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Abstract—This paper proposes three simple, compact yet effec-
tive representations of depth sequences, referred to respectively
as Dynamic Depth Images (DDI), Dynamic Depth Normal Images
(DDNI) and Dynamic Depth Motion Normal Images (DDMNI).
These dynamic images are constructed from a sequence of depth
maps using bidirectional rank pooling to effectively capture the
spatial-temporal information. Such image-based representations
enable us to fine-tune the existing ConvNets models trained on im-
age data for classification of depth sequences, without introducing
large parameters to learn. Upon the proposed representations,
a convolutional Neural networks (ConvNets) based method is
developed for gesture recognition and evaluated on the Large-
scale Isolated Gesture Recognition at the ChaLearn Looking
at People (LAP) challenge 2016. The method achieved 55.57%
classification accuracy and ranked2nd place in this challenge
but was very close to the best performance even though we only
used depth data.

Index Terms—gesture recognition; depth map sequences; Con-
volutional Neural Networks

I. I NTRODUCTION

Gestures are naturally performed by humans, produced as
part of deliberate actions, signs or signals, or subconsciously
revealing intentions or attitude [1]. While they may involve
the motion of all parts of the body, the studies of gestures
usually focus on arms and hands which are essential in gesture
communication. Recognition of gestures has recently attracted
increasing attention due to its indubitable importance in many
applications such as Human Computer Interaction (HCI),
Human Robot Interaction (HRI) and assistive technologies for
the handicapped and the elderly.

Gestures are one type of actions and many action recogni-
tion methods can be applied to gesture recognition. Recogni-
tion of human actions from depth/skeleton data is one of the
most active research topics in multimedia signal processing in
recent years due to the advantages of depth information over
conventional RGB video, e.g. being insensitive to illumination
changes. Since the first work of such a type [2] reported
in 2010, many methods [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13] have been proposed based on specifical hand-
crafted feature descriptors extracted from depth/skeleton. With
the recent development of deep learning, a few methods
have been developed based on Convolutional Neural Networks

(ConvNets) [14], [15], [16], [17], [18] and Recurrent Neural
Networks (RNNs) [19], [20], [21], [22]. However, it remains
unclear how video could be effectively represented and fed to
deep neural networks for classification. For example, one can
conventionally consider a video as a sequence of still images
with some form of temporal smoothness, or as a subspace of
images or image features, or as the output of a neural network
encoder. Which one among these and other possibilities would
result in the best representation in the context of gesture
recognition is not well understood.

Inspired by the recent work in [14], [15], [16], [23], this
paper proposes for gesture recognition three simple, compact
and effective representations of depth sequences which ef-
fectively decribe a short depth sequence with images. Such
representations make it possible to use a standard ConvNet
architecture to learn suitable “dynamic” features from the
sequences by utilizing the ConvNet models trained from image
data. Consequently, it avoids training millions of parameters
from scratch and is especially valuable in the cases that
lack sufficient annotated training video data. For instance,
the large-scale isolated gesture recognition challenge [24] has
on average only 144 video clips per class compared to 1200
images per class in ImageNet.

The proposed three representations are Dynamic Depth
Image (DDI), Dynamic Depth Normal Image (DDNI) and
Dynamic Depth Motion Normal Image (DDMNI). They are
all constructed from a sequence of depth maps based on
bidirectional rank pooling to encode the spatial (i.e. posture)
and temporal (i.e. motion) information at different levels
and are complementary to each other. Experimental results
have shown that the three representations can improve the
recognition accuracy substantially.

The rest of this paper is organized as follows. Section II
briefly reviews the related works on gesture/action recognition
based on depth and deep learning. Details of the proposed
method are described in Section III. Experimental results are
presented in Section IV. Section V concludes the paper.

http://arxiv.org/abs/1701.01814v1


Fig. 1: The framework for proposed method.

II. RELATED WORK

A. Depth Based Action Recognition

With Microsoft Kinect Sensors researchers have developed
methods for depth map-based action recognition. Li et al.
[2] sampled points from a depth map to obtain a bag of 3D
points to encode spatial information and employ an expandable
graphical model to encode temporal information [25]. Yang et
al. [4] stacked differences between projected depth maps as
a depth motion map (DMM) and then used HOG to extract
relevant features from the DMM. This method transforms the
problem of action recognition from spatio-temporal space to
spatial space. In [5], a feature called Histogram of Oriented
4D Normals (HON4D) was proposed; surface normal is ex-
tended to 4D space and quantized by regular polychorons.
Following this method, Yang and Tian [7] cluster hypersurface
normals and form the polynormal which can be used to jointly
capture the local motion and geometry information. Super
Normal Vector (SNV) is generated by aggregating the low-
level polynormals. In [10], a fast binary range-sample feature
was proposed based on a test statistic by carefully designing

the sampling scheme to exclude most pixels that fall into the
background and to incorporate spatio-temporal cues.

B. Deep Leaning Based Recognition

Exiting deep learning approach can be generally divided into
four categories based on how the video is represented and fed
to a deep neural network. The first category views a video
either as a set of still images [26] or as a short and smooth
transition between similar frames [27], and each color channel
of the images is fed to one channel of a ConvNet. Although
obviously suboptimal, considering the video as a bag of static
frames performs reasonably well. The second category is to
represent a video as a volume and extends ConvNets to a
third, temporal dimension [28], [29] replacing 2D filters with
3D ones. So far, this approach has produced little benefits,
probably due to the lack of annotated training data. The third
category is to treat a video as a sequence of images and
feed the sequence to a RNN [30], [19], [20], [21], [22].
A RNN is typically considered as memory cells, which are
sensitive to both short as well as long term patterns. It parses
the video frames sequentially and encode the frame-level



information in their memory. However, using RNNs did not
give an improvement over temporal pooling of convolutional
features [26] or over hand-crafted features. The last category
is to represent a video in one or multiple compact images
and adopt available trained ConvNet architectures for fine-
tuning [14], [15], [16], [23]. This category has achieved state-
of-the-art results of action recognition on many RGB and
depth/skeleton datasets. The proposed method in this paper
falls into the last category.

III. PROPOSEDMETHOD

The proposed method consists of three stages: construction
of the three sets of dynamic images, ConvNets training and
score fusion for classification, as illustrated in Fig.1. Details
are presented in the rest of this section.

A. Construction of Dynamic Images

The three sets of dynamic images, Dynamic Depth Im-
ages (DDIs), Dynamic Depth Normal Images (DDNIs) and
Dynamic Depth Motion Normal Images (DDMNIs) are con-
structed from a sequence of depth maps through rank pool-
ing [23]. They aim to capture both posture and motion
information for gesture recognition.

1) Rank Pooling: Let I1, ..., IT denote the frames in a
sequence of depth maps, andϕ(It) ∈ R

d be a representation
or feature vector extracted from each individual frameIt. Let

Vt =
1

t

∑t

τ=1
ϕ(It) be time average of these features up to

time t. The ranking function associates to each timet a score
S(t|d) =< d, Vt >, whered ∈ R

d is a vector of parameters.
The function parametersd are learned so that the scores reflect
the rank of the frames in the video. In general, later times are
associated with larger scores,i.e. q > t ⇒ S(q|d) > S(t|d).
Learningd is formulated as a convex optimization problem
using RankSVM [31]:

d∗ = ρ(I1, ..., IT ;ϕ) = argmin
d

E(d),

E(d) =
λ

2
‖ d ‖2 +

2

T (T − 1)
×
∑

q>t

max{0, 1− S(q|d) + S(t|d)}.

(1)

The first term in this objective function is the usual quadratic
regular term used in SVMs. The second term is a hinge-loss
soft-counting how many pairsq > t are incorrectly ranked by
the scoring function. Note in particular that a pair is considered
correctly ranked only if scores are separated by at least a unit
margin,i.e. S(q|d) > S(t|d) + 1.

Optimizing the above equation defines a function
ρ(I1, ..., IT ;ϕ) that maps a sequence ofT depth video frames
to a single vectord∗. Since this vector contains enough
information to rank all the frames in the video, it aggregates
information from all of them and can be used as a video
descriptor. This process is called rank pooling.

2) Construction of DDI:Given a sequence of depth maps,
the ranking pooling method [23] described above is employed
to generate a dynamic depth image (DDI). The DDI is fed
to the three channel of a ConvNet. Different from [23] the
rank pooling is applied in a bidiretional way to convert one
depth map sequence into two DDIs. As shown in Fig.2,
DDIs effectively capture the posture information, similarto
key poses.

3) Construction of DDNI: In order to simultaneously ex-
ploit the posture and motion information in depth sequences, it
is proposed to extract normals from depth maps and construct
the so called DDNIs (dynamic depth normal images). For each
depth map, the surface normal(nx, ny, nz) at each location is
calculated. Thus, three channels(Nx, Ny, Nz), referred to as a
Depth Normal Image (DNI), are generated from the calculated
normals, where(Nx, Ny, Nz) represents normal images for the
three components(nx, ny, nz) respectively. The sequence of
DNIs goes through bidirectional rank pooling to generate two
DDNIs, one being from forward ranking pooling and the other
from backward rank pooling.

To minimise the interference of the background, it is as-
sumed that the background in the histogram of depth maps
occupies the last peak representing far distances. Specifically,
pixels whose depth values are greater than a threshold defined
by the last peak of the depth histogram minus a fixed tolerance
(0.1 was set in our experiments) are considered as background
and removed from the calculation of DDNIs by re-setting their
depth values to zero. Through this simple process, most of the
background can be removed and has much contribution to the
DDNIs. Samples of DDNIs can be seen in Fig.2.

4) Construction of DDMNI: The purpose of construction
of a DDMNI is to further exploit the motion in depth maps.
Gaussian Mixture Models (GMM) is applied to depth se-
quences to detect moving foreground. The same process as the
construction of a DDNI ( but without using histogram-based
foreground extraction) is employed to the moving foreground.
This process generates two DDMNIs, which specifically cap-
ture the motion information as illustrated in Fig.2.

B. Network Training

After the construction of DDIs, DDNIs and DDMNIs, there
are six dynamic images, as illustrated in Fig.2, for each depth
map sequence. Six ConvNets were trained on the six channels
individually. Different layer configurations were used forthe
validation and testing sets provided by the Challenge. For
validation, the layer configuration of six ConvNets follows
the one in [32]. For testing, VGG-16 [33] was adopted for
fine-tuning. The implementation is derived from the publicly
available Caffe toolbox [34] based on three NVIDIA Tesla
K40 GPU cards for both validation and testing.

The training procedure for validation is similar to the one
in [32]. The network weights were learned using the mini-
batch stochastic gradient descent with the momentum being
set to 0.9 and weight decay being set to 0.0005. All hidden
weight layers use the rectification (RELU) activation function.
At each iteration, a mini-batch of 256 samples is constructed
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Fig. 2: Samples of generated forward and backward DDIs,
DDNIs and DDMNIs for gesture Mudra1/Ardhapataka.

by sampling 256 shuffled training samples. All the images
are resized to 256× 256. The learning rate was set to10−3

for fine-tuning with pre-trained models on ILSVRC-2012, and
then it is decreased according to a fixed schedule, which is kept
the same for all training sets. For each ConvNet the training
undergoes 20K iterations and the learning rate decreases every
5K iterations. For all experiments, the dropout regularisation
ratio was set to 0.5 in order to reduce complex co-adaptations
of neurons in the nets.

For testing, the training procedure is similar to the one
in [33]. The network weights were learned using the mini-
batch stochastic gradient descent with the momentum being
set to 0.9 and weight decay being set to 0.0005. All hidden
weight layers use the rectification (RELU) activation function.
At each iteration, a mini-batch of 32 samples was constructed
by sampling 256 shuffled training samples. All the images
are resized to 224× 224. The learning rate was set to10−3

for fine-tuning with pre-trained models on ILSVRC-2012, and
then it is decreased according to a fixed schedule, which is kept
the same for all training sets. For each ConvNet the training
undergoes 50K iterations and the learning rate decreases every
20K iterations. For all experiments, the dropout regularisation

ratio was set to 0.9 in order to reduce complex co-adaptations
of neurons in the nets.

C. Score Fusion for Classification

Given a testing depth video sequence (sample), three pairs
of dynamic images (DDIs, DDNIs, DDMNIs) are generated
and fed into six different trained ConvNets. For each image
pair, multiply-score fusion was used. The score vectors out-
putted by the two pair ConvNets are multiplied in an element-
wise way and then the resultant score vectors are normalized
usingL1 norm. The three normalized score vectors are then
multiplied in an element-wise fashion and the max score in
the resultant vector is assigned as the probability of the test
sequence being the recognized class. The index of this max
score corresponds to the recognized class label.

IV. EXPERIMENTS

In this section, the Large-scale Isolated Gesture Recognition
Dataset at the ChaLearn LAP challenge 2016 (ChaLearn LAP
IsoGD Dataset) [35] and the evaluation protocol are described.
The experimental results of the proposed method on this
dataset are presented.

A. Dataset

The ChaLearn LAP IsoGD Dataset is derived from the
ChaLearn Gesture Dataset (CGD) [36]. It includes 47933
RGB-D depth sequences, each RGB-D video representing one
gesture instance. There are 249 gestures performed by 21
different individuals. The detailed information of this dataset
are shown in TableI. In this paper, only depth maps were used
to evaluate the performance of the proposed method. Some
samples of depth sequences are shown in Fig.3.

B. Evaluation Protocal

The dataset is divided into training, validation and test sets.
All three sets consist of samples of different subjects so ensure
that the gestures of one subject in validation and test sets will
not appear in the training set.

For the isolated gesture recognition challenge, recognition
rate r is used as the evaluation criteria. The recognition rate
is calculated as:

r =
1

n
δ(pl(i), tl(i)) (2)

wheren is the number of samples;pl is the predicted label;
tl is the ground truth;δ(j1, j2) = 1, if j1 = j2, otherwise
δ(j1, j2) = 0.

C. Experimental Results

The results obtained by the proposed method on the vali-
dation and test sets are listed and compared with the baseline
methods [37] (MFSK and MFSK+DeepID) in TableII . The
codes and models can be downloaded at the author’s home-
page:https://sites.google.com/site/pichaossites/.

The results showed that the proposed method significantly
outperformed the baseline methods, even though only single
modality, i.e. depth data, was used while the baseline method
used both RGB and depth videos.

https://sites.google.com/site/pichaossites/
https://sites.google.com/site/pichaossites/


TABLE I: Information of the ChaLearn LAP IsoGD Dataset.

Sets # of labels # of gestures # of RGB videos # of depth videos # of subjects label provided
Training 249 35878 35878 35878 17 Yes

Validation 249 5784 5784 5784 2 No
Testing 249 6271 6271 6271 2 No

All 249 47933 47933 47933 21 -

Fig. 3: The samples of 21 out of 249 gestures. From top left to bottom right, they are:
(a) ItalianGestures/Madonna; (b) GestunoTopography/92harbourport; (c) TaxiSouthAfrica/TaxiHandSigns2;
(d) GestunoSmallAnimals/129cat chat;(e) RefereeWrestlingSignals2/Reversal; (f) DivingSignals3/NotUnderstood;
(g) SurgeonSignals/ArmyNavyRetractor; (h) GangHandSignals1/EastSide; (i) SwatHandSignals1/DogNeeded;
(j) HelicopterSignals/MoveLeft; (k) GangHandSignals2/Killas; (l) TaxiSouthAfrica/TaxiHandSigns6;
(m) DivingSignals4/HowMuchAir; (n) ChineseNumbers/wu,TaxiSouthAfrica/TaxiHandSigns7;
(o) Mudra2/Vitarka,DivingSignals4/OK,GangHandSignals2/OK; (p) DivingSignals1/Around;
(q) CanadaAviationGroundCirculation1/DirigezVousVers; (r) MusicNotes/do; (s) GangHandSignals1/Crip;
(t) SwatHandSignals1/Stop; (u) RefereeWrestlingSignals2/Stalling,SwatHandSignals1/Breacher.

TABLE II: Comparative accuracy of proposed method and
baseline methods on the ChaLearn LAP IsoGD Dataset.

Method Set Recognition rater
MFSK Validation 18.65%

MFSK+DeepID Validation 18.23%
Proposed Method Validation 39.23%

MFSK Testing 24.19%
MFSK+DeepID Testing 23.67%

Proposed Testing 55.57%

The challenge results are summarized in TableIII . We can
see that our method is among the top performers and our
recognition rate is very close to the best performance of this
challenge (55.5733% vs. 56.8968%), even though we only
used depth data for proposed method while the winner [38]
adopted both depth and RGB modalities.

V. CONCLUSIONS

This paper presented three simple, compact yet effective
representations of depth sequences for gesture recognition
using convolutional Neural networks. They are all based
on bidirectional rank pooling method converting the depth

TABLE III: Comparsion the performance of our submission
with those of other teams. Our team secures the second place
in the ICPR ChaLearn LAP challenge 2016.

Rank Team Recognition rater
1 FLiXT [ 38] 56.8968%
2 AMRL (ours) 55.5733%
3 XDETVP-TRIMPS [39] 50.9329%
4 ICT NHCI 46.8027%
5 XJTUfx 43.9164%
6 TARDIS 40.1531%
7 NTUST 20.3317%

sequences into images. Such representations enables the use
of existing ConvNets models directly on video data with fine-
tuning without introducing large parameters to learn. The
three representations represent the posture and motion in
different levels and they are complementary to each other and
improve the recognition accuracy largely. Experimental results
on ChaLearn LAP IsoGD Dataset verified the effectiveness of
the proposed method.
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