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Abstract—This paper presents solutions to the local patch
based Active Content Fingerprint (aCFP) with linear modula-
tion, general linear feature map and convex constraints on the
properties of the local feature descriptor. A direct approximation
of the linear feature map such that the image distortion is as small
as possible and the approximate linear feature map is as close
as possible to the original map is proposed. Then an explicit
regularization of the trade-off between the modulation distortion
and the robustness of the local feature is introduced trough a
novel problem formulation.

A computer simulation using local image patches, extracted
from publicly available data set is provided, demonstrating
the advantages under: additive white Gaussian noise (AWGN),
lossy JPEG compression and projective geometrical transform
distortions.

I. INTRODUCTION

Active Content Fingerprinting (aCFP) has emerged as a
synergy between the digital watermarking (DWM) and pas-
sive content fingerprinting (pCFP) [1]. This alternative ap-
proach covers a range of applications in the case when
content modulation is appropriate, prior to the content distribu-
tion/reproduction. The advantages are related to a number of
applications, including: content authentication, identification
and recognition.

Recently, it was theoretically demonstrated that the identifi-
cation capacity of aCFP [2] under the additive white Gaussian
channel distortions and `2-norm embedding distortion is con-
siderably higher to those of DWM and pCFP. Interestingly,
the optimal modulation of aCFP produces the correlated
modulation to the content in contrast to the optimal modulation
of DWM where the watermark is independent to the host.
Several scalar and vector modulation schemes for the aCFP
have been proposed [3], [4] and have been tested on synthetic
signals and collections of images. Despite of the attractive
theoretical properties of aCFP, the practical implementation
of aCFP modulation with an acceptable complexity, capable to
jointly withstand signal processing distortions such as additive
white Gaussian noise (AWGN), lossy JPEG compression, his-
togram modifications, etc. and geometrical distortions (affine
and projective transforms) remains an open and challenging
problem.

On the other hand in the recent years, local, i.e., patch-
based, compact, geometrically robust, binary descriptors such
as SIFT [5], BRIEF [6], BRISK [7], ORB [8] and the family of
LBP [9] become a popular tool in image processing, computer
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Fig. 1. Local aCFP framework

vision and machine learning. These local descriptors are also
considered as a form of local pCFP.

However, up to our best knowledge, there is small amount
prior work on the modulation of local descriptors in the scope
of aCFP or DWM.

In [10] an aCFP with a linear modulation subject to convex
constraint on the properties of the resulting local descriptors
was proposed, together with an optimal solution when the
feature map is invertible.

The main open issues with the proposed optimal solution in
[10] are related with the assumptions about the linear feature
map and the general case with no constraints on the properties
of the linear feature map is not addressed.

This paper approaches the general case from two distinct
sides: firstly, by direct approximation of the linear feature
map and secondly, by proposing novel problem formulation
for the linear modulation and the constraints on the properties
of the resulting local descriptor. The following contributions
are presented:

- Approximation to the linear feature map, covering two
cases: i) linear feature maps where the number of rows
is bigger then the number of columns; ii) linear feature
maps where the number of rows is smaller then the
number of columns.

- Introduction of explicit regularization of the trade-off
between the distortion and the robustness of the local
feature by considering constraints on the pairwise en-
coding dependence’s, on the distribution of the image
modifications and on the distribution of the feature
modifications with or without constraints on the range
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Fig. 2. Column 1: original image, column 2: features extracted from
the original image, column 3: original image corrupted with AWGN noise,
column 4: features extracted from the noisy original image;
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Fig. 3. Column 1: modulated image using the feature map A, column
2: features extracted from the modulated image, column 3: modulated
image corrupted with AWGN noise, column 4: features extracted from noisy
modulated image;
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Fig. 4. Column 1: modulated image using the feature map A†, column
2: features extracted from the modulated image, column 3: modulated
image corrupted with AWGN noise, column 4: features extracted from noisy
modulated image;

of values (compactness) of the solution.
- Validation by a computer simulation is presented using

publicly available data set of images under: informed
and non informed linear feature maps, original and
approximate linear feature maps and several image pro-
cessing distortions: AWGN, lossy JPEG compression
and projective geometrical transform.

The paper is organized as follows. In Section 2 the problem
is introduced, a short description of the local pCFP is given and
the local aCFP modulation is presented. In Section 3 the main
result is stated. Section 4 is devoted to computer simulation
and Section 5 concludes the paper.

II. LOCAL (PATCH BASED) LINEAR MODULATION

The proposed aCFP framework consists of content modu-
lation, prior to it’s reproduction and descriptor extraction that
includes feature mapping and quantization.

The scheme of the local aCFP framework is shown in Figure
I. Fist an image block is presented to the system, then the
local features are extracted. Based on the properties of the
extracted features an constrain on the modulation is added
and the modulated image block is estimated. The linear map
approximation is independent of the actual modulation.

The core idea behind the aCFP modulation [3] and [10]
is based on the observation that the magnitude of the feature
coefficients before the quantization influences the probability
to the bit error in the descriptor bits: the descriptor bit flipping
is more likely for low magnitude coefficients. Therefore, it

is natural to modify the original content by an appropriate
modulation and to increase these magnitudes subject to some
distortion constraint. Obviously, the modulation faces a trade-
off between two conflicting requirements of feature coefficient
magnitude increase for the probability of bit error reduction
and the modulation distortion. Fortunately, the low magnitude
coefficient are concentrated near zero and are easily affected
by a low distortion modulation.

Note that the local aCFP scheme is applicable also in the
context of global image description.

A. Local descriptor extraction (pCFP): no patch modulation

Given an original image, around a local key point, local
image patch xo ∈ <N×1 is extracted. Usually the patch
extraction is performed according to the patch orientation
defined for example by a patch gradient (shown in red in
Figure I).

Given a patch xo in the most general case, the local features
are extracted using a mapping function f2 : <N×1 → <L×1,
where L is the length of the descriptor. Consider a linear
function f2 (xo) = Axo, then A ∈ <L×N is a map (note
that the map is either predefined, data independent and ana-
lytic or learned, data dependent and adaptive). The mapping,
followed by a quantization Q(.) results in the local descriptor
bx = Q(Axo). The differences between the existing classes
of local descriptors are determined by the defined mapping
f2 (.) and the type of the quantization Q(.).

B. Local aCFP: patch modulation

The analysis here is focused on the solutions under linear
maps with general properties and scalar quantizers used in
such descriptors as ORB and LBP.

Linear modulation. We consider aCFP modulation to local
image patches. The aCFP modulation function f1 : <N×1 →
<N×1 that is considered is linear:

f1 (xo) = Zxo,Z ∈ <N×N (1)

Linear feature extraction. The considered feature extraction
is linear: f2 (xo) = Axo defined as A = CT. The matrix
T ∈ <M×N represents a linear transform, examples include
low pass filter, DCT, FFT, WDT, random projections and
others that typically are used by most of the known local
descriptors for decorrelation and "robustification" of the fea-
tures. The matrix C ∈ {−1, 0,+1}L×M represents the m-
wise (pairwise, triplewise, etc.) constraints that describe the
geometrical configuration of the considered pixel interactions.

Binary quantization. Let to = Axo, then the quantization is
defined as:

∀i, Q(to(i)) =

{
1 if to(i) ≥ 0

0 if to(i) < 0.
(2)
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Fig. 5. Original image xo, modulated image x using (5), robustified feature
Ax

C. Generalization and reduction to a constrained projection
problem

The generalized aCFP is a solution to a problem of functions
estimation [10]:

min
f1,f2

ϕ (f1 (xo) ,xo) + λ1ψ (f2 (f1 (xo)) , τ) , (3)

where the first mapping function f1 is the aCFP modulation
that modifies the local data in the original domain and ϕ(.)
is a function that penalizes the modulation distortions in
the original data domain. The second mapping function f2

transforms the modified local data f1 (xo) and ψ(.) is a
function that penalizes unwanted properties in the feature
domain. The variable τ is the given modulation threshold, λ1

is Lagrangian dual variable.
The aCFP with linear modulation, linear feature map and

convex constraints on the properties of the features is a
constrained projection problem [10]:

x̂ = argmin
x

1

2
(xo − x)

T
(xo − x)

subject to
|CTx| ≥e τ1,

(4)

where ≥e represents element-wise inequality.
It was shown in [10] that if A is invertible the global optimal

solution of (4) is:

x = xo + A−1(sign (Axo)�max{τ1− |Axo|,0}), (5)

where � represents Hadamard (element-wise) product (the
proof is given in [10]). Further, if A is a square orthogonal
matrix AAT = I, then A−1 in (5) is replaced with AT .

III. TRADES BETWEEN MODULATION DISTORTION AND
FEATURE ROBUSTNESS

A. Giving up distortion

It is possible to use (4) in the general case: with no
constraints on the properties of the linear map A. It that case
the robustification of the feature descriptor will be achieved,
however the level of modulation distortion is not regularized
and it is possible for the nose level to become unacceptably
high.
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Fig. 6. Original image xo, modulated image x using (13), robustified feature
Ax

B. Giving up exact feature descriptor properties

On the other hand, instead of using the exact linear map A
it is possible to use an approximate one such that the image
distortions are as small as possible and the approximate map
is as close as possible to the true map. There are two main
cases.

Proposition 1: The closest orthogonal matrix Z given the
matrix A ∈ <L×N , L ≤ N in a Gaussian sense is the solution
to the problem:

Z = argmin
Z
‖A− Z‖F

subject to
ZZT = I,

(6)

the optimal solution to (6) is Z = UIL×NVT where
UΣVT is a singular value decomposition (SVD) of A. Then
(5) is:

x = xo+VIN×LU
T (sign

(
UIL×NVTxo

)
�

max{τ1− |UIL×NVTxo|,0}).
(7)

Proposition 2: The closest incoherent matrix Z given the
matrix A ∈ <L×N , L > N , in Gaussian sense is the solution
to the problem :

Z = argmin
Z
‖A− Z‖F

subject to
µ (Z) ≤ εµ,

(8)

where µ (Z) = max i 6=j
i,j∈{1,2,3,...,L}

|ziz
T
j |

‖zi‖22‖zj‖22
and zi is the

ith column of Z.
Given any incoherent B ∈ {B ∈ <L×N , µ (B) ≤ εµ},

the solution of (8) is equivalent to a product of a rotation R
matrix and the incoherent B matrix. This decomposition is
not unique. Nevertheless, the rotation R matrix is a solution
to the following problem [11]:



R = argmin
R
‖RB−A‖F

subject to
RRT = I,

(9)

the optimal solution is R = UVT where UΣVT is a SVD
of ABT . Therefore Z = UVTB and the final solution is:

x = xo+B−1VUT (sign
(
UVTBxo

)
�

max{τ1− |UVTBxo|,0}).
(10)

C. Explicit regularization of the trade-off between modulation
distortion and feature robustness

An explicit regularization to (4) is introduced in order to
improve it’s solution, where several constraints are considered:

1) the dependencies for a subsets of pairwise constraints
represented by the matrix C

2) the distribution of the modulated modifications
3) the distribution of the feature descriptor modifications
4) constraints on the range of values (compactness) of the

optimal solution.
Define to = CTxo = Axo, then let so, |s (i) | ≤ |s (j) |,
∀i ≤ j, i, j ∈ {1, 2, 3, ..., L} be a sorted |to| vector and let As

be rows reordered A such that Asxo = so.

Definition 1: The strength of dependence for a set of con-
nected points:

S{i1,i2,...,iQ} ={{x(i1), x(i2), ..., x(iQ)},
{x(ij), x(ij+1)}, ij 6= ij+1,

j, j + 1 ∈ {1, 2, 3, ..., Q− 1},
ij ∈ {1, 2, 3, ..., N}},

(11)

is defined as D|S{i1,i2,...,iQ}| = |S{i1,i2,...,iQ}| − 2.

Lemma 1: ∀C ∈ {−1, 1}L×N if there exists at least one
subset Si1,i2,...,iQ from C such that D|S{i1,i2,...,iQ}| ≥ 1

then there exists at least one pair of elements to(i), to(j), i 6=
j, i, j ∈ {1, 2, 3, ...L} from to ∈ <L×1 that are linearly
dependent.

Proposition 3: An aCFP with explicitly regularized trade-off
between modulation distortion and feature robustness, linear
modulation, linear feature map and convex constraints on the
properties of the features is a solution to the constrained
projection problem:

x̂ = arg min
x,sl,sh

(d0 (xo,x) + λ1d1 (sl) +

λ2d2 (sh) + λ3 (l + u))

subject to
Asx =e [ sl

sg ]

d3 ([ sl
sg ]) ≥e τ

[
1l
1g

]
x ≥e l1
l ≥ 0

x ≤e u1,

(12)
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Fig. 7. a) All of the pairwise constraints encoded by the matrix C. b) Cases
of subset Si1,i2,...,iQ from C with different strength of linear dependence

where λ1, λ2 and λ3 are Lagrangian multipliers, d0 (., .),
d1 (., .), d2 (., .) and d3 (., .) are penalty function, l and u are
bounds on the range of values.

In the decomposition [ sl
sg ], sl are the components of the

modified feature descriptor related to the components of the
original descriptor Asx that are less than the modulation
threshold τ and sg are the components of the modified feature
descriptor related to the components of the original descriptor
Asx that are greater than the modulation threshold τ .

Without knowing the priors on d0(., .), d1(.) and d2(.) the
principle idea is to consider the worst case where the residual
elements (x(i)− xo(i)) ,∀i ∈ {1, 2, 3, .., N} are Gaussian
distributed.

Define:

- d0(x,x0) = 1
2‖x− x0‖22 and d1(.) = d2(.) = 0

- a weak constraints on the feature descriptor Ax such
that it’s elements are only greater/less than the required
modulation level τ

- a weak constraints on u.

then (12) is:

x̂ = argmin
x,u

1

2
(xo − x)

T
(xo − x) + λ3u

subject to
(Asx)− ≤e −τ1
(Asx)+ ≥e τ1
x ≥e 0

x ≤e u1,

(13)

where (Ax)− and (Ax)+ are the negative and positive
components respectivly.

Note that if the encoding matrix C does not contain
dependent pairs than (13) will not bring improvement and the
solution of (5) is equivalent to the solution of (13). However,
having at least two dependent pairs than a trade between the
modulation error and constrained feature descriptor modifi-
cation (greater/less than the required modulation level τ ) is
possible.



IV. COMPUTER SIMULATIONS

A computer simulation is performed to demonstrate the
advantages of the local aCFP scheme over pCFP under several
signal processing distortions, including AWGN, lossy JPEG
compression and projective geometrical transform.

The UCID [12] image database was used to extract local
image patches. The ORB detector [8] was run on all images,
and
√
N ×

√
N pixel patches, with

√
N = 31 were extracted

around each detected feature point. The features were sorted by
scale-space, 30 patches were extracted from individual image.

Let the matrix Xo = [xo,1,xo,2,xo,3, ...,xo,1000] represent
all the original available local image patches and define the
matrix T ∈ <N×N to represents low pass filter with 11× 11
window.

Two cases are simulated an informed and non-informed one.
Consider that an local image block is transmitted trough a
noisy channel.

Informed case: At the receiver end, in the informed case an
amount of available information is presented about the original
image. Only one matrix AI is used in the aCFP scenario.
AI =

(
UIL×MVT

)T
where U,V are obtained by SVD of

(CTI)
T .

The matrix TI = R
[
xox

T
o

]−1 ∈ <N×N , where R ∈
<N×N is a random matrix is generated as follows. First the
matrix xox

T
o is quantized in J levels, where for every quanti-

zation level q ∈ {1, 2, 3, ..., J}, there exists a set Lq of indexes
to the elements in xox

T
o , all of the Lq are with the same

cardinality. Then for every index set Lq the corresponding
elements of R are generated from uniform distribution with the
support [0, 1]. The main idea is to try to make the contribution
of the elements of xoxTo in the linear feature map CTI equi
likely.

The matrix AT
I is the closest orthogonal to (CT)

T , satis-
fying AIA

T
I = I.

Non-informed case: In the non-informed case, an informa-
tion about the original image is not presented. Three dif-
ferent matrices A, A† ' A with A†(A†)T = I and Ar,
∀i, j, Ar(i, j) ∼ N (0, 1) with Ar(Ar)T = I are used in the
pCFP and the aCFP scenario.

Measures: Three measured quantities are used in the evalua-
tion:

- The modulation level mL is defined in percentage
mL = K

L 100, 1 ≤ K ≤ L and it represents the
fraction of coefficients so that are modified. At a single
modulation level, the modulation threshold τ is defined
as τ = max1≤i≤K |so (i) |.

- The modulation distortion DWR is defined as DWR =
10 log10

(
2552

∆2

)
[dB], ∆ = 1

N ‖x− xo‖2.
- The probability of bit error peis defined by the

probability of correct bit pe = 1 − pc, pc =
1
L

∑L
i=1 1{bx (i) , by (i)} with L = 256 bits, where

bx = Q (Axo), by = Q (Axo + Axe + Axn), xn is
the introduced distortion and 1{} is an indicator function

Original image Noisy image
Noise

Fig. 8. Informed case

Original image Noisy image
Noise

Fig. 9. Non informed case

such that 1{a, b} = 1, if a = b and 1{a, b} = 0,
otherwise.

A. AWGN
The results from a single patch were obtained as an average

of 100 AWGN realizations. Four different noise levels were
used, defined in PSNR= 10 log10

2552

σ2 are 0dB, 5dB, 10dB
and 20dB. Two modulation levels (mL) were used 10 and 60.

B. Lossy JPEG compression
Three strong levels of JPEG quality factors (QF) 0, 5 and

10 were used. The modulation levels (mL) that were used are
10 and 30.

C. Projective transform with lossy JPEG compression
A projective transformation P ∈ <3×3 was used, where:

P =

 1.0763 0.0325 0

1.0763 0.0325 0

−24.32 −70.37 1

 , (14)

followed by a lossy JPEG compression with QF=5. The
modulation levels (mL) that were used are 10 and 60.

In Tables I, II and III are provided the average results for
a total of 1000 image patches.

The results show that the pair of highest DWR and lowest
pe is achieved in the informed case for the aCFP scenario
under all types of noise.

The non-informed aCFP consistently outperforms the non-
informed pCFP in terms of pe for all types of noise, however
at cost of introducing a modulation distortion.

It is important to highlight that the greatest reduction in pe
is .15, achieved at AWGN noisy level of 0dB and modulation
level mL = 60 using the proposal (13). The results by (13)
produce even smaller pe than the results in the informed
case when using AI , however the modulation noise DWR
is smaller for the former case.

On the other hand the proposal consisting of approximate
liner map provides small improvement in terms of pe, however
it achieves high DWR, that is small modulation distortion.

V. CONCLUSION

This paper presented solutions to the local patch based aCFP
with linear modulation, general linear feature map and convex
constraints on the properties of the local feature descriptor. A
linear feature map approximation was proposed. An explicit
regularization of the trade-off between the modulation distor-
tion and the robustness of the local feature was introduced
trough a novel problem formulation.



Non-informed and informed case: pCFP results

pe
A A† Ar AI

0dB .224 .422 .3485 .15
AWGN 5dB .150 .373 .2661 .12

10dB .095 .310 .1795 .09
20dB .034 .160 .0640 .03

0 .082 .244 .072 .03
QF 5 .051 .190 .056 .02

10 .028 .144 .044 .01
Proj., QF=5 .058 .233 .0769 .05

TABLE I
THE DWR AND THE pe UNDER PCFP USING VARYING AWGN NOISE,

JPEQ QUALITY FACTOR AND PROJECTIVE TRANSFORMATION WITH QF=5
FOR THE FEATURE MAPS A, A† , Ar AND AI

Informed case: aCFP results using the proposal (5)

pe
AI

mL 10 60
DWR 51 28

0dB .15 .11
AWGN 5dB .11 .05

10dB .08 .01
20dB .02 0
0 .02 0

QF 5 .01 0
10 0 0

Projective, QF=05 .05 .03

Non-informed case: aCFP results using the proposal (5)

pe
A

mL 10 60
DWR 20.0 -6.9

0dB .220 .121
AWGN 5dB .145 .045

10dB .086 .010
20dB .019 0

0 .082 .253
QF 5 .049 .217

10 .022 .204
Proj., QF=5 .053 .263

TABLE II
THE DWR AND THE pe USING VARYING ACFP MODULATION UNDER

VARYING AWGN NOISE, JPEQ QUALITY FACTOR AND PROJECTIVE
TRANSFORMATION WITH QF=5 FOR THE FEATURE MAPS A AND AI

The computer simulation using local image patches, ex-
tracted from publicly available data set was provided and the
advantages under the distortions AWGN, lossy JPEG compres-
sion and projective geometrical transform were demonstrated.

The results produced by the proposed linear modulation
show that small pe is achievable under different and severe
signal processing distortions, however at cost of introducing
modulation distortion.
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