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Abstract—This paper proposes a new approach to
automatically quantify the severity of knee osteoarthritis (OA)
from radiographs using deep convolutional neural networks
(CNN). Clinically, knee OA severity is assessed using Kellgren
& Lawrence (KL) grades, a five point scale. Previous work on
automatically predicting KL grades from radiograph images
were based on training shallow classifiers using a variety of
hand engineered features. We demonstrate that classification
accuracy can be significantly improved using deep
convolutional neural network models pre-trained on ImageNet
and fine-tuned on knee OA images. Furthermore, we argue that
it is more appropriate to assess the accuracy of automatic knee
OA severity predictions using a continuous distance-based
evaluation metric like mean squared error than it is to use
classification accuracy. This leads to the formulation of the
prediction of KL grades as a regression problem and further
improves accuracy. Results on a dataset of X-ray images and
KL grades from the Osteoarthritis Initiative (OAI) show a
sizable improvement over the current state-of-the-art.

Index Terms—Knee osteoarthritis, KL grades, Convolutional
neural network, classification, regression, wndchrm.

I. INTRODUCTION

The increasing prevalence of knee osteoarthritis (OA), a
degenerative joint disease, and total joint arthoplasty as a
serious consequence, means there is a growing need for
effective clinical and scientific tools to diagnose knee OA in
the early stage, and to assess its severity in progressive
stages [1], [2]. Detecting knee OA and assessing the severity
of knee OA are crucial for pathology, clinical decision
making, and predicting disease progression [3]. Joint space
narrowing (JSN) and osteophytes (bone spurs) formation are
the key pathological features of knee OA [1], which are easily
visualized using radiographs [3].

The assessment of knee OA severity has traditionally been
approached as an image classification problem [2], with the
KL grades being the ground truth for classification.
Radiographic features detectable through a computer-aided
analysis are clearly useful to quantify knee OA severity, and
to predict the future development of knee OA [2]. However,
based on the results reported, the accuracy of both the
multi-class and consecutive grades classification is far from
ideal. Previous work on classifying knee OA from
radiographic images have used Wndchrm, a multipurpose
bio-medical image classifier [4], [5]. The feature space used
by Wndchrm includes hand-crafted features to capture these
characteristics based on polynomial decomposition, contrast,

pixel statistics, textures and also features extracted from
image transforms [2], [4], [5].

Instead of hand-crafted features, we propose that learning
feature representations using a CNN can be more effective for
classifying knee OA images to assess the severity condition.
Feature learning approaches provide a natural way to capture
cues by using a large number of code words (sparse coding)
or neurons (deep networks), while traditional computer vision
features, designed for basic-level category recognition, may
eliminate many useful cues during feature extraction [6].
Manually designed or hand-crafted features often simplify
machine learning tasks. Nevertheless, they have a few
disadvantages. The process of engineering features requires
domain-related expert knowledge, and is often very time
consuming [7]. These features are often low-level as prior
knowledge is hand-encoded, and features in one domain do
not always generalize to other domains [8]. In recent years,
learning feature representations is preferred to hand-crafted
features, particularly for fine-grained classification, because
rich appearance and shape features are essential for describing
subtle differences between categories [6].

A convolutional neural network (CNN) typically comprises
multiple convolutional and sub-sampling layers, optionally
followed by fully-connected layers like a standard multi-layer
neural network. A CNN exploits the 2D spatial structure images
to learn translation invariant features. This is achieved with
local connections and associated weights followed by some
form of pooling. The main advantage of CNN over fully-
connected networks is that they are easier to train and have
fewer parameters with the same number of hidden units [9].

In this work, first, we investigated the use of well-known
CNNs such as the VGG 16-layer net [10], and comparatively
simpler networks like VGG-M-128 [11], and BVLC reference
CaffeNet [12], [13] (which is very similar to the widely-used
AlexNet model [14]) to classify knee OA images. These
networks are pre-trained for color image classification using a
very large dataset such as the ImageNet LSVRC dataset [15],
which contains 1.2 million images with 1000 classes. Initially,
we extracted features from the convolutional, pooling, and
fully-connected layers of VGG16, VGG-M-128, and BVLC
CaffeNet, and trained linear SVMs to classify knee OA
images.

Next, motivated by the transfer learning approach [16], we
fine-tuned the pre-trained networks. We adopted transfer



Fig. 1. A few samples of bilateral PA fixed flexion knee OA radiographs.

learning as the OAI dataset we work with is small, containing
only a few thousand images. In this setting, a base network is
first trained on external data, and then the weights of the
initial n layers are transferred to a target network [16]. The
new layers of the target network are randomly initialized.
Intuitively, the lower layers of the networks contain more
generic features such as edge or texture detectors useful for
multiple tasks, while the upper layers progressively focus on
more task specific cues [13], [16]. We used this approach for
both classification and regression, adding new fully-connected
layers and use backpropagation to fine tune the weights for
the complete network on the target loss.

The primary contributions of this paper are the use of CNNs
and regression loss to quantify knee OA severity. We propose
the use of mean squared error for assessing the performance of
an automatic knee OA severity assessment instead of binary and
multi-class classification accuracy. We show that the inferred
CNN features from the fine-tuned BVLC reference CaffeNet
provide higher classification accuracy in comparison to the
state-of-the-art. We also present an SVM-based method to
automatically detect and extract the knee joints from knee OA
radiographs.

II. MATERIALS AND METHODS

A. Dataset

The data used for the experiments are bilateral PA fixed
flexion knee X-ray images, taken from the baseline (image
release version O.E.1) radiographs of the Osteoarthritis
Initiative (OAI) dataset containing an entire cohort of 4, 476
participants. This is a standard dataset for studies involving
knee OA. Figure 1 shows some samples from the dataset. In
the entire cohort, Kellgren & Lawrence (KL) grades are
available for both knee joints in 4, 446 radiographs and these
images were used for this study. The distribution of the knee
joint images (in total 8, 892) conditioned on the KL grading
scale are: Grade 0 - 3433, Grade 1 - 1589, Grade 2 - 2353,
Grade 3 - 1222, and Grade 4 - 295. The KL grading system
uses 5 grades to classify knee OA severity from the
radiographs [17], where ‘Grade 0’ corresponds to the normal
knee, and the other grades correspond to the progression of
the disease, as shown in Figure 2.

Fig. 2. The KL grading system to assess the severity of knee OA. Source:
http://www.adamondemand.com/clinical-management-of-osteoarthritis/

B. Automatic detection and the extraction of the knee joints

Automatically detecting, and extracting the knee joint region
from the radiographs is an important pre-processing step and
Shamir et. al. [2] proposed the template matching method for
this. Though this method is simple to implement, the accuracy
of detecting the knee joints is low for our dataset. To improve
detection, we propose an SVM-basd method.

1) Template matching: As a baseline, we adapted the
template matching approach [2] for detecting the knee joint
center, to an image patch of size 20×20 pixels. The
radiographs are first down-scaled to 10% of the original size
and subjected to histogram equalization for intensity
normalization. An image patch (20×20 pixels) containing the
knee joint center is taken as a template. 10 image patches
from each grade, so that in total 50 patches were pre-selected
as templates. Each input image is scanned by an overlapping
sliding window (20×20 pixels). At each window the
Euclidean distance between the image patch and the 50
templates are calculated, and the shortest distance is recorded.
After scanning an entire image with the sliding window, the
window that records the smallest Euclidean distance is
recorded as the knee joint center.

2) Proposed method for detecting the knee joints: We
propose an approach using a linear SVM and the Sobel
horizontal image gradients as the features for detecting the
knee joint centers. The well-known Sobel edge detection
algorithm uses the vertical and the horizontal image gradients.
The motivation for this is that knee joint images primarily
contain horizontal edges. The image patches (20×20 pixels)
containing the knee joint center are taken as the positive
training samples and the image patches (20×20 pixels)
excluding the knee joint center are taken as the negative
training samples. After extracting Sobel horizontal gradients
for the positive and negative samples, a linear SVM was
trained. To detect the knee joint center from both left and
right knees, input images are split in half to isolate left and
right knees separately. A sliding window (20×20 pixels) is
used on either half of the image, and the Sobel horizontal
gradient features are extracted for every image patch. The
image patch with the maximum score based on the SVM

http://www.adamondemand.com/clinical-management-of-osteoarthritis/


Fig. 3. Detecting the knee joint centers and extracting the knee joints.

decision function is recorded as the detected knee joint center,
and the area (300×300 pixels) around the knee joint center is
extracted from the input images using the corresponding
recorded coordinates. Figure 3 shows an example of a
detected and extracted knee joint.

C. Assessing the knee OA severity using CNNs

In this study, we investigate the use of CNN for assessing
the severity of knee OA through classification and regression.
For this, we used two approaches: 1. Pre-trained CNN for
fixed feature extraction, 2. Fine-tuning the pre-trained CNN
following the transfer learning approach. For benchmarking
the classification results obtained by the proposed methods,
we have used Wndchrm, an open source utility for medical
image classification that has been applied to this task in the
literature [4], [2].

1) Classification using features extracted from pre-trained
CNNs: As our initial approach, we trained VGG16 [10] with
the OAI dataset. We used the Caffe [12] framework for
implementing and training the CNN, and to extract features
from the CNN. We extracted features from the different layers
of the VGG net such as fully-connected (fc7), pooling (pool5),
and convolutional (conv5 2) layers to identify the most
discriminating set of features. Linear SVMs (trained using
LIBLINEAR [18]) were trained with the extracted CNN
features for classifying knee OA images, where the ground
truth was labeled images conditioned on the KL grades. Next,
we investigated the use of simpler pre-trained CNNs such as
VGG-M-128 [11] and BVLC CaffeNet [12] for classifying the
knee OA images. These networks have fewer layers and
parameters in comparison to VGG16.

2) Fine-tuning the CNNs for classification and regression:
Our next approach fine-tuned the BVLC CaffeNet [12] and
VGG-M-128 [11] networks. We chose these two smaller
networks, both which contain fewer layers and parameters
(∼62M), over the much deeper VGG16, which has ∼138M
parameters. We replace the top fully-connected layer of both
networks and retrain the model on the OAI dataset using
backpropagation. The lower-level features in the bottom layers
are also updated during fine-tuning. Standard softmax loss
was used as the objective for classification, and accuracy
layers were added to monitor training progress. A Euclidean
loss layer (mean squared error) was used for the regression
experiments.

TABLE I
CLASSIFICATION METRICS OF THE SVM FOR DETECTION.

Class Precision Recall F1score

Positive 0.93 0.84 0.88
Negative 0.95 0.98 0.96

Mean 0.94 0.94 0.94

TABLE II
COMPARISON OF AUTOMATIC DETECTION USING THE TEMPLATE

MATCHING AND THE PROPOSED METHOD BASED ON JACCARD INDEX (J).

Method J = 1 J ≥ 0.5 J > 0

Template Matching 0.3 % 8.3 % 54.4 %
Proposed Method 1.1 % 38.6 % 81.8 %

III. RESULTS AND DISCUSSION

A. Automatic detection of the knee joints

Standard template matching [2] produces poor detection
accuracy on our dataset. To improve this, we used a linear SVM
with the Sobel horizontal image gradients as features to detect
the knee joints. The proposed method is approximately 80×
faster than template matching; for detecting all the knee joints
in the dataset comprising 4, 492 radiographs, the proposed
method took ∼9 minutes and the template matching method
took ∼798 minutes.

Image patches containing the knee joint center (20×20
pixels) were used as positive examples and randomly sampled
patches excluding the knee joint as negative samples. We used
200 positive and 600 negative training samples. The samples
were split into 70% training and 30% test set. Fitting a linear
SVM produced 95.2% 5-fold cross validation and 94.2% test
accuracies. Table I shows the precision, recall, and F1scores
of this classification.

To evaluate the automatic detection, we generated the ground
truth by manually annotating the knee joint centers (20×20
pixels) in 4,496 radiographs using an annotation tool that we
developed, which recorded the bounding box (20×20 pixels)
coordinates of each annotation.

We use the well-known Jaccard index to give a matching
score for each detected instance. The Jaccard index J(A,D) is
given by,

J(A,D) =
A ∩D

A ∪D
(1)

where A, is the manually annotated and D is the automatically
detected knee joint center using the proposed method. Table II
shows the resulting average detection accuracies based on
thresholding of Jaccard indices.

The mean Jaccard index for the template matching and
the classifier methods are 0.1 and 0.36. From Table II, it is
evident that the proposed method is more accurate than template
matching. This is due to the fact that template matching relies
upon the intensity level difference across an input image. Thus,
it is prone to matching a patch with small Euclidean distance
that does not actually correspond to the joint center. We also



TABLE III
CLASSIFICATION ACCURACY (%) ACHIEVED BY THE WNDCHRM AND PRE-TRAINED CNN FEATURES.

Classification Wndchrm VGG 16-Layers Net VGG-M-128 Net BVLC ref CaffeNet

fc7 pool5 conv5 2 fc6 pool5 conv4 fc7 pool5 conv5

Progressive

Grade 0 vs Grade 1 51.5 56.3 61.3 63.5 56.5 63.2 64.7 62.0 64.3 63.3
Grade 0 vs Grade 2 62.6 68.6 74.3 76.7 67.8 75.5 77.6 69.6 73.6 73.9
Grade 0 vs Grade 3 70.6 86.4 91.4 92.4 88.5 90.2 92.9 87.9 92.5 91.5
Grade 0 vs Grade 4 82.8 98.1 98.6 99.3 98.8 99.3 99.2 98.5 99.4 99.1

Successive
Grade 1 vs Grade 2 48.8 60.0 64.7 67.3 57.9 63.5 65.3 61.2 65.8 62.8
Grade 2 vs Grade 3 54.5 69.8 76.4 77.0 73.0 77.3 79.0 70.3 78.1 77.1
Grade 3 vs Grade 4 58.6 85.2 88.8 90.0 85.0 90.4 91.2 87.4 91.6 91.4

Multi-class
Grade 0 to Grade 2 39.9 51.1 53.4 56.9 51.1 55.0 57.4 51.1 54.8 54.4
Grade 0 to Grade 3 32.0 44.6 48.7 53.9 45.4 50.2 53.3 46.9 51.6 50.2
Grade 0 to Grade 4 28.9 42.6 47.6 53.1 43.8 49.5 53.4 44.1 50.8 50.0

varied the templates in a set, and observed that the detection is
highly dependent on the choice of templates: template matching
is similar to a k-nearest neighbor classifier with k = 1. The
reason for higher accuracy in the proposed method is the use of
horizontal edge detection instead of intensity level differences.
The knee joints primarily contain horizontal edges and thus
are easily detected by the classifier using horizontal image
gradients as features.

Despite sizable improvements in accuracy and speed using
the proposed approach, detection accuracy still falls short of
100%. We therefore decided to use our manual annotations so
as to investigate KL grade classification performance
independently of knee joint detection.

B. Classification of the knee joints using pre-trained CNNs

The extracted knee joint images were split into training
(∼70%) and test (∼30%) as per the KL grades. For
classifying the knee joint images, we extracted features from
fully-connected, pooling and convolution layers of VGG16,
VGG-M-128, and BVLC CaffeNet. For binary and multi-class
classifications, linear SVMs were trained individually with the
extracted features. The classification results achieved with the
CNNs are compared to knee classification of OA images
using the Wndchrm [2], [4], [5].

Table III shows the test set classification accuracies
achieved by Wndchrm and the CNN features. The CNN
features consistently outperform Wndchrm for classifying
healthy knee samples against the progressive stages of knee
OA. The features from conv4 layer with dimension
512×13×13 and pool5 layer 256×13×13 of VGG-M-128 net,
and conv5 layer with dimension 512×6×6 and pool5 layer
with dimension 256×6×6 of BVLC reference CaffeNet give
higher classification accuracy in comparison to the
fully-connected fc6 and fc7 layers of VGG nets and CaffeNet.
We also extracted features from further bottom layers such as
pool4, conv4 2, pool3, pool2 and trained classifiers on top of
these features. As the dimension of the bottom layers are
high, significantly more time was required for training but
without improvement in classification accuracy.

In a fine-grained classification task such as knee OA images
classification, the accuracy of classifying successive classes

tends to be low, as the variations in the progressive stages of
the disease are minimal, and only highly discriminant features
can capture these variations. From the experimental results, as
shown in Table III, the features extracted from CNNs provide
significantly higher classification accuracy in comparison to
the Wndchrm, and these features are effective and promising
for classifying the consecutive stages of knee OA.

We performed multi-class classifications using linear SVMs
with the CNN features (Table III, multi-class). Again, the
CNN features perform significantly better than the Wndchrm-
based approach. The classification accuracies obtained using
convolutional (conv4, conv5) and pooling (pool5) layers are
slightly higher in comparison to fully-connected layer features.
There are minimal variations in classification accuracy obtained
with the features extracted from VGG-M-128 net and BVLC
reference CaffeNet in comparison to VGG16.

C. Classification of the knee joints using fine-tuned CNNs

Table III shows the multi-class classification results for the
fine-tuned BVLC CaffeNet and VGG-M-128 networks. We
omitted the VGG16 network in these experiment since the
variation in accuracy among the pre-trained CNNs was small,
and fine-tuning VGG16 is significantly more computationally
expensive. The dataset was split into training (60%), validation
(10%) and test (30%) sets for fine-tuning. To increase the
number of training samples, we included the right-left flipped
knee joint images in the training set. The networks were fine-
tuned for 20 epochs using a learning rate of 0.001 for the
transferred layers, and boosting it on newly introduced layers by
a factor of 10. The performance of fine-tuned BVLC CaffeNet
was slightly better than VGG-M-128. Hence, we only show

Fig. 4. Learning curves for training and validation loss (left) and validation
accuracy (right) during fine-tuning.



TABLE IV
CLASSIFICATION ACCURACY (%) ACHIEVED WITH THE FEATURES

EXTRACTED FROM FINE-TUNED BVLC NET.

Classification Before Fine-Tuning After Fine-Tuning

fc7 pool5 conv5 fc7 pool5 conv5

Grade 0 vs Grade 1 62.0 64.3 63.3 63.3 64.3 61.9
Grade 0 vs Grade 2 69.6 73.6 73.9 76.3 77.2 74.1
Grade 0 vs Grade 3 87.9 92.5 91.5 96.7 96.0 96.3
Grade 0 vs Grade 4 98.5 99.4 99.1 99.8 99.7 99.7

Grade 1 vs Grade 2 61.2 65.8 62.8 63.3 66.7 62.7
Grade 2 vs Grade 3 70.3 78.1 77.1 85.8 83.9 83.3
Grade 3 vs Grade 4 87.4 91.6 91.4 94.4 93.6 92.6

Grade 0 to Grade 2 51.1 54.8 54.4 57.4 57.0 52.0
Grade 0 to Grade 3 46.9 51.6 50.2 57.2 56.5 51.8
Grade 0 to Grade 4 44.1 50.8 50.0 57.6 56.2 51.8

here the results of fine-tuning CaffeNet. Figure 4 shows the
learning curves for training and validation loss, and validation
accuracy. The decrease in loss and increase in accuracy shows
that the fine-tuning is effective and makes the CNN features
more discriminative, which improves classification accuracy
(Table III). The features extracted from the fully connected
(fc7) layer provide slightly better classification in comparison
to pooling (pool5) and convolution (conv5) layers.

D. Regression of KL grades using fine-tuned CNNs.

Existing work on automatic measurement of knee OA
severity treats it as an image classification problem, assigning
each KL grade to a distinct category [2]. To date, evaluation
of automatic KL grading algorithms has been based on binary
and multi-class classification accuracy with respect to these
discrete KL grades [1], [2], [5]. KL grades are not, however,
categorical, but rather represent an ordinal scale of increasing
severity. Treating them as categorical during evaluation means
that the penalty for incorrectly predicting that a subject with
Grade 0 OA has Grade 4 is the same as the penalty for
predicting that the same subject has Grade 1 OA. Clearly the
former represents a more serious error, yet this is not captured
by evaluation measures that treat grades as categorical
variables. In this setup, permuting the ordering of the grades
has no effect on classification performance. Moreover, the
quantization of the KL grades to discrete integer levels is
essentially an artifact of convenience; the true progression of
the disease in nature is continuous, not discrete.

We therefore propose that it is more appropriate to measure
the performance of an automatic knee OA severity assessment
system using a continuous evaluation metric like mean squared
error. Such a metric appropriately penalizes errors in proportion
to their distance from the ground truth, rather than treating all
errors equally. Directly optimizing mean squared error on a
training set also naturally leads to the formulation of knee OA
assessment as a standard regression problem. Treating it as
such provides the model with more information on the structure
and relationship between training examples with successive KL
grades. We demonstrate that this reduces both the mean squared
error and improves the multi-class classification accuracy of
the model.

TABLE V
MSE FOR CLASSIFICATION AND REGRESSION.

Classes Wndchrm CNN-Clsf CNN-Reg CNN-Reg*

Grade 0 to 4 2.459 0.836 0.504 0.576

We fine-tuned the pre-trained BVLC CaffeNet model using
both classification loss (cross entropy on softmax outputs) and
regression loss (mean squared error) to compare their
performance in assessing knee OA severity. In both cases, we
replace fc7 with a randomly initialized layer and fine tune for
20 epochs, selecting the model with the highest validation
performance. The classification network uses a 5D fully
connected layer and softmax following the fc7 layer, and the
regression network uses a 1D fully connected node with a
linear activation.

We compare the models using both mean squared error
(MSE) and standard multi-class classification metrics. We
calculated the mean squared error using the standard formula:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (2)

where n is the number of test samples, yi is the true (integer)
label and ŷi is the predicted label. For the classification
network the predicted labels yi are integers and for the
regression network they are real numbers. We also test a
configuration where we round the real outputs from the
regression network to produce integer labels. Table V shows
the MSE for classification using the Wndchrm and the CNN
trained with classification loss (CNN-Clsf), regression loss
(CNN-Reg), and regression loss with rounding (CNN-Reg*).
Regression loss clearly achieves significantly lower mean
squared error than both the CNN classification network and
the Wndchrm features.

To demonstrate that the regression loss also produces better
classification accuracy, we compare the classification accuracy
from the network trained with classification loss and the
network trained with regression loss and rounded labels.
Rounding, in this case, is necessary to allow for using
standard classification metrics. Table VI compares the
resulting precision, recall, and F1 scores. The multi-class
(grade 0–4) classification accuracy of the network fine-tuned

TABLE VI
COMPARISON OF CLASSIFICATION PERFORMANCE USING CLASSIFICATION

(LEFT) AND REGRESSION (RIGHT) LOSSES.

Classification loss Regression loss

Grade Precision Recall F1 Precision Recall F1

0 0.53 0.64 0.58 0.57 0.92 0.71
1 0.25 0.19 0.22 0.32 0.14 0.20
2 0.44 0.32 0.37 0.71 0.46 0.56
3 0.37 0.47 0.41 0.78 0.73 0.76
4 0.56 0.54 0.55 0.89 0.73 0.80

Mean 0.43 0.44 0.43 0.61 0.62 0.59



with regression loss is 59.6%. The network trained using
regression loss clearly gives superior classification
performance. We suspect this is due to the fact that using
regression loss gives the network more information about the
ordinal relationship between the KL grades, allowing it to
converge on parameters that better generalize to unseen data.

IV. CONCLUSION AND FUTURE WORK

This paper investigated several new methods for automatic
quantification of knee OA severity using CNNs. The first step
in the process is to detect the knee joint region. We propose
training a linear SVM on horizontal image gradients as an
alternative to template matching, which is both more accurate
and faster than template matching.

Our initial approach to classifying the knee OA severity
used features extracted from pre-trained CNNs. We
investigated three pre-trained networks and found that the
BVLC reference CaffeNet and VGG-M-128 networks perform
best. A linear SVM trained on features from these networks
achieved significantly higher classification accuracy in
comparison to the previous state-of-the-art. The features from
pooling and convolutional layers were found to be more
accurate than the fully connected layers. Fine-tuning the
networks by replacing the top fully connected layer gave
further improvements in multi-class classification accuracy.

Previous studies have assessed their algorithms using binary
and multi-class classification metrics. We propose that it is
more suitable to treat KL grades as a continuous variable and
assess accuracy using mean squared error. This approach allows
the model to be trained using regression loss so that errors
are penalized in proportion to their severity, producing more
accurate predictions. This approach also has the nice property
that the predictions can fall between grades, which aligns with
a continuous disease progression.

Future work will focus on improving knee joint detection
accuracy using a CNN or region-based CNN instead of the
proposed linear model on Sobel gradients, and on further
improving assessment of knee OA severity. It is clear that the
distribution of images in ImageNet and those of knee
radiographs are very different. Given a large number of
training examples, it would be possible to train a model from
scratch on the knee OA images, which would likely be better
adapted to the domain. In the absence of a large number of
labeled examples, semi-supervised approaches such a ladder
networks [19] may prove more effective than the domain
adaptation approach used here. Currently, the detection of
knee joints, feature extraction, and classification/regression are
separate steps. Future work will also investigate an end-to-end
deep learning system by combining these steps.
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