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ABSTRACT
We introduce Deep Sparse-coded Network (DSN), a deep ar-
chitecture based on sparse coding and dictionary learning.
Key advantage of our approach is two-fold. By interlacing
max pooling with sparse coding layer, we achieve nonlin-
ear activation analogous to neural networks, but suffering
less from diminished gradients. We use a novel backpropaga-
tion algorithm to finetune our DSN beyond the pretraining
by layer-by-layer sparse coding and dictionary learning. We
build an experimental 4-layer DSN with the `1-regularized
LARS and greedy-`0 OMP and demonstrate superior per-
formance over deep stacked autoencoder on CIFAR-10.

1. MOTIVATION
Representational power of single-layer feature learning is

limited for tasks that involve large complex data objects such
as a high-resolution image of human face. Best current prac-
tices in visual recognition use deep architectures based on
autoencoder [1], restricted Boltzmann machine (RBM) [2],
and convolutional neural network (CNN) [3]. A deep archi-
tecture stacks two or more layers of feature learning units in
the hope of discovering hierarchical representations for data.
In other words, deep architectures allow us to understand a
feature at each layer using the features of the layer below.
Such hierarchical decomposition is particularly useful when
we cannot resolve ambiguity of the low-level (or localized)
features of data. Another benefit of using deep architectures
is representational efficiency. Deep architectures can achieve
compaction of all characteristic features for the entire image,
book, or lengthy multimedia clip to a single vector.

In an empirical analysis by Coates, Lee and Ng [4], sparse
coding is found superior to RBM, deep neural network, and
CNN for classification tasks on the CIFAR-10 and NORB
datasets. We have also been able to draw a similar conclu-
sion from our experiments with sparse coding. With these
in mind, it is sound to build a deep architecture on sparse
coding. Unfortunately, it is much more than just stacking
sparse coding units together. From sparse coding research
on hierarchical feature learning [5,6], we could deduce plau-
sible explanations for the difficulty. First, sparse coding (in
particular, the `1-regularized LASSO or LARS) is compu-
tationally expensive for multilayering and associated opti-
mizations. From our experience, it indeed is quite cumber-
some and challenging to simply connect multiple sparse cod-
ing units and run data as a feedforward network. Secondly,
sparse coding makes an inherent assumption on the input
being non-sparse. This makes a straightforward adoption to
take the output from one sparse coding unit for an input to

another flawed. Lastly, it is difficult to optimize all layers of
sparse coding jointly. One consensual notion of deep learn-
ing suggests layer-by-layer unsupervised pretraining should
be followed by supervised finetuning of the whole system,
which is commonly done by backpropagation.

In this paper, we present a deep architecture for sparse
coding as a principled extension from its single-layer coun-
terpart. We build on both the `1-regularized and greedy-`0
sparse coding. Using max pooling as nonlinear activation
analogous to neural networks, we avoid linear cascade of dic-
tionaries and keep the effect of multilayering in tact. This
architectural usage will remedy the problem of too many
feature vectors by aggregating them to their maximum ele-
ments and help preserve translational invariance of higher-
layer representations. Beyond the layer-by-layer pretraining,
we propose a novel backpropagation algorithm that can fur-
ther optimize our performance.

Rest of this paper is organized as follows. In Section 2, we
provide background on sparse coding. Section 3 will intro-
duce Deep Sparse-coded Network (DSN), explain its archi-
tectural principles, and discuss training algorithms. In Sec-
tion 4, we present an empirical evaluation of DSN, and Sec-
tion 5 concludes the paper.

2. SPARSE CODING BACKGROUND
Sparse coding is a general class of unsupervised meth-

ods to learn efficient representations of data as a linear
combination of basis vectors in a dictionary. Given an in-
put (patch) x ∈ RN drawn from the raw data and dic-
tionary DN×K , sparse coding searches for a representation
(i.e., sparse code) y ∈ RK in the `1-regularized optimiza-
tion miny ‖x−Dy‖22 + λ‖y‖1, known as LASSO or LARS.
Greedy-`0 matching pursuit such as OMP is an alternative
method for sparse coding in miny ‖x−Dy‖22 s.t. ‖y‖0 ≤ S.

Dictionary learning is essential for sparse coding. During
unsupervised feature learning, we perform sparse coding on
unlabeled training examples by holding D constant. After
sparse coding finishes, dictionary updates follow. They will
alternate until convergence. Sparse coding can be thought
as a generalization of K-means clustering that hard-assigns
each training example to one cluster. Sparse coding can also
be thought as less stringent, purely data-driven version of
Gaussian mixture models.

3. DEEP SPARSE-CODED NETWORK (DSN)

3.1 Architectural Overview
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Figure 1: Deep Sparse-coded Network (DSN) with four layers
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Figure 2: DSN layering module

Deep Sparse-coded Network (DSN) is a feedforward net-
work built on multilayer sparse coding. We present a 4-layer
DSN in Figure 1. This is a deep architecture because there
are two hidden layers of sparse coding, each of which can
learn corresponding level’s feature representations by train-
ing own dictionary. Similar to neural network, layers 1 and
4 are the input and output layers. The input layer takes in
vectorized patches drawn from the raw data that are sparse
coded and max pooled, propagating up the layers. Unlike
convolutional neural network, we do not count pooling units
as a separate layer. The output layer consists of classifiers
or regressors specific to application needs.

Figure 2 depicts a stackable layering module to build DSN.
Sparse coding and pooling units together constitute the mod-
ule. The Jth hidden layer (for J ≥ II) takes in pooled sparse
codes zJ−1’s from the previous hidden layer and produces yJ

using dictionary DJ . Max pooling yJ ’s yields pooled sparse
code zJ that are passed as the input for hidden layer J + 1.

3.2 Algorithms
Hinton et al. [7] suggested pretrain a deep architecture

with layer-by-layer unsupervised learning and finetune via
backpropagation, a supervised training algorithm popular-
ized by neural network. We explain training algorithms for
DSN using the example architecture in Figure 1.

3.2.1 Pretraining with layer-by-layer sparse coding
and dictionary learning

DSN takes in spatially consecutive patches from an im-
age or temporally consecutive patches from time-series data
to make the overall feature learning meaningful. Optionally,
patches are preprocessed by normalization and whitening.
The input layer is organized as pooling groups ofM1 patches:
{x(1),x(2), . . . ,x(M1)}, {x(M1+1),x(M1+2), . . . ,x(2M1)}, · · · .
Sparse coding and dictionary learning at hidden layer 1 com-

pute sparse codes y
(i)
I ’s while learning DI jointly

{x(1), . . . ,x(M1)} DI−→ {y(1)
I , . . . ,y

(M1)
I }

{x(M1+1), . . . ,x(2M1)} DI−→ {y(M1+1)
I , . . . ,y

(2M1)
I }

...

Max pooling at hidden layer 1 follows

{y(1)
I , . . . ,y

(M1)
I } max pool−→ z

(1)
I

...

Hidden layer 1 passes the pooled sparse codes {z(1)I , z
(2)
I , . . . }

to hidden layer 2. Sparse coding and dictionary learning con-
tinue at hidden layer 2 using zI’s as input

{z(1)I , . . . , z
(M2)
I } DII−→ {y(1)

II , . . . ,y
(M2)
II }

...

Pooling groups at hidden layer 2 consist of M2 pooled sparse
codes from hidden layer 1. Max pooling by M2 yields

{y(1)
II , . . . ,y

(M2)
II } max pool−→ z

(1)
II

...

Pretraining completes by producing dictionaries {DI ∈ RN×K1 ,
DII ∈ RK1×K2} and the highest hidden layer’s pooled sparse

codes {z(1)II , z
(2)
II , . . . } with each z

(j)
II ∈ RK2 .

Max pooling is crucial for our DSN architecture. It sub-
samples sparse codes to their max elements. More impor-
tantly, max pooling serves as nonlinear activation function
in neural network. Without nonlinear pooling, multilayer-
ing has no effect: x = DIyI and yI = DIIyII implies x =
DIDIIyII ≈ DyII because linear cascade of dictionaries is
simply D ≈ DIDII regardless of total number of layers.

3.2.2 Training classifiers at output layer
DSN learns each layer’s dictionary greedily during pre-

training. The resulting highest hidden layer output zII is
already a powerful feature for classification tasks. Suppose
DSN output layer predicts a class label l̂ = hw(φ), where
hw(.) is a standard linear classifier or logistic regression that
takes a feature encoding φ as input. Note that φ is encoded
on zII, but depends on DSN setup. For instance, we may

have φ = [z
(1)
II z

(2)
II z

(3)
II z

(4)
II ]> if the highest hidden layer

yields four pooled sparse codes per training example.
For simplicity, we assume φ = zII. DSN classifier then

computes l̂ = hw(zII) = w>· zII + w0. We train the clas-
sifier weight w = [w0 w1 . . . wK2 ]> using labeled exam-
ples {(X1, l1), . . . , (Xm, lm)} in a supervised process by fill-
ing the input layer with patches from each example—Xi =

{x(1)
i ,x

(2)
i , . . . , } where x

(k)
i is the kth patch from ith exam-

ple Xi—and working up the layers to compute zII’s.

3.2.3 Backpropagation
By now, we have the DSN output layer with trained clas-

sifiers, and this is a good working pipeline for discriminative
tasks. However, we might further improve the performance
of DSN by optimizing the whole network in a supervised
setting. Is backpropagation possible for DSN?
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Figure 3: Putback corrects sparse codes y from z∗

DSN backpropagation is quite different from conventional
neural network or deep learning architectures. We explain
our algorithm again using the DSN example in Figure 1.
The complete feedforward path of DSN is summarized by

x
DI−→ yI

max pool−→ zI
DII−→ yII

max pool−→ zII
classify−→ l̂

We define the loss or cost function for the DSN classification

J(zII) =
1

2

∥∥∥l̂ − l∥∥∥2

=
1

2
‖hw(zII)− l‖2 (1)

Our objective now is to propagate the loss value down the re-
verse path and adjust sparse codes. Fixing classifier weights
w, we back-estimate optimal z∗II that minimizes J(zII). To
do so, we perform gradient descent learning with J(zII) that
adjusts each element of vector zII by

zII,k = zII,k − α
∂J(zII)

∂zII,k
(2)

where zII = [zII,1 zII,2 . . . zII,K2 ]>, and K2 is the number
of basis vectors in dictionary DII for hidden layer 2. Since
an optimal z∗II is estimated by correcting zII, the partial
derivative is with respect to each element zII,k

∂J(zII)

∂zII,k
= [hw(zII)− l)]

∂h(zII)

∂zII,k
= [hw(zII)− l]wk

Here, note our linear classifier hw(zII) = w0 + w1 · zII,1 +
· · ·+ wK2 · zII,K2 . Therefore, the following gradient descent
rule adjusts zII and obtain z∗II

zII,k := zII,k + α [l − hw(zII)]wk (3)

where α is the learning rate. This update rule is intuitive
because it down-propagates the error [l − hw(zII)] propor-
tionately to the contribution from each zII,k and adjusts ac-
cordingly.

Using the corrected z∗II, we can correct the unpooled origi-
nal yII’s to optimal y∗II’s by a procedure called putback illus-
trated in Figure 3. At hidden layer 2, we have performed max
pooling by M2. For putback, we need to keep the original
M2 yII’s that have resulted zII in memory so that corrected
values at z∗II are put back to corresponding locations at the
original sparse codes yII’s and yield y∗II’s.

With y∗II, going down a layer is straightforward. By sparse
coding relation, we just compute z∗I = DIIy

∗
II. Next, we do

another putback at hidden layer 1. Using z∗I , we obtain y∗I ’s.
Each pooling group at hidden layer 1 originally has M1 yI’s
that need to be saved in memory.

With y∗I ’s, we should correct DI, not x, because it does not
make sense to correct data input. Hence, down-propagation

Algorithm 1 DSN backpropagation

require Pretrained {DI,DII, . . . ,DL−2} and classifier hw

input Labeled training examples {(X1, l1), . . . , (Xm, lm)}
output Fine-tuned {D∗I ,D

∗
II, . . . ,D

∗
L−2} and classifier h∗w

1: repeat
2: subalgorithm Down-propagation
3: for J := L− 2 to I
4: if J == L− 2

5: Compute classifier error ε(i) = l(i) − hw(z
(i)
L−2) ∀i

6: Compute z
∗(i)
L−2 by z

(i)
L−2,k=z

(i)
L−2,k+α·ε(i) ·wk ∀i, k

7: Estimate y
∗(i)
L−2 from z

∗(i)
L−2 via putback ∀i

8: else
9: Compute z

∗(i)
J = DJ+1y

∗(i)
J+1 ∀i

10: Estimate y
∗(i)
J from z

∗(i)
J via putback ∀i

11: end
12: end
13: end
14: subalgorithm Up-propagation
15: for J := I to L− 2
16: if J == I
17: Compute D∗I by Eq. (6)

18: Compute y
†(i)
I by sparse coding with D∗I ∀i

19: Compute z
†(i)
I by max pooling ∀i

20: else
21: Compute D∗J by Eq. (7)

22: Compute y
†(i)
J by sparse coding with D∗J ∀i

23: Compute z
†(i)
J by max pooling ∀i

24: end
25: end
26: Retrain classifier hw with {z†(i)L−2, l

(i)} ∀i
27: end
28: until converged

of the error for DSN stops here, and we up-propagate cor-
rected sparse codes to finetune the dictionaries and classifier
weights. The loss function with respect to DI is

J(DI) =
1

2
‖DIy

∗
I − x‖22 (4)

Adjusting DI requires to solve the following optimization
problem given examples (x,y∗I )

min
dI,k

J(DI) s.t. ‖dI,k‖22 = 1 ∀k (5)

where dI,k is the kth basis vector in DI. Taking the partial
derivative with respect to dI,k yields

∂J(DI)

∂dI,k
= (DIy

∗
I − x)

[
y∗I,k − yI,k

]
where y∗I =

[
y∗I,1 . . . y∗I,K1

]>
and yI = [yI,1 . . . yI,K1 ]>. We

obtain the update rule to adjust DI by gradient descent

dI,k := dI,k − β(DIy
∗
I − x)

[
y∗I,k − yI,k

]
(6)

We denote the corrected dictionary D∗I . We redo sparse cod-
ing at hidden layer 1 with D∗I followed by max pooling. Sim-
ilarly at hidden layer 2, we update DII to D∗II by

dII,k := dII,k − γ(DIIy
∗
II − z†I )

[
y∗II,k − yII,k

]
(7)

where z†I is the pooled sparse code over M1 y†I ’s from sparse
coding redone with D∗I . Using corrected dictionary D∗II, we
also redo sparse coding and max pooling at hidden layer 2.
The resulting pooled sparse codes z†II are the output of the
highest hidden layer, which will be used to retrain the classi-
fier hw. All of the steps just described are a single iteration
of DSN backpropagation. We run multiple iterations until
convergence.



Table 1: Average 1-vs-all classification accuracy comparison

Classification accuracy

Deep SAE (pretraining only) 71.8%
Deep SAE (pretraining+backprop) 78.9%
DSN-OMP (pretraining only) 79.6%
DSN-OMP (pretraining+backprop) 84.3%
DSN-LARS (pretraining only) 83.1%
DSN-LARS (pretraining+backprop) 87.5%

The corrections made during down-propagation for DSN
backpropagation are summarized

zII
GD−→ z∗II

putback−→ y∗II
DII−→ z∗I

putback−→ y∗I

The corrections by up-propagation follow

DI
GD−→ D

∗
I

SC−→ y
†
I

max pool−→ z
†
I

GD−→ D
∗
II

SC−→ y
†
II

max pool−→ z
†
II

GD−→ hw

where GD stands for gradient descent, and SC sparse coding.
We present the backpropagation algorithm for general L-
layer DSN in Algorithm 1.

4. EXPERIMENTAL RESULTS
We evaluate the classification performance of a 4-layer

DSN using CIFAR-10.

4.1 Sparse coding setup
We denote different configurations of LARS and OMP by

LARS-λ and OMP-ρ where ρ = S
K
× 100 (%). We configure

hidden layer 1 sparse coding with more dense LARS-0.1 and
OMP-20. For hidden layer 2, we use LARS-0.2 and OMP-10.

4.2 Data processing and training
Instead of using the full CIFAR-10 dataset, we uniformly

sample 20,000 images and cut to four folds for cross vali-
dation. We use three folds for training and the remaining
fold for testing. We have enforced the same number of im-
ages per class. For output layer, we have trained a 1-vs-all
linear classifiers for each of ten classes in CIFAR-10. Each
datum in CIFAR-10 is a 3×32×32 color image. We con-
sider a per-image feature vector from densely overlapping
patches drawn from a receptive field with width w = 6 pix-
els and stride s = 2. Thus, each patch (vectorized) has size
N = 3 × 6 × 6 = 108. We preprocess patches by ZCA-
whitening. Figure 4 illustrates sparse coding and max pool-
ing at hidden layer 1. Each image is divided into four quad-
rants. For each quadrant, there are four (pooling) groups
of 9 patches. Hidden layer 1 uses a dictionary size K1 =
4N = 432 and max pooling factor M1 = 9. Hidden layer

1 produces {z(1)I , . . . , z
(4)
I }, {z

(5)
I , . . . , z

(8)
I }, {z

(9)
I , . . . , z

(12)
I },

and {z(13)I , . . . , z
(16)
I } (4 pooled sparse codes per quadrant),

which will be passed to hidden layer 2. Figure 5 illustrates
sparse coding and max pooling at hidden layer 2. We use
K2 = 2K1 = 864 and M2 = 4. We encoder the final per-

image feature vector φDSN = [z
(1)
II ; z

(2)
II ; z

(3)
II ; z

(4)
II ]. The final

feature vector has a dimensionality 4K2 = 3456. (The fea-
ture vector is not too dense because of sparse coding.)

4.3 Results
We report cross-validated 1-vs-all classification accuracy

of DSN against deep SAE. Both DSN approaches achieve
better classification accuracy than deep SAE, and DSN-
LARS is found to be the best performer. Optimization by
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Figure 4: Sparse coding and max pooling at hidden layer 1
for single CIFAR-10 image.

!""#$%&'()*'$&+"%$'&,*"-&$)+.&/0)%*)12&,"*-&(""#314&4*"0('&)2&.3%%$1&#)5$*&6&

7()*'$&+"%314&

8)9&(""#314&

!II:;<=!II:><&

"I:;<="I:><&

"II:;<& "II:6<& "II:?<& "II:><&

"I:@<="I:A<& "I:B<="I:;6<& "I:;?<="I:;C<&

!II:@<=!II:A<& !II:B<=!II:;6<& !II:;?<=!II:;C<&
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backpropagation is critical for deep SAE as it gains more
than 7% accuracy over pretraining only. DSN-OMP improves
by 4.7% on backpropagation whereas the improvement is
slightly less for DSN-LARS with a 4.4% gain. Importantly,
DSN-OMP with pretraining only is already 0.7% better than
deep SAE with both pretraining and backpropagation.

5. CONCLUSION
Motivated by superior feature learning performance of

single-layer sparse coding, we have presented Deep Sparse-
coded Network (DSN), a deep architecture on multilayer
sparse coding. DSN is a feedforward network having two
or more hidden layers of sparse coding interlaced with max
pooling units. We have discussed the benefit of DSN and de-
scribed training methods including a novel backpropagation
algorithm. From our experiments, we have found that DSN
is superior to deep SAE in classifying CIFAR-10 images.
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