeB™ whereH = {hi j}iEN with h; € (0, 1)
of the smallest feature computation times= 0.053%:s. iem ’
Feature Type No of features tmin Tmax Weak Learner 1 if Kl id lé "
Haar like 672,406 1.0 3.48 Decision Tree hi i= It wea .eamer] etects sampleas positive
EOH 712,960 488  317.75  Decision Tree : 0 otherwise
CSs-LBP 59,520 15.46 393.641 LDA + Decision Tree L. .
css 128 1017.94 1017.94 SVM e TPR € [0,1]: minimum true positive rate set at the
HoG 3,360 489.72 5142056 SVM considered nodek] of the cascade;
B. Pareto-front extraction e FPR € [0,1]: maximum false positive rate at the
node;

Given all set of featurest, along with their trained asso-
ciated weak learners, and characterized by three parasneter e g € R™: with 7 = {TJ-}
TPR, FPR, and computation time){ pareto-front analysis is learnerj.
used to find the optimal solutions that make up the pareto
optimal set—the solutions that cannot be improved in one Decision Variables: In BIP, the decision variables are
objective function without deteriorating their perforncanin  restricted to binary values, values from the &et= {0, 1}.
at least one of the rest. The subset of features that areoparethe BIP decision variables are the following.
optimal with respect to TPR, FPR, and computation time, _
denoted?, are extracted and passed on to be used for the ® VeEB™, v= {Vj}je,v, vj €{0,1): vj = 1 if weak learner

discrete optimization step. j is selected, elsg; = 0;

" computation time of weak

je

e TeB" te{01):t =1if a positive sample has
been detected as positive (true positive) by at least
The final and decisive feature selection step is performed one selected weak learner, efse- 0;
by the BIP optimizer and is discussed §nlll. This module
provides the sef . Finally, the nodal strong classifief{(-),
is built with discrete AdaBoost by using th€ feature set.

C. Feature selection and cascade classifier learning

rFeB", fi e {01} fi = 1 if a negative samplé has
been detected as positive (false positive) by at least
one selected classifier, elde= 0.

The complete classifier used for detection, however, con- Let vectorp, p = {pi}icy = Hv denote the total number
tains multiple nodes forming a cascade. The cascade construof weak learners that have labeled each training sampie
tion starts with all positive training samples and a subget opositive.
the negative training samples (equivalent to the p_qsithma) Objective Function and Constraints:
to learn the set of relevant features and classifiers for the
initial cascade node. Once this is done, all negative tgini

samples in the dataset are tested with it. All those that get min 7V . (1)
classified correctly are rejected while all those labeled as st <y’ -p v'. . (2)
positive samples (false positives) are retained along wieh fizyr-hij-v v(@i. ) (3)
positive samples for training the following nodes. Thispsi® lI7ll, = lly*Il, - TPR 4)
repeated until all negative training samples are exhau¥ted lI¥ll, < lly~ll, - FPR (5)
data mining technique makes it possible to use vast number of v € B"; T = {ti}ien, F = {fi}ien; T, F € B" (6)

negative training samples. [l is 1y norm.



The objective function (1) aims at minimizing the compuwiati cascade, FRRbe the false positive rate ang be the total
time. Constraints (2)-(5) express that a given rate of dietec computation time of th&™™ node during detection. Assuming
quality has to be reached (depending on the number of truthe nodal FPR characteristics hold on a generic input image,
and false positives). Constraints (2) links andt; variables the average time spent on a test candidate windQy, can
(via p)) so thatt; = O if positive imagei is not correctly be estimated ag,, = 7o + i (153 FPR)«. Using Dalal
detected by at least one selected classifier. Constraints (and Triggs [4] detector, which take$og per window, as a
links v; and f; variables so thafi = 1 if a negative image reference, théverage Speed Up (ASUpver it is determined

i has been recognized as positive by at least one selected ASU = {;ﬁ Consequently, the ASU values reported
classifier. Constraint (4) expresses that the stipulate®T®  henceforth are with respect to Dalal and Triggs detector.
true positives, obtained with the selected classifiers,thdme

reached. Similarly, constraint (5) expresses that theilstipd B- Dataset

FPR( of false pOSitiVeS, obtained with the selected C|aSSifieI’S, For evaluation, two dferent datasets are considered: The
must not be exceeded. In this formulation, there are a tdtal 0 adybug dataset, which is a proprietary dataset compiled
(n-(m+ 1)+ 2) binary variables in the BIP, which could be from indoor laboratory environment using thadybug2spher-
h’\uge fOI’ Iargen and m VaIUeS. The f|na.| S-Ubset Of features ica| camera; and thdj\]R|A pub“c dataset [4], a pub“cly

# corresponds to only the selected featuiigs, non zerov  available dataset most predominantly used for benchmgrkin
entry; since each feature indexed Byis associated with a people detectors in the literature. A detailed descripisonot
unique weak learnehn;, ¥ also represents the subset of weakprovided here due to space considerations, but table I summ

learners retained rizes the actual data used for training and testing purpdges
Ladybug dataset is used for training and testing the framewo
IV. EXPERIMENTS AND RESuULTS using cropped windows. On the INRIA dataset cropped win-

dows are used for training. For testing, both cropped wirglow

~In this section the dierent experiments carried out to 5.4 fy| images are used for a per window and full image
investigate the performance of the proposed framework ang, 5\,ation respectively. In both datasets, the croppedtiveg

obtaine.d re;ults along with commgntaries are presenteel. Thyingows are uniformly sampled from provided person freé ful
evaluation is focused on the following two aspects: images.

(1) Feature selection strategy evaluatioHdere, the aim is to  TABLE Il: Summary of the dferent dataset used for training and testing.
analyze the pros and cons of using BIP over other simpler

) - Training Test
alternatives. The proposed BIP based feature selection and Dataset , . . , e
classifier learning strategy, labeledBi® +AdaBoost, is com- -~ po=vh TOND peal T O TR

H H H Ladybu 1,990 488992 1000 319653 -
pared with two other modes. Firfeareto+AdaBoost which INRIA [4] 2,416  255x10° 1132  200x 0P 288

discards the BIP block in the framework and directly trains a
nodal strong classifier with discrete adaboost using theifea. Training

retained by the pareto-front extraction block. And second, o o
Random+AdaBoost which directly builds a nodal classifier Each cascade node training (learning) is governed by two
using randomly sampled features from the total feature podprovided parameters: the nodal TiPRnd FPR for node k

(proportional to each feature pool family size) and AdaBoos (TPR is always 1.0). The training is done so the final trained
nodal classifier conforms to these stipulated performaeee r

(2) General comparative evaluation with the state-of#e-  quirements. Each cascade node is built using a subset of the
In this part, the performance of the trained BWdaBoost is  total negative training samples and all positive sampléss T
compared with the prominent approaches in the literature.  get js initially divided into a 60% training and a 40% validat
set. The weak learners are trained using the 60% training set
Then, TPR and FPR values corresponding to each weak learner
For detector performance evaluation, we use two apare determined based on the validation set. All subsequent
proaches: (1) The per window approach, Whereby a DetectioﬁomputationSj.e., pareto-front analysis and feature selection
Error Trade-&f (DET) curve with Miss Rate versus False via BIP are performed using the weak learners performance
Positives Per Window (FPPW) is generated by using croppegonferred on the validation set. Once the pertinent featare
positive and negative windows; and (2) the per image apselected, the corresponding weak learners are re-traisied u
proach which shows Miss Rate versus False Positives péhe combined training and validation set within the diseret
Image (FPPI). The first curve is used to compare experiment#idaBoost to build the per node final strong classifier, ().
variants of the proposed framework with respect to DalaiThe complete cascaded classifier is then learned as explaine
and Triggs HOG [4](aspect 1) and the second is used to $§ II-C. For the associated weak learners, decision treespihde
determine how our best approach plays out compared to thé 3, and 3 are used for Haar like, EOH, and LBP features,
different techniques in the literatugaspect 2) To summarize respectively, after detection performance and over-fittiade
the performance, the Miss Rate at4@FPPW and the log- Off analysis on a validation set.
average miss rate are used in the first and second approacl‘lﬁs
respectively. '

A. Evaluation Criteria

Results and Discussiohs

Ladybug Dataset: The main results obtained with the

Another criterion that is taken into account is the averagq_adybug dataset are depicted in figure 2 and summarized in

computation time. For a cascade detector the average compu-
tation time for a given candidate window isfected by the !please see hthomepages.laagémamekonfiadybug dataset
FPR of each node. L& be the total number of nodes in the 2All figures in this section are best viewed in color.




table Ill. Clearly PareteAdaBoost results in the best detection 15.6x speed up while that of BFAdaBoost(Ad) trails with a
performance, 3% MR, followed by Dalal and Triggs detector 9.22x speed up.
trained on this dataset,@®6, at 10 FPPW. In terms of de-

tection, BIR-AdaBoost trails behind RandorAdaBoost with DET - Person Detection
marginal loss. But, the most important result to notice &t th
BIP+AdaBoost results in a drastic #X speed up over Dalal 10" F’Lﬁg}aﬁ_ai

and Triggs with only a 7% loss in MR at tOFPPW. The main
reason for this speed up is that BIRdaBoost systematically
uses cheap features in the intial stages of the cascade §nd on

Dalal and Triggs HOG ---@-- *
Pareto + AdaBoost —&— |

10°

miss rate

i ' i 3 Random + AdaBoost ‘ S

starts using comp_u_tanonally expensive features_ at lateyes. gandom + AdaBoos! %

The trained classifier has 10 cascade nodes with CSS features ey BIP + AdaBoost (Ad) ‘ ‘ \

initially appearing at the '8 node and HOG at the final stage. 10 10 102 101
false positives per window (FPPW)
DET - Person Detection Fig. 3: DET of different detectors trained and tested on the INRIA dataset.
0 ~ Dalal and Triggs HOG -~@--

Random + dapoost —&— As the initial FPR constraints are stringent on the

2 BIP + AdaBoost —H— BIP+AdaBoost(Ad) variant, it will favor relatively discrim-
4 102 o inative features with increased computation time. Buts thi
E also contributes to its superior detection performancer ov
BIP+AdaBoost(Fix), throughout the FPPW range shown in
102 figure 3. Observe in table IV, there are more proportions

10 10° 10 107 of Haar like features (8% more) and less proportions of
. _ false positives per window (FPPW) HOG features (% less) in the fixed variant compared to
Fig. 2: DET of different detectors trained and tested on the Ladybug datasel.he adaptive variant resulting in the increase speed up.
Apparently, PareteAdaBoost and RandorAdaBoost re- i ‘
sult in worsened speeds. This is because AdaBoost aIwa))éABLE I\_/' Sumrpary of the cascade detector trained on the INRIA
privileges the most discriminant feature, irrespectivecofn-  0atasets. Miss Rate s reported at 4&PPW.
putation cost, from the pool of features passed to it, antl bot

pareto front extraction and random sampling are likely tsspa e’ Feature Proportion MR ASU
such kind of complex features. Hence, the set of features Haar CSLBP CSS EOH HOG

selected in the first node result in a set that fiecively Dalal and Triggs [4] - ~ ~ ~ BERER 110% 1.0x
computationally demanding than Dalal and Triggs detector. . .. . adaoost 1259 A 75 R o3v% BB o.x

These results are obtained using a fixed nodal FPR 01_‘ 0.5 for gandoms AdaBoost  263% 108% 37% BB scvo B o.x
all constructed nodes and the obtained results are veryspreC oo . adapoost (Fix) [604% 108% 80% 97% 110% 80% |15.6x

that altering the FPR is not necessary. BIP + AdaBoost (Ad)  550% |146%  81% 9.3% 130% 7.4% 9.22x
TABLE Ill: Summary of the cascade detector trained on the Ladybug Figure 5 shows histogram of the selected features, with
dataset. Miss Rate is reported at 4GFPPW. relative proportions, for the first 9 nodes of both the fixed
and adaptive variants. Clearly, the fixed variant initialises
Detector Feature Proportion MR ASU cheaper features and increases along the cascade both in num

ber and complexity. On the contrary, for the variable vatian

Haar CSLBP CSS EOH HOG . hatd ; .
complex features appear in the initial nodes and increase in

Dalal and Triggs [4] - - - - [ 80% 10x number along the cascade. Figure 4 illustrates a few of the
Pareto+ AdaBoost  107% 00%  0.0% 00% 837% gy 0.7x selected features overlaid on an average human gradiegeima
Random+ AdaBoost  [516% [62% |L15%) JEGEEQ 4.7% 80% 0.6x for BIP+AdaBoost(Ad). Observe that all selected features
BIP + AdaBoost 543% 8.6% 85% 257% 28% 10.0% 42.7x

capture discriminant facets of people.

INRIA Dataset: Similar results obtained for the INRIA
dataset are shown in figure 3 and summarized in table IV. As ! .
this dataset is challenging, two variants of the BMelaBoost 1 .
classifier are trained. In the first case, a fixed nodal FPR of : i
0.5 is used for all nodes, calle8IP+AdaBoost(Fix). In the _ I i 'SR
second case, an adaptive FPR is employed which starts at 0.. I I I I I | | I u Haar
in the initial stage and continues training nodes, whenever s e s e e
solution for the BIP optimization does not exist, this coaistt Fixed FPR AdaptiveFPR
is relaxedincremented by 0.1 and the procedure continues
from that node likewise until all negative samples are deple  Fig. 5: Histogram of selected features in the first 9 nodes of the model
This is calledBIP +AdaBoost(Ad). Again, the best detection ajned on the INRIA dataset using both fixed FPR & and adaptive FPR.
results at 10* FPPW are obtained by the RandeAdaBoost
and PareteAdaBoost variants. But, this time both variants of ~ Finally, figure 6 shows the comparative evaluation of
BIP+AdaBoost beat Dalal and Triggs detector at1By more  BIP+AdaBoost (Ad) detector on the INRIA dataset using
than 2%. On top of this, the BHFAdaBoost(Fix) achieves a the full image evaluation criteria. Comparative evaluagio
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(a) node O (b) node 1

(c) node 2 (d) node 8

Fig. 4: sample depictions (overlaid on an average human gradient Jnodidbe heterogeneous features selected iemdint nodes of the cascade trained on
the INRIA dataset using an adaptive FPR. Black rectangdgions show Haar features, blue is for CS-LBP, green boxg®esent CSS features and their
position indicates the reference block, and finally, viakbws the spatial region spanned by the concatenated HQx&sblo
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miss rate
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Fig. 6: Comparative full image evaluation on the INRIA test set.

107

(4]

are taken from [1]; the reader is referred to this survey for [5]
explanation of each detector (as space does not permit. here)
To generate these results, a Pairwise Max non-maximal suptl
pression [1] with an overlap threshold of66 is used. Again,
here, BIR-AdaBoost(Ad) does well achieving a log-average
miss rate of 47%. At lower FPPI values, less than 0.1 FPPW,
the BIP variant consistently supersedes Dalal and Trigg&HO
Using the computation speed reported in [1] for people more
than 100 pixels in a 640480 image, our detectors achieves 2.3 [g]
frames per second (fps) for the adaptive variant, and 3.9 fps
for the fixed FPR variant trained on the INRIA dataset. Thesg10]
values are amongst the top best only exceeded~BpW
which achieves approximately.® fps. But, actuallyFPDW

uses the underlying principles @hnFeatsand optimizes the [11]
detection process by approximating the features over scale
space. Similar techniques can be used to further improve t 2
fps of our detector. On the other hand, the model trained OES]
the Ladybug dataset, achieves 10.6 fps on the simpler datas
This is an added advantage as a majority of the methods in the
state-of-the-art do not have the ability to automaticaliarmge  [14]
the complexity of the trained detector based on the dataset;
examples include Dalal and Triggs HOG aHdgLbp which
have fixed size feature vector irrespective of dataset.

(71

(8]

[15]
V. CONCLUSIONS

In conclusion, a novel framework based on heterogeneodéel
pool of features and discrete optimization for developing a
computation time and detection performance optimizedquers (17
detector has been presented. The proposed framework hras bee
validated thoroughly using proprietary and public datasEhe
results obtained conform to our aims and result in a fastefi8]
detector with competitive detection performance amonigst t

state-of-the-art.
[19]

In the near future, we plan to investigate ways to achieve
more faster versions of the detector by focusing on implemen
tation optimization and specialized accelerator hardsvéike
Graphical Processing Units (GPUS).

[20]
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