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Abstract—This paper proposes three simple, compact yet effec- (ConvNets) [4], [15], [1€], [17], [18] and Recurrent Neural
tive representations of depth sequences, referred to respiively  Networks (RNNs) 19, [20], [21], [27]. However, it remains
as Dynamic Depth Images (DDI), Dynamic Depth Normal Images nclear how video could be effectively represented andded t

(DDNI) and Dynamic Depth Motion Normal Images (DDMNI). d | networks f lassificati F |
These dynamic images are constructed from a sequence of dapt €ep neural Networks tor classification. For exampie, ome ca

maps using bidirectional rank pooling to effectively captue the ~Cconventionally consider a video as a sequence of still image
spatial-temporal information. Such image-based represemtions  with some form of temporal smoothness, or as a subspace of
enable us to fine-tune the existing ConvNets models trainedham- images or image features, or as the output of a neural network
age data for classification of depth sequences, without indducing encoder. Which one among these and other possibilitiesdvoul

large parameters to learn. Upon the proposed representatits, . . .
a convolutional Neural networks (ConvNets) based method is result in the best representation in the context of gesture

developed for gesture recognition and evaluated on the Lagg recognition is not well understood.

scale Isolated Gesture Recognition at the ChalLearn Looking

at Pe_c_)ple_ (LAP) challenge 2016. Th% methoo! ach_ieved 55.57% Inspired by the recent work inlf], [15], [1€], [2]], this
classification accuracy and ranked2"¢ place in this challenge paper proposes for gesture recognition three simple, compa

| h fi hough I . . .
S:;(\;V ?egti%gtg.se to the best performance even though we °"Wand effective representations of depth sequences which ef-

Index Terms—gesture recognition; depth map sequences; Con- feCtiver decribe a short depth sequence with images. Such

volutional Neural Networks representations make it possible to use a standard ConvNet
architecture to learn suitable “dynamic” features from the
l. INTRODUCTION sequences by utilizing the ConvNet models trained from inag

Gestures are naturally performed by humans, produceddsa. Consequently, it avoids training millions of paraenet
part of deliberate actions, signs or signals, or subconstjo from scratch and is especially valuable in the cases that
revealing intentions or attitudel]. While they may involve lack sufficient annotated training video data. For instance
the motion of all parts of the body, the studies of gesturdéise large-scale isolated gesture recognition challefigeHas
usually focus on arms and hands which are essential in geston average only 144 video clips per class compared to 1200
communication. Recognition of gestures has recentlya#da images per class in ImageNet.
increasing attention due to its indubitable importance anyn
applications such as Human Computer Interaction (HCI), The proposed three representations are Dynamic Depth
Human Robot Interaction (HRI) and assistive technologies flmage (DDI), Dynamic Depth Normal Image (DDNI) and
the handicapped and the elderly. Dynamic Depth Motion Normal Image (DDMNI). They are

Gestures are one type of actions and many action recogall- constructed from a sequence of depth maps based on
tion methods can be applied to gesture recognition. Reeoghidirectional rank pooling to encode the spatial (i.e. poest
tion of human actions from depth/skeleton data is one of tlaed temporal (i.e. motion) information at different levels
most active research topics in multimedia signal procgsisin and are complementary to each other. Experimental results
recent years due to the advantages of depth information ohewve shown that the three representations can improve the
conventional RGB video, e.g. being insensitive to illuntioa recognition accuracy substantially.
changes. Since the first work of such a typd feported
in 2010, many methods3], [4], [5], [6], [7], [8], [9], [10], The rest of this paper is organized as follows. Section |l
[11], [17], [13] have been proposed based on specifical hanokefly reviews the related works on gesture/action redammi
crafted feature descriptors extracted from depth/skeléddth based on depth and deep learning. Details of the proposed
the recent development of deep learning, a few methodethod are described in Section Ill. Experimental resuis a
have been developed based on Convolutional Neural Netwogkesented in Section IV. Section V concludes the paper.
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Fig. 1: The framework for proposed method.

1. RELATED WORK the sampling scheme to exclude most pixels that fall into the
) N background and to incorporate spatio-temporal cues.
A. Depth Based Action Recognition

With Microsoft Kinect Sensors researchers have develop@d Deep Leaning Based Recognition

methods for depth map-based action recognition. Li et al. Exiting deep learning approach can be generally divideal int
[2] sampled points from a depth map to obtain a bag of 3ur categories based on how the video is represented and fed
points to encode spatial information and employ an expdedato a deep neural network. The first category views a video
graphical model to encode temporal informati@s][ Yang et either as a set of still imageg{] or as a short and smooth

al. [4] stacked differences between projected depth maps teemnsition between similar frameg7, and each color channel

a depth motion map (DMM) and then used HOG to extracf the images is fed to one channel of a ConvNet. Although
relevant features from the DMM. This method transforms tha@bviously suboptimal, considering the video as a bag ofcstat
problem of action recognition from spatio-temporal spaze frames performs reasonably well. The second category is to
spatial space. In5], a feature called Histogram of Orientedrepresent a video as a volume and extends ConvNets to a
4D Normals (HON4D) was proposed; surface normal is efhird, temporal dimension?f], [29] replacing 2D filters with
tended to 4D space and quantized by regular polychoro& ones. So far, this approach has produced little benefits,
Following this method, Yang and Tiar][cluster hypersurface probably due to the lack of annotated training data. Thelthir
normals and form the polynormal which can be used to jointategory is to treat a video as a sequence of images and
capture the local motion and geometry information. Supéred the sequence to a RNN(], [19, [20], [21], [27].
Normal Vector (SNV) is generated by aggregating the lowA RNN is typically considered as memory cells, which are
level polynormals. In 10], a fast binary range-sample featuresensitive to both short as well as long term patterns. ltggars
was proposed based on a test statistic by carefully degjgnthe video frames sequentially and encode the frame-level



information in their memory. However, using RNNs did not 2) Construction of DDI:Given a sequence of depth maps,
give an improvement over temporal pooling of convolutiondhe ranking pooling method’f] described above is employed
features P€] or over hand-crafted features. The last categotyp generate a dynamic depth image (DDI). The DDI is fed
is to represent a video in one or multiple compact imagés the three channel of a ConvNet. Different from3] the
and adopt available trained ConvNet architectures for fineank pooling is applied in a bidiretional way to convert one
tuning [14], [15], [1€], [23]. This category has achieved statedepth map sequence into two DDIs. As shown in Fig.
of-the-art results of action recognition on many RGB anbDIs effectively capture the posture information, simitar
depth/skeleton datasets. The proposed method in this pafey poses.

falls into the last category. 3) Construction of DDNI:In order to simultaneously ex-
ploit the posture and motion information in depth sequerites
[1l. PROPOSEDMETHOD is proposed to extract normals from depth maps and construct

the so called DDNIs (dynamic depth normal images). For each

The proposed method consists of three stages: construc@ybth map, the surface normial,, n,, n.) at each location is

of the three sets of dynamic images, ConvNets training apg; jated. Thus, three channél§,, N, N. ), referred to as a
score fusion for classification, as illustrated in Flg.Details Depth Normal Image (DNI), are generated from the calculated
are presented in the rest of this section. normals, wheréN,,, N,, N.) represents normal images for the

. ) three componentgn,, n,, n.) respectively. The sequence of
A. Construction of Dynamic Images DNIs goes through bidirectional rank pooling to generate tw

The three sets of dynamic images, Dynamic Depth InRRDNIs, one being from fo_rward ranking pooling and the other
ages (DDIs), Dynamic Depth Normal Images (DDNIs) aniom backward rank pooling.
Dynamic Depth Motion Normal Images (DDMN'S) are con- 10 minimise the interference of the background, it is as-
structed from a sequence of depth maps through rank pogitmed that the background in the histogram of depth maps

ing [23. They aim to capture both posture and motiofccupies the last peak representing far distances. Sgaific
information for gesture recognition. pixels whose depth values are greater than a threshold define

1) Rank Pooling: Let I, ..., I+ denote the frames in aby the last peak of the depth histogram minus a fixed tolerance

sequence of depth maps, apdl;) € R? be a representation (0.1 was set in our experiment;) are considered as b:_;lclqgrogn
or feature vector extracted from each individual frafpeLet @nd removed from the calculation of DDNIs by re-settingithei

1 . . is si
A 2321 (1) be time average of these features up tdepth values to zero. Through this simple process, mosteof th

. . : X ) Background can be removed and has much contribution to the
time ¢. The ranking function associates to each tireescore s Samples of DDNIs can be seen in Fiy

S(t|d) =< d.V; >, whered € R is a vector of parameters. 4) Construction of DDMNI: The purpose of construction
The function parametersare learned so that the scores refleg.f a DDMNI is to further exploit the motion in depth maps.
the rapk of th_e frames in the video. In general, later times 8Gaussian Mixture Models (GMM) is applied to depth se-
assoc!ated .W'th larger scoreise. g > t = S,(ql,d) -~ 5(t/d). guences to detect moving foreground. The same process as the
Legrnmgd is formulated as a convex optimization problem,stqction of a DDNI ( but without using histogram-based
using RankSVM $1}; foreground extraction) is employed to the moving foregichun
This process generates two DDMNIs, which specifically cap-

d* = p(I1, ..., Ir; p) = arg min E(d), ture the motion information as illustrated in Fig.
B(d A 41 B. Network Training
(d) = 2 Ihd ™+ (1) After the construction of DDIs, DDNIs and DDMNIs, there

2 _ are six dynamic images, as illustrated in Figfor each depth
T(T-1) * Z maz{0, 1= S(g|d) + S(tld)}- map sequence. Six ConvNets were trained on the six channels
individually. Different layer configurations were used fibve

The first term in this objective function is the usual quaidratvalidation and testing sets provided by the Challenge. For
regular term used in SVMs. The second term is a hinge-logslidation, the layer configuration of six ConvNets follows
soft-counting how many pairg > t are incorrectly ranked by the one in B7]. For testing, VGG-16 §3] was adopted for
the scoring function. Note in particular that a pair is cdesed fine-tuning. The implementation is derived from the pulylicl
correctly ranked only if scores are separated by at leasita uavailable Caffe toolboxJ4] based on three NVIDIA Tesla
margin,i.e. S(q|d) > S(¢t|d) + 1. K40 GPU cards for both validation and testing.

Optimizing the above equation defines a function The training procedure for validation is similar to the one
p(I1, ..., IT; ¢) that maps a sequence ‘Bfdepth video frames in [37. The network weights were learned using the mini-
to a single vectord*. Since this vector contains enoughbatch stochastic gradient descent with the momentum being
information to rank all the frames in the video, it aggregateset to 0.9 and weight decay being set to 0.0005. All hidden
information from all of them and can be used as a videseight layers use the rectification (RELU) activation fuoot
descriptor. This process is called rank pooling. At each iteration, a mini-batch of 256 samples is constdicte

q>t



Forward Reverse ratio was set to 0.9 in order to reduce complex co-adapttion
of neurons in the nets.

C. Score Fusion for Classification

Given a testing depth video sequence (sample), three pairs
of dynamic images (DDIs, DDNIs, DDMNIs) are generated
and fed into six different trained ConvNets. For each image
pair, multiply-score fusion was used. The score vectors out
putted by the two pair ConvNets are multiplied in an element-
wise way and then the resultant score vectors are normalized
using L; norm. The three normalized score vectors are then
multiplied in an element-wise fashion and the max score in
the resultant vector is assigned as the probability of tise te
sequence being the recognized class. The index of this max
score corresponds to the recognized class label.

DD

IV. EXPERIMENTS

In this section, the Large-scale Isolated Gesture Redognit
Dataset at the ChaLearn LAP challenge 2016 (ChaLearn LAP
IsoGD Dataset){5] and the evaluation protocol are described.
The experimental results of the proposed method on this
dataset are presented.

A. Dataset

The ChalLearn LAP IsoGD Dataset is derived from the
ChalLearn Gesture Dataset (CGDj6]. It includes 47933
RGB-D depth sequences, each RGB-D video representing one
gesture instance. There are 249 gestures performed by 21
different individuals. The detailed information of thistdset
are shown in Tablé. In this paper, only depth maps were used
Fig. 2: Samples of generated forward and backward DDig evaluate the performance of the proposed method. Some
DDNIs and DDMNIs for gesture Mudral/Ardhapataka. samples of depth sequences are shown in Fig.

DDMNI

B. Evaluation Protocal

. - . The dataset is divided into training, validation and tess$.se
by sampling 256 shuffled training samples. All the "MageR three sets consist of samples of different subjects suen

. H -3
are _re5|zeq 0 2.5& 256. '_I'he learning rate was set 10 H1at the gestures of one subject in validation and test séts w
for fine-tuning with pre-trained models on ILSVRC-2012, an . -

not appear in the training set.

then it is decreased according to a fixed schedule, whichpis ke . . .
- . . For the isolated gesture recognition challenge, recagniti

the same for all training sets. For each ConvNet the trainin . . o .
. : X rdte r is used as the evaluation criteria. The recognition rate

undergoes 20K iterations and the learning rate decreaseg ev

. . : g Is calculated as:
5K iterations. For all experiments, the dropout reguldidsa , )
ratio was set to 0.5 in order to reduce complex co-adaption T= n5(pl(l), t(7)) (2)

of neurons in the nets. wheren is the number of sampleg; is the predicted label;
For testing, the training procedure is similar to the ong is the ground truthp(ji,72) = 1, if j1 = jo, otherwise

in [33). The network weights were learned using the mini5(;, j,) = 0.

batch stochastic gradient descent with the momentum being ]

set to 0.9 and weight decay being set to 0.0005. All hiddén Experimental Results

weight layers use the rectification (RELU) activation fuoot The results obtained by the proposed method on the vali-

At each iteration, a mini-batch of 32 samples was constdictdation and test sets are listed and compared with the baselin

by sampling 256 shuffled training samples. All the imagesethods 7] (MFSK and MFSK+DeepID) in Tablél. The

are resized to 224 224. The learning rate was set 16~ codes and models can be downloaded at the author's home-

for fine-tuning with pre-trained models on ILSVRC-2012, angagehttps://sites.google.com/site/pichaossites/.

then it is decreased according to a fixed schedule, whichpis ke The results showed that the proposed method significantly

the same for all training sets. For each ConvNet the trainimgitperformed the baseline methods, even though only single

undergoes 50K iterations and the learning rate decreaseg evnodality, i.e. depth data, was used while the baseline ndetho

20K iterations. For all experiments, the dropout reguéits used both RGB and depth videos.
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TABLE [: Information of the ChalLearn LAP IsoGD Dataset.

Sets # of labels | # of gestures| # of RGB videos | # of depth videos| # of subjects| label provided
Training 249 35878 35878 35878 17 Yes
Validation 249 5784 5784 5784 2 No
Testing 249 6271 6271 6271 2 No
All 249 47933 47933 47933 21 -

|
0

|

) m o

(s

Fig. 3: The samples of 21 out of 249 gestures. From top leftotboln right, they are:

(a) ltalianGestures/Madonna; (b) GestunoTopography@dour port; (c) TaxiSouthAfrica/TaxiHandSigns2;

(d) GestunoSmallAnimals/128at chat;(e) RefereeWrestlingSignals2/Reversal; (f) Diigmals3/NotUnderstood;
(g) SurgeonSignals/ArmyNavyRetractor; (h) GangHand&8gtEastSide; (i) SwatHandSignals1l/DogNeeded;
() HelicopterSignals/MoveLeft; (k) GangHandSignalsiliks; (1) TaxiSouthAfrica/TaxiHandSigns6;

(m) DivingSignals4/HowMuchAir; (n) ChineseNumbers/waxiSouthAfrica/TaxiHandSigns7;

(o) Mudra2/Vitarka,DivingSignals4/OK,GangHandSig48K; (p) DivingSignals1/Around;

(q) CanadaAviationGroundCirculation1/DirigezVous\Ver$ MusicNotes/do; (s) GangHandSignals1/Crip;

(t) SwatHandSignals1/Stop; (u) RefereeWrestlingSigh8iglling, SwatHandSignals1/Breacher.

TABLE II: Comparative accuracy of proposed method an@ABLE Ill: Comparsion the performance of our submission
baseline methods on the ChalLearn LAP IsoGD Dataset. with those of other teams. Our team secures the second place
in the ICPR ChaLearn LAP challenge 2016.

Method Set Recognition rate
MFSK Validation 18.65% Rank Team Recognition rate-
MFSK+DeeplD | Validation 18.23% 1 FLIXT [29] 56.8968%
Proposed Method Validation 39.23% 2 AMRL (ours) 55.5733%
MFSK Testing 24.19% 3 | XDETVP-TRIMPS 9 50.9329%
MFSK+DeeplD Testing 23.67% 7 ICT _NHCI 26.8027%
Proposed Testing 55.57% 5 XITUTX 73.9164%
6 TARDIS 40.1531%
7 NTUST 20.3317%

The challenge results are summarized in TdbleWe can
see that our method is among the top performers and our
recognition rate is very close to the best performance af thi
challenge (55.5733% vs. 56.8968%), even though we only
used depth data for proposed method while the winfié} [ Sequences into images. Such representations enablesethe us

adopted both depth and RGB modalities. of existing ConvNets models directly on video data with fine-
tuning without introducing large parameters to learn. The
V. CONCLUSIONS three representations represent the posture and motion in

This paper presented three simple, compact yet effectidéferent levels and they are complementary to each othér an
representations of depth sequences for gesture recagnifimprove the recognition accuracy largely. Experimentautes
using convolutional Neural networks. They are all basemsh Chalearn LAP IsoGD Dataset verified the effectiveness of
on bidirectional rank pooling method converting the depttne proposed method.
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