
To appear in proceedings of the 23rd International Conference on Pattern Recognition (ICPR 2016), Cancun, Mexico, December 2016

LEARNING OPPOSITES USING NEURAL NETWORKS

Shivam Kalra†, Aditya Sriram†,Shahryar Rahnamayan‡, H.R. Tizhoosh†

† KIMIA Lab, University of Waterloo, Canada
‡ Elect., Comp. & Software Eng., University of Ontario Institute of Technology, Canada

ABSTRACT
Many research works have successfully extended algorithms
such as evolutionary algorithms, reinforcement agents and
neural networks using “opposition-based learning” (OBL).
Two types of the “opposites” have been defined in the lit-
erature, namely type-I and type-II. The former are linear in
nature and applicable to the variable space, hence easy to
calculate. On the other hand, type-II opposites capture the
“oppositeness” in the output space. In fact, type-I opposites
are considered a special case of type-II opposites where in-
puts and outputs have a linear relationship. However, in many
real-world problems, inputs and outputs do in fact exhibit
a nonlinear relationship. Therefore, type-II opposites are
expected to be better in capturing the sense of “opposition”
in terms of the input-output relation. In the absence of any
knowledge about the problem at hand, there seems to be no
intuitive way to calculate the type-II opposites. In this paper,
we introduce an approach to learn type-II opposites from
the given inputs and their outputs using the artificial neural
networks (ANNs). We first perform opposition mining on the
sample data, and then use the mined data to learn the relation-
ship between input x and its opposite x̆. We have validated
our algorithm using various benchmark functions to compare
it against an evolving fuzzy inference approach that has been
recently introduced. The results show the better performance
of a neural approach to learn the opposites. This will cre-
ate new possibilities for integrating oppositional schemes
within existing algorithms promising a potential increase in
convergence speed and/or accuracy.

1. INTRODUCTION

A large number of problems in engineering and science are
unapproachable with conventional schemes instead they are
handled with intelligent stochastic techniques such as evolu-
tionary, neural network, reinforcement and swarm-based al-
gorithms. However, essential parameter for the end users
of aforementioned intelligent algorithms is to yield the so-
lutions within desirable accuracy in timely manner – which
remains volatile and uncertain. Many heuristic methods exist
to speed up the convergence rate of stochastic algorithms to
enhance their viability for complex real-world problems. Op-
posite Based Computing (OBC) is one such heuristic method

introduced by Tizhoosh in [1]. The underlying idea is simul-
taneous consideration of guess and opposite guess, estimate
and opposite estimate, parameter and opposite parameter &
so on in order to make more educated decisions within the
stochastic processes, that eventually results in yielding solu-
tions quickly and accurately.

In essence, learning the relationship between an entity and
its opposite entity for a given problem is a special case of a-
priori knowledge, which can be beneficial for computation-
ally intelligent algorithms in stochastic setups. In context of
machine learning algorithm, one may ask, why should effort
be spent on extraction of the opposite relations when input-
output relationship itself is not well defined? However, vari-
ous research on this topic has shown that simultaneous anal-
ysis of entities and their opposites can accelerate the task in
focus – since it allows the algorithm to harness the knowledge
about symmetry in the solution domain thus allowing a better
exploration of the solutions. Opposition-based Differential
Evolution (ODE), however, seems to be the most successful
oppositional inspired algorithm so far [2].

There have been two types of opposites defined in liter-
ature 1) type-I and 2) type-II. Generally, most learning algo-
rithms have an objective function; mapping the relationship
between inputs and their outputs – which may be known or
unknown. In such scenario, type-I based learning algorithms
deal with the relationship among input parameters, based on
their values, without considering their relationship with the
objective landscape. On contrary, type-II opposite requires a
prior knowledge of the objective function. Until 2015, all pa-
pers published on using OBL employed the simple notion of
type-I opposites which are conveniently, but naively defined
on the input space only, making a latent linearity assumption
about the problem domain. Tizhoosh and Rahnamayan [3] in-
troduced the idea of “opposition mining” and evolving rules
to capture oppositeness in dynamic environments.

The paper is organized as follows: Section 2 provides a
literature review on OBL. Section 3 introduces the idea to use
artificial neural network (ANN) to learn the opposites, and
provides an overview of type-I and type-II OBL. Finally, Sec-
tion 5 provides experimental results and analysis and also a
comparison of the proposed ANN approach with the evolving
fuzzy inference systems, a method recently proposed in [3].

1

ar
X

iv
:1

60
9.

05
12

3v
1 

 [
cs

.L
G

] 
 1

6 
Se

p 
20

16



To appear in proceedings of the 23rd International Conference on Pattern Recognition (ICPR 2016), Cancun, Mexico, December 2016

2. BACKGROUND REVIEW

Roughly 10 years ago, the idea of opposition-based learning
(OBL) was introduced as a generic framework to improve
existing learning and optimization algorithms [1]. This ap-
proach has received a modest but growing attention by the
research community resulting in improving diverse optimiza-
tion and learning techniques published in several hundred pa-
pers [4]. A few algorithms have been reported to employ
“oppositeness” in their processing, including reinforcement
learning [5, 6, 7, 8], evolutionary algorithms [9, 10, 11, 12],
swarm-based methods [13, 14, 15], and neural networks [16,
17, 18].

The majority of learning algorithms are tailored toward
approximating functions by arbitrary setting weights, activa-
tion functions, and the number of neurons in the hidden layer.
The convergence would be significantly faster towards the
optimal solution if these random initializations are close to
the result [18]. On the contrary, if the initial estimates are
far from the optimal solution – in the opposite corner of the
search space, for instance, then convergence to the ideal solu-
tion will take considerably more time or can be left intractable
[19]. Hence, there is a need to look simultaneously for a can-
didate solution in both current and opposite directions to in-
crease the convergence speed – a learning mechanism denoted
as “opposition-based learning” [1]. The concept of OBL has
touched upon the various existing algorithm, and it has proven
to yield better results compared to the conventional method
of determining the optimal solution. A detailed survey on
applications of OBL in soft-computing is discussed by Al-
Quanaieer et al. in [4]. The paper discusses the integration of
OBL when used for reinforcement learning, neural networks,
optimization, fuzzy set theory and fuzzy c-mean clustering.
A review on each algorithm states that applying OBL can be
beneficial when applied in an effective manner when appli-
cations use optimization algorithm, learning algorithm, fuzzy
sets and image processing.

Many problems in optimization involve minimization or
maximization of some scalar parameterized objective func-
tion, with respect to all its parameters. For such problems,
OBL can be used as a heuristic technique to quickly converge
to the solution within the search space by generating the can-
didates solutions that have “opposite-correlation” instead of
being entirely random.

The concept of “opposite-correlation” can be discussed
from type-I and type-II perspectives when an unknown func-
tion y = f(x1, x2, . . . , xn) needs to be learned or optimized
by relying on some sample data alone.

Definition 1 Type-I opposite x̆I of input x is defined as x̆I =
xmax +xmin−x where xmax is the maximum and xmin is the
minimum value of x.

Computation of type-I opposites are easier due to its lin-
ear definition in the variable space. On the contrary, type-II

opposition scheme requires to operate on the output space.

Definition 2 Type-II opposite x̆II of input x is defined as
x̆II = {xi|y̆(xi) = ymin + ymax − y(xi)} where ymax is
the maximum value, and ymin is the minimum value of y.

Type-II opposites may be difficult to incorporate in real-
world problems because 1) their calculation may require a-
priori domain knowledge, and 2) the inverse of the function
y, namely y̆, is not available when we are dealing with un-
known functions y = f(x1, x2, . . . , xn). The focus of this
paper is to develop a general framework to allow ANNs to
learn the relationship among the inputs and their correspond-
ing type-II opposites. Validation of the proposed approach is
comprised of several benchmark functions. Validation results
on the benchmark functions demonstrate the effectiveness of
the proposed algorithm as an initial step for future develop-
ments in type-II OBL approximations using neural networks.

3. THE IDEA

Type-II (or true) opposite of x, denoted with x̆II , is more
intuitive when compared to type-I opposite in context of
“non-linear” functions. When looking at function y =
f(x1, x2, ..., xn) in a typical machine-learning setup, one
may receive the output values y for some input variables
x1, x2, . . . , xn. However, the function y = f(·) itself is usu-
ally unknown otherwise there would be little justification for
resorting to machine-learning tools. Instead, one has some
sort of evaluation function g(·) (error, reward, fitness, etc.)
that enables to assess the quality of any guess x̂1, x̂2, . . . , x̂n
delivering an estimate ŷ of the true/desired output y.

Tizhoosh and Rahnamayan introduced the idea of oppo-
sition mining as an approach to approximate type-II oppo-
sites for training the learning algorithms using fuzzy infer-
ence systems (FIS) with evolving rules in [3]. Evolving FIS
has received much attention lately [20, 21] which is now be-
ing used for modeling nonlinear dynamic systems [22] and
image classification and segmentation [23, 24, 25]. However,
learning opposites with evolving rules are observed to be sen-
sitive to the parameters used and encounters difficulty in gen-
eralizing a large variety of data. The proposed method in this
paper uses opposition mining for training artificial neural net-
work to approximate the relationship between the input x and
its type-II opposite x̆II . This methodology can, of course,
be extended for various applications; hence, if a large training
dataset is available, then one can apply them at once instead of
incremental changes. A graphical representation of the type-
II opposites, described in Definition 2, is shown in Fig. 1: 1)
Given variable x, 2) The corresponding f(x) is calculated,
3) from which the opposite of f(x), namely of(x) is deter-
mined, and 4) the opposite(s) of x are found to be: ox1, ox2
and ox3. However, there are various challenges using this ap-
proach, which include: 1) the output range of y = f(·) may
not be a-priori known, thereby an updated knowledge on the

2



To appear in proceedings of the 23rd International Conference on Pattern Recognition (ICPR 2016), Cancun, Mexico, December 2016

Fig. 1. Type-II opposites [Adopted from [3]].

output range of [ymin, ymax] is needed, 2) the precise output
of the type-II opposite may not be present in the given data;
thereby, a method to determine gaps in the dataset is needed
to estimate the relationship between the input and the output,
and 3) it is difficult to generalize over a high dimension/range
of data. In this paper, we put forward a concise algorithm to
learn opposites via neural networks – which, as outlined in
Section 5, is proven to yield better results when compared to
recently introduced FIS approach.

4. LEARNING OPPOSITES

Neural networks with sufficient number of hidden layers can
learn any bounded degree polynomials with good accuracy
[26]. Therefore, ANNs make a good candidate for learning
the nonlinear relationship between the inputs x and their type-
II opposites x̆II .

In order to learn type-II opposites, we first need to sample
the (quasi-)opposites from the given input-output data. The
first stage of our algorithm is opposition mining, which pro-
vides the data that can be subsequently used by ANN for per-
forming a nonlinear regression. One generally assumes that
the more data is available the better the approximation be-
comes for x̆II = f(x) as we have more (quasi-)opposites for
training the ANN. We assume that the range of input vari-
able is known, xi ∈ [ximin, x

i
max] but the range of output,

yj ∈ [yjmin, y
j
max], may be apriori unknown. Since we

are approximating type-II opposites, we need to generate the
(quasi-)opposite data from given training data. Our approach
consists of two distinct stages:
Opposition Mining – The training data is sampled to estab-
lish the output boundaries. Depending on a specific opposite-
ness scheme, all data points in training data are processed to
find (quasi-)opposites of each input. At the end of the op-
posite mining, we have a corresponding (quasi-)opposite (ap-
proximate of type-II opposite) for every input point in training
data as outlined in Algorithm 1. There are different schemes
for calculating the opposition. Given a sample of random
variable x ∈ [xmin, xmax] with mean x̄, the opposite of x

Algorithm 1 Opposition Mining
Input: x inputs, y outputs & Ti opposition scheme
Output: type-II opposites x̆II in same order as input x

1: procedure OPPOSITION MINING(x, y, Ti)
2: ymax ← max(y)
3: ymin ← min(y)
4: ȳ ← mean(y)
5: for i ∈ [1, length(y)] do
6: yI ← y(i)

. Choosing opposition scheme based on value of Ti

7: if Ti = 0 then
8: oppY ← ymax + ymin − yi
9: else if TI = 1 then

10: oppY ←
(
yI + ymax+ymin

2

)
%ymax

11: else
12: oppY ← 2ȳ − yi
13: end if

. In case oppY goes out of boundary range
14: if oppY /∈ [ymax, ymin] then
15: oppY ← ymax + ymin − yi
16: end if

. Getting index of element in y closest to oppY
17: oppYidx ← argmin(|y − oppY |)
18: x̆II(i)← x(oppYidx)
19: end for

return x̆II

20: end procedure

can be calculated as follows:

T1 : x̆I = zmax + xmin − x (1)

T2 : x̆I =

(
x+

xmin + xmax

2

)
% xmax (2)

T3 : x̆I = 2x̄− x (3)

In scheme T3, calculated opposite x̆I may go out of the
boundaries of the variable range. Therefore, for the experi-
ments purposes, we solved the boundary violation problem
by switching the scheme to T1 whenever necessary (Algo-
rithm 1, Line 14). It is important to note that, opposites
calculated with any of the above schemes in output space
when projected back on to the variable space are known as
type-II (true) opposites.

Learning the Opposites – ANN is employed to approxi-
mate the function x̆II = f(x) that maps input and its type-II
opposite. The network is trained on the data collected from
the opposition mining step, and can be retrained progressively
as more data comes in or it can be used to predict the type-
II opposites for a given input x. In the following sections,
we report the results of some experiments to verify the accu-
racy of our algorithm, its superiority over existing FIS based
technique and some discussion on the usefulness of type-II
opposites for machine-learning algorithms.

3



To appear in proceedings of the 23rd International Conference on Pattern Recognition (ICPR 2016), Cancun, Mexico, December 2016

5. EXPERIMENTS AND RESULTS

We have performed two experiment series to test the various
aspects of our algorithm including – opposition mining, learn-
ing type-II using ANN and prediction accuracy of the trained
ANN model versus evolving fuzzy rules model. The experi-
ments deal with the approximation accuracy of type-II oppo-
sites and application of type-II opposites for some standard
optimization scenarios respectively. For comparing the ap-
proximation accuracy, we used the 8 benchmark functions for
generating the data required for the opposition-mining and
subsequent training of ANN and evolving fuzzy rules mod-
els; which are taken from [3]. It is important to note that,
benchmarks function have been intentionally kept simple and
mostly monotonic in defined ranges, in order avoid the sur-
jective relationship of inputs and their (quasi-)opposites dur-
ing the opposition mining stage, thus allowing to extract the
most feasible patterns in the data to be used with learning al-
gorithms. However, in order to learn the type-II opposites
across any general non-monotonic functions, it would be re-
quired to decompose the function in question into monotonic
piece-wise ranges and subsequently perform the type-II ap-
proximation procedure on each of the piece separately. We
calculated the approximation error of our algorithm for every
benchmark function against different oppositeness schemes.
We compared the results against the recently published ones
by approximating type-II using evolving fuzzy rules [3].

5.1. Comparing with Evolving Fuzzy Rules

The results for 8 benchmark functions (used in [3]) are sum-
marized in Table 1. Green cells represent the performance of
ANN is statistically significant with 95% confidence (unless
otherwise stated), whereas red cells show the significance of
evolving fuzzy rules based approach for the respective oppo-
sition scheme. Cells marked gray represent the best results
achieved using any deployed method or opposition scheme
for a given benchmark function. The error in approximation
of the type-II opposite x̆∗II is inferred by comparing the value
of the function at approximated opposite xII and true oppo-
site value of the function y̆∗II at given input x. It is impor-
tant to note that y̆∗II can be calculated if input x, opposition
scheme Ti and function f are known:

error(x̆II) ∝ error(y̆II) = | ˘yII
∗ − f(x̆II)| (4)

The results are reported in Table 1. Overall T1 seems to be
the best oppositeness scheme. As long as ymax, ymin does
not change for the given sample data, T1 and T2 schemes al-
low continuous training of ANN. The approximation seems
to perform better overall except for the linear functions and
functions with square root power. The ANN approach seems
to generalize much better for the logarithm function at higher
values of x where output changes much slower than change
in x.

5.2. Optimization Problems

In this experiment, we test three standard optimization func-
tions which are commonly used in literature of global opti-
mization – Ackely, Bulkin and Booth functions [3].

Ackley Function – The Ackley function is given by

f(x1, x2) = 20

(
1− exp

(
−0.2

√
0.5(x21 + x22)

))
−

exp
(
0.5 ∗ (cos(2πx1) + cos(2πx2))

)
+ exp(1)

The global minimum is 0 at (3, 0.5) with x1, x2 ∈ [−35, 35].
Bulkin Function – The Bulkin function is given by

f(x1, x2) = 100
√
||x2 − 0.01x21||+ 0.01||x1 + 10||

The global minimum is 0 at (−10, 0) with x1 ∈ [−15,−5]
and x2 ∈ [−3, 3].

Booth Function – The Booth function is given by

f(x1, x2) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

The global minimum is 0 at (1, 3) such that x1, X2 ∈
[−10, 10].

We train ANN and evolving fuzzy rules method for type-II
opposites using ns = 1000 samples from each of the bench-
mark function. This experiment enables to verify three majors
points: 1.) test whether the fundamental statement of OBL
holds, namely that – simultaneous consideration of a guess
and opposite guess provides faster convergence to the solu-
tion in learning and optimization processes, 2.) test whether
type-II opposites provides any advantage over type-I, and 3.)
test if ANN based type-II approximation provides any superi-
ority over recently introduced evolving fuzzy rule approach.

To conduct this experiment, we generate two random in-
put samples xr1 and xr2 and we calculate the error (distance
from the global minimum). Then, we approximate the op-
posites x̆r1 and x̆r2 and calculate the error again. In order to
find the solution, we chose the strategy that yields less er-
ror and continues the process. We should expect to have a
reduction or no change in error at every iteration since we de-
liberately choose the outcome with the least error. We carry
out the experiment for both type-I x̆rI and type-II opposites
x̆rII generated by each of the candidate methods. By record-
ing the average error after 0.1∗ns iterations for multiple runs
of the experiments, we can test whether considering type-II
opposite from either of the candidate methods have any sta-
tistical significance over type-I in yielding outcome closer to
the global minimum. However, the focus is more on compar-
ing the two candidate approaches for approximating type-II
(proposed and evolving fuzzy rule-based), to see which one
provides better estimates of type-II to bring the optimization
process closer to the global optima. The results for Ack-
ley, Booth, and Bulkin functions are shown in Table 2. The

4



To appear in proceedings of the 23rd International Conference on Pattern Recognition (ICPR 2016), Cancun, Mexico, December 2016

Table 1. Comparison between error in approximation of type-II opposite using trained ANN mode versus evolving fuzzy rules.
Benchmark Function Opposition

Scheme Proposed Approach (µ ± σ) Fuzzy based Approach (µ ± σ) p-value Welch’s Test Results

f(x) = (2x + 8)3
T1 0.76 ± 0.85 4.41 ± 2.44 0.0005 Proposed approach
T2 9.53 ± 12.99 11.96 ± 12.82 0.3398 Not significant
T3 4.65 ± 9.95 6.82 ± 10.62 0.3214 Not significant

f(x) = log(x + 3)
T1 18.95 ± 18.00 30.05 ± 20.87 0.11 Proposed approach≈ 80%

confidence
T2 10.02 ± 15.73 11.20 ± 18.48 0.4398 Not significant
T3 2.98 ± 9.85 6.39 ± 7.87 0.2020 Not significant

f(x) = 2 ∗ x
T1 0.19 ± 0.26 0.01 ± 0.01 0.9693 Fuzzy approach
T2 6.24 ± 11.08 21.03 ± 14.31 0.0091 Proposed approach
T3 0.30 ± 0.58 0.25 ± 0.65 5759 Not significant

f(x) = x2
T1 0.49 ± 0.55 3.04 ± 1.72 0.0005 Proposed approach
T2 8.46 ± 12.56 15.02 ± 14.31 0.1456 Not significant
T3 3.61 ± 7.98 4.41 ± 6.38 0.4039 Not significant

f(x) =
√
x

T1 0.60 ± 1.15 0.04 ± 0.13 0.9188 Fuzzy approach
T2 2.91 ± 7.68 18.99 ± 16.33 0.0074 Proposed approach
T3 2.70 ± 5.91 3.74 ± 4.22 0.3287 Not significant

f(x) = x3/2
T1 0.37 ± 0.31 1.68 ± 1.03 0.0014 Proposed approach
T2 5.16 ± 10.52 17.89 ± 14.92 0.0212 Proposed approach
T3 2.15 ± 4.27 2.66 ± 4.12 0.4022 Not significant

f(x) = x3 + x2 + 1

T1 1.36 ± 2.84 4.42 ± 2.72 0.0122 Proposed approach
T2 9.84 ± 12.57 11.82 ± 12.95 0.3656 Not significant
T3 5.13 ± 10.79 6.31 ± 9.99 0.4022 Not significant

f(x) =

√
x+1
3

T1 1.63 ± 3.50 0.06 ± 0.11 0.9061 Fuzzy approach
T2 4.27 ± 8.17 18.20 ± 16.79 0.0173 Proposed approach
T3 2.11 ± 5.15 3.74 ± 4.61 0.2332 Not significant

Table 2. Errors values for Ackely, Booth and Bulkin test functions.
Runs xr1 , xr2 xr1,II,ANN , xr2,II,ANN xr1,II,FIS , xr2,II,FIS xr1,I , xr2,I

Ackley Function
1. run 487.70± 516.362 108.00± 139.03 117.43± 150.53 198.91± 222.677
2. run 377.43± 455.85 108.65± 136.91 116.62± 138.02 155.24± 187.24
3. run 512.31± 529.517 156.66± 162.61 143.05± 153.73 238.00± 246.19
4. run 374.87± 388.63 124.20± 124.50 123.83± 134.19 154.55± 139.38
5. run 415.84± 465.70 146.94± 157.14 128.90± 145.57 175.28± 218.05

Booth Function
1. run 424.53± 502.66 302.66± 274.64 337.39± 304.37 183.97± 197.39
2. run 420.03± 443.28 303.23± 318.19 330.74± 328.68 191.13± 166.01
3. run 391.28± 445.53 318.19± 276.40 328.68± 280.56 166.01± 195.55
4. run 338.94± 406.02 292.60± 290.77 123.83± 295.41 154.55± 174.13
5. run 430.72± 496.36 323.67± 286.38 338.95± 289.79 187.19± 211.87

Bulkin Function
1. run 120.40± 41.00 47.26± 18.99 63.89± 24.04 101.21± 38.46
2. run 119.20± 50.42 53.78± 15.48 68.58± 26.75 97.11± 42.71
3. run 126.78± 45.16 43.09± 17.24 72.83± 29.55 103.427± 38.58
4. run 118.39± 47.31 49.17± 20.12 64.02± 30.43 94.27± 39.96
5. run 128.58± 44.49 48.23± 20.96 66.43± 30.63 100.40± 38.16

first column consists of random guesses, the second column
contains type-II opposite guesses estimated by ANN, and the
third column contains type-II opposite guesses using the FIS
approach; the last column is type-I opposites. By performing
the t-test, results of type-II opposites obtained by ANN are
statistically significant compared to the FIS approach. Type-
II is performing better except for the Booth function.

6. CONCLUSION

Ten years since the introduction of opposition-based learning,
the full potential of type-II opposites is still largely unknown.
In this paper, we put forward a method for learning type-II
opposites with ANNs. The core idea in this paper is to utilize
the (quasi-)opposite data collected from opposition-mining to
learn the relationship between input x and its type-II opposite
x̆II using neural networks. We tested the proposed algo-
rithms with various benchmark functions and compared it
against the existing fuzzy rules-based approach. We showed
the correctness of fundamental statement of OBL scheme
by utilizing type-II opposites on three of the famous global
optimization problems. One of the major hurdles for exist-
ing type-II approximation methods (including proposed in

this paper) is when the function in question is highly non-
monotonic or periodic in nature. In those circumstances, the
relationship between x and x̆II becomes surjective, causing
discontinuities in opposition mining. This makes it difficult
for any learning algorithm difficult to fit such discontinuous
data. There is a potential for improvement in future works
where non-monotonic functions can be decomposed into
monotonic piece-wise intervals; each of the intervals can then
be trained separately.

7. REFERENCES

[1] H. R. Tizhoosh, “Opposition-based learning: a new
scheme for machine intelligence,” in null. IEEE, 2005,
pp. 695–701.

[2] S. Rahnamayan, H. R. Tizhoosh, and M. Salama,
“Opposition-based differential evolution,” Evolutionary
Computation, IEEE Transactions on, vol. 12, no. 1, pp.
64–79, 2008.

[3] H. R. Tizhoosh and S. Rahnamayan, “Learning oppo-
sites with evolving rules,” in Fuzzy Systems (FUZZ-

5



To appear in proceedings of the 23rd International Conference on Pattern Recognition (ICPR 2016), Cancun, Mexico, December 2016

IEEE), 2015 IEEE International Conference on. IEEE,
2015, pp. 1–8.

[4] F. S. Al-Qunaieer, H. R. Tizhoosh, and S. Rahnamayan,
“Opposition based computinga survey,” in Neural Net-
works (IJCNN), The 2010 International Joint Confer-
ence on. IEEE, 2010, pp. 1–7.

[5] H. R. Tizhoosh, “Reinforcement learning based on ac-
tions and opposite actions,” in Int. Conf. on Artificial
Intelligence and Machine Learning, 2005, p. 9498.

[6] M. Mahootchi, H. Tizhoosh, and K. Ponnambalam,
“Opposition-based reinforcement learning in the man-
agement of water resources,” in Approximate Dynamic
Programming and Reinforcement Learning, 2007. AD-
PRL 2007. IEEE International Symposium on. IEEE,
2007, pp. 217–224.

[7] H. R. Tizhoosh, “Opposition-based reinforcement learn-
ing,” JACIII, vol. 10, no. 4, pp. 578–585, 2006.

[8] M. Mahootchi, H. R. Tizhoosh, and K. Ponnambalam,
“Oppositional extension of reinforcement learning tech-
niques,” Information Sciences, vol. 275, pp. 101–114,
2014.

[9] S. Rahnamayan, H. R. Tizhoosh, and M. Salama,
“Opposition-based differential evolution algorithms,”
in Evolutionary Computation, 2006. CEC 2006. IEEE
Congress on. IEEE, 2006, pp. 2010–2017.

[10] H. Salehinejad, S. Rahnamayan, and H. R. Tizhoosh,
“Type-ii opposition-based differential evolution,” in
Evolutionary Computation (CEC), 2014 IEEE Congress
on. IEEE, 2014, pp. 1768–1775.

[11] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama,
“A novel population initialization method for accelerat-
ing evolutionary algorithms,” Computers & Mathemat-
ics with Applications, vol. 53(10), pp. 1605–1614, 2007.

[12] S. Rahnamayan and H. R. Tizhoosh, “Image threshold-
ing using micro opposition-based differential evolution
(micro-ode),” in IEEE World Congress on Computa-
tional Intelligence Evolutionary Computation, 2008, pp.
1409–1416.

[13] C. Zhang, Z. Ni, Z. Wu, and L. Gu, “A novel swarm
model with quasi-oppositional particle,” in Information
Technology and Applications, 2009. IFITA’09. Interna-
tional Forum on, vol. 1, 2009, pp. 325–330.

[14] H. Jabeen, Z. Jalil, and A. R. Baig, “Opposition based
initialization in particle swarm optimization (o-pso),” in
Proceedings of the 11th Annual Conference Companion
on Genetic and Evolutionary Computation Conference:
Late Breaking Papers, 2009, pp. 2047–2052.

[15] M. Kaucic, “A multi-start opposition-based particle
swarm optimization algorithm with adaptive velocity
for bound constrained global optimization,” Journal of
Global Optimization, vol. 55(1), pp. 165–188, 2013.

[16] M. Rashid and A. R. Baig, “Improved opposition-based
pso for feedforward neural network training,” in Infor-
mation Science and Applications (ICISA), International
Conference on, 2010, pp. 1–6.

[17] M. Yaghini, M. M. Khoshraftar, and M. Fallahi,
“Hiopga: a new hybrid metaheuristic algorithm to train
feedforward neural networks for prediction,” in Pro-
ceedings of the International Conference on Data Min-
ing, 2011, pp. 18–21.

[18] Q. Xu, L. Wang, N. Wang, X. Hei, and L. Zhao,
“A review of opposition-based learning from 2005 to
2012,” Engineering Applications of Artificial Intelli-
gence, vol. 29, pp. 1–12, 2014.

[19] M. Ventresca and H. R. Tizhoosh, “A diversity maintain-
ing population-based incremental learning algorithm,”
Information Sciences, vol. 178(21), pp. 4038–4056,
2008.

[20] P. Angelov, E. Lughofer, and X. Zhou, “Evolving fuzzy
classifiers using different model architectures,” Fuzzy
Sets and Systems, vol. 159(23), pp. 3160–3182, 2008.

[21] P. P. Angelov and X. Zhou, “Evolving fuzzy-rule-based
classifiers from data streams,” Fuzzy Systems, IEEE
Transactions on, vol. 16, no. 6, pp. 1462–1475, 2008.

[22] J.-C. de Barros and A. L. Dexter, “On-line identification
of computationally undemanding evolving fuzzy mod-
els,” Fuzzy sets and systems, vol. 158(18), pp. 1997–
2012, 2007.

[23] E. Lughofer, “On-line evolving image classifiers and
their application to surface inspection,” Image and Vi-
sion Computing, vol. 28(7), pp. 1065–1079, 2010.

[24] A. A. Othman and H. R. Tizhoosh, “Evolving fuzzy
image segmentation,” in Fuzzy Systems, IEEE Interna-
tional Conference on, 2011, pp. 1603–1609.

[25] A. A. Othman, H. R. Tizhoosh, and F. Khalvati, “Efi-
sevolving fuzzy image segmentation,” Fuzzy Systems,
IEEE Transactions on, vol. 22(1), pp. 72–82, 2014.

[26] A. Andoni, R. Panigrahy, G. Valiant, and L. Zhang,
“Learning polynomials with neural networks,” in Pro-
ceedings of the 31st International Conference on Ma-
chine Learning (ICML-14), 2014, pp. 1908–1916.

6


	1  Introduction
	2  Background Review
	3  The Idea
	4  Learning Opposites
	5  Experiments and Results
	5.1  Comparing with Evolving Fuzzy Rules
	5.2  Optimization Problems

	6  Conclusion
	7  References

