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Abstract—The development of automatic nutrition diaries,
which would allow to keep track objectively of everything we
eat, could enable a whole new world of possibilities for people
concerned about their nutrition patterns. With this purpose, in
this paper we propose the first method for simultaneous food
localization and recognition. Our method is based on two main
steps, which consist in, first, produce a food activation map on
the input image (i.e. heat map of probabilities) for generating
bounding boxes proposals and, second, recognize each of the
food types or food-related objects present in each bounding
box. We demonstrate that our proposal, compared to the most
similar problem nowadays - object localization, is able to obtain
high precision and reasonable recall levels with only a few
bounding boxes. Furthermore, we show that it is applicable to
both conventional and egocentric images.

I. INTRODUCTION

The analysis of people’s nutrition habits is one of the most
important mechanisms for applying a thorough monitorisation
of several medical conditions (e.g. diabetes, obesity, etc.) that
affect a high percentage of the global population. In most of
the cases, interventional psychologists ask people to keep a
manual detailed record of the daily meals ingested. However,
as proved in [17], usually people tend to underestimate the
quantity of food intake up to a 33%. Hence, methods for
automatically logging one’s meals could not only make the
process easier, but also make it objective to the user’s point
of view and interpretability.

One of the solutions adopted recently that could ease the
automatic construction of nutrition diaries is to ask individuals
to take photos with their mobile phones [1]. An alternative
technique is visual lifelogging [6] that consists of using a
wearable camera that automatically captures pictures from
the user point of view (egocentric point of view) with the
aim to analyse different patterns of his/her daily life and
extract highly relevant information like nutritional habits. By
developing algorithms for food detection and food recognition
that could be applied on mobile or lifelogging images, we
can automatically infer the user’s eating pattern. However, an
important consideration to take into account when working
with mobile or egocentric images is that they usually are
of lower quality than conventional images due to the lower
quality of portable hardware components. In addition, the
analysis of egocentric images is harder considering that the
pictures are non-intentionally taken and from a lateral point-of-
view, causing motion blurriness, important partial occlusions,
and bad lighting conditions (Fig. 1).

Fig. 1. Examples of conventional food images (two on the left) and egocentric
food images (two on the right).

GoogleNet-GAP
Food Vs NonFood

GoogleNet
UECFood256

Food Localization

Food Recognition

rice

jjigae

cold tofu

Food Activation Map (FAM)

Fig. 2. General scheme of our food localization and recognition proposal.

A relatively recent technology that can leverage the auto-
matic construction of nutrition diaries is Deep Learning, and
more precisely, from the Computer Vision side, Convolutional
Neural Networks (CNNs) [16]. These networks are able to
learn complex spatial patterns from images. Thanks to the
appearance of huge annotated datasets, the performance of
these models has burst, allowing to improve the state of the
art of many Computer Vision problems.

In this paper, we propose a novel and fast approach based on
CNNs for detecting and recognizing food in both conventional
and egocentric vision pictures. Our contributions are four-
fold: 1) we propose the first food-related objects localization
algorithm, which is specifically trained to distinguish images
containing generic food and has the ability to propose several
bounding boxes containing generic food (without particular
classes) in a single image, 2) we propose a food recognition
algorithm, which learns by re-using food-related knowledge
and can be applied on the top of the food localization method,
3) we present the first egocentric dataset for food localization
and recognition, and 4) we demonstrate that our methodol-
ogy is useful for both conventional and egocentric pictures.
Our contribution for food localization, inspired by the food
detection method in [12], starts by training a binary food/non
food CNN classifier for food detection and then, a simple and
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Fig. 3. Our localization method based on Global Average Pooling (GAP), which produces a Food Activation Map (FAM).

easy to interpret mechanism that allows us to generate food
probability maps [24] is learned at the top of it. Finally, we
propose an optimized method for generating bounding boxes
on the obtained maps. Note that, as the desired application
of the method is the generation of automatic nutrition diaries,
we should not only detect food, but also food-related objects
(e.g. bottles, cups, etc.). With this in mind, we collected data
from complementary and varied datasets containing either
food and non food pictures (see section IV-B). Up to our
knowledge, there is no work in the literature that considers
these categories. Without loss of generality, we add to the food
categories those related to food-related objects, referring all
of them as food. On the food recognition part, inspired by the
findings in [23], we prove that, when we have small datasets
for our problem, we can apply transfer learning by performing
a chain of fine-tunings on a CNN for getting closer to our
target domain (food types or food-related objects recognition)
and achieving a better performing network.

The organization of this paper is as follows. In section II,
we review the state of the art in food detection/localization
and recognition. In section III, we explain the proposed
methodology. In section IV, we describe the datasets used,
the experimental setup, and present and discuss our results.
Finally, in section V, we review the contributions, the limita-
tions of the method and future directions.

II. RELATED WORK

Considering that no works have been presented yet for
simultaneous food localization and recognition in the bibliog-
raphy, following we will review the most recent works devoted
to food detection and food recognition, separately.

Food Detection and Localization: the problem of food
detection has been typically addressed as a binary classifica-
tion problem, where the algorithm simply has to distinguish
whether a given image is representing food or not [1], [11],
[12]. A different approach is applied by several papers [3], [5],
[18], [25], where they intend to first segment and separately
classify the components or ingredients of food and then apply
a joint dish recognition.

The main problem of both approaches is that they assume
that the dish was previously localized and therefore it is cen-
tered in the image. Instead, in the context of food localization,
we are interested in finding the precise generic regions (or
bounding boxes) in an image where any kind of food is
present.

Although no methods have been presented specifically for
food localization, several works have focused on generic
object localization, usually called object detection, too. These
methods could be used as a first step for food localization if
they are followed by a food/non food classification applied
on the obtained regions. Selective Search [22], considered as
one of the best in the state of the art, applies a hierarchical
segmentation and grouping strategy to find objects at different
scales. The object detection methods, which obtain generic
object proposals, intend to detect as many objects in the image
as possible for optimizing the recall level, thus, they need to
propose hundreds or thousands of candidates, leading to near
null precision. An open question is how to obtain straightfor-
ward object localization methods that get high precision and
recall results at the same time. An alternative to the generic
object localization methods are methods trained to localize
a set of predetermined objects like Faster R-CNN [19]. The
authors propose a powerful end-to-end CNN optimized for
localizing a set of 20 specific object classes.

Food Recognition: several authors have recently focused
on food recognition. Most of them [4], [7], [9], [11], [14],
[15], [23] have analyzed which features and models are more
suitable for this problem. In their works, they have tested
various methods for obtaining hand-crafted features in addition
to exploring the use of different CNNs. One of the best results
were obtained in [4] where the authors trained a CNN on the
database Food101 [7] with 101 food categories and proved that
applying a pre-training and then fine-tuning with in-domain
food images can improve the classification performance. The
best results on the UECFOOD256 database [13] that contains
256 food categories were obtained by Yanai et al. [23],
where they used a network pre-trained on mixed food and
object images for improving the final performance on food
recognition. Some papers [5], [18] take a step further and
use additional information like GPS location for recognizing
the restaurant where the picture was taken and improve the
classification results.

III. METHODOLOGY

In this section, we will describe the proposed methodology
(see Fig. 2) in two steps: a) creating a generic food localizer,
and b) training a fine-grained food recognition method by
applying transfer learning.

A. Generic Food Localization
Our food-specialised algorithm detects image regions con-

taining any kind of food, being reliable enough so that with



a few bounding boxes it is able to keep both high precision
and recall. In order to achieve a fast inference, we propose
to use a CNN trained on food detection. Then, we adapt it
with a Global Average Pooling (GAP) layer [24] capable of
generating Food Activation Maps (FAM) (i.e. heat maps of
foodness probability). Finally, we extract candidates from the
FAM in the form of bounding boxes (see pipeline in Fig. 3).

1) Food vs Non Food classifier: the first step to obtain
a generic food localizer is to train a CNN for binary food
classification. We chose the GoogleNet architecture [21] due
to its proven high performance on several Computer vision
tasks. We trained the CNN on the Deep Learning framework
Keras1. For obtaining a faster convergence we applied a fine-
tuning for our binary classification of the GoogleNet, which
was previously trained on ILSVRC data [20].

2) Fine-tuning for FAM generation: once we had a
model capable of distinguishing Food vs Non Food images,
we applied the following steps [24]: 1) remove the two last
inception modules and the following average pooling layer
from the GoogleNet for obtaining a 14x14 pixels resolution
(this allows to have a high enough spatial resolution for
providing a final spatial classification), 2) introduce a new
deep convolutional layer with 1024 kernels of dimensions 3x3
and stride 1, 3) introduce a GAP layer that summarizes the
information captured by each kernel, and 4) set a new softmax
layer for our binary problem. After getting the architecture
ready, we applied an additional fine-tuning for the binary
problem and learning the newly introduced layers.

Note that, instead of generating a map per class as done
in Zhou et al. [24], we focus on obtaining a food-specific
activation map that should be generic for any kind of food.

At inference time, our GoogleNet-GAP Food Vs NonFood
network only has to: 1) apply a forward pass deciding whether
the image contains food or not (softmax layer) and 2) compute
the following equation for FAM generation:

FAM(x, y) =
∑
k

wk · fk(x, y), (1)

where k = {1, ..., 1024} identifies each of the kernels in
the deep convolutional layer, and wk and fk(x, y) are the
weighting terms of the softmax layer for the class food, and
the activation of the kth kernel at pixel (x, y), respectively.

3) Bounding box generation: as the last step, in order to
extract bounding box proposals, we propose to apply a four
steps method based on: 1) pick all regions above a certain
threshold t, being t a percentage of the maximum FAM value,
2) remove all regions covering less than a certain percentage
size s of the original image, 3) generate a bounding box for
each of the selected regions, and 4) expand the bounding
boxes by a certain percentage, e. All three parameters {t, s, e}
were estimated through a cross-validation procedure on the
validation set (see section IV-D).

1https://github.com/MarcBS/keras

B. Transfer Learning for Food Recognition

After obtaining a generic object localizer, the final step in
our approach is to classify each of the detected regions as
a type of food. Again, for obtaining a high performing net-
work and a faster convergence, we fine-tuned the GoogleNet
pre-trained on ILSVRC. In addition, considering that our
food recognition network has to overcome the problem of
data quantity that most food classification datasets have, we
propose applying an additional pre-training to the network.
This supervised pre-training should serve as a fine-grained
parameters adaptation in which the network should extract
valuable knowledge from an extensive food recognition dataset
before the final in-domain fine-tuning. For this purpose, we
re-trained the GoogleNet, which was previously trained on
ILSVRC, on the Food101 dataset [7].

At the end, we fine-tuned the network on the target domain
data (either UECFood256 [13] or EgocentricFood). To obtain
as little false positives as possible, we added an additional class
to the final food recognition network containing Non Food
samples, enabling the system to discard false food regions
detected by the localization method.

IV. RESULTS

In this section we will describe the different datasets used
for performing the tests; the pre-processing applied to them;
the metrics used for testing the localization algorithm; the
experimental setup and; finally, the results and performance
of our localization and recognition techniques.
A. Datasets

Following we describe all the dataset used in this work
either for food localization, for food recognition or for both.

PASCAL VOC 2012 [8]: dataset for object localization
consisting of more than 10,000 images with bounding boxes
of 20 different classes (none of them related to food).

ILSVRC 2013 [20]: dataset similar to PASCAL with more
than 400,000 images and 1,000 classes for training and vali-
dation (with a subset of classes related to food).

Food101 [7]: dataset for food recognition that consists of
101 classes of typical foods around the world, having each
class 1,000 different samples.

UECFood256 [13]: dataset for food localization and recog-
nition. It consists of 256 different international dishes with
at least 100 samples each. The dataset was collected by the
authors from images on the web, which means that they can be
captured either by conventional cameras or by smartphones.

Egocentric Food2: first dataset of egocentric images for
food-related objects localization and recognition. It was col-
lected using the wearable camera Narrative Clip and consists
of 9 different classes (glass, cup, jar, can, mug, bottle, dish,
food, basket), totalling 5038 images and 8573 bounding boxes.

B. Data Pre-processing

Following we detail the different data pre-processing ap-
plied for each of the learning steps and classifiers.

2www.ub.edu/cvub/egocentricfood/



Food Vs Non Food training: we used three different
datasets: Food101, where all the images were treated as posi-
tive samples (class Food). We used the training split provided
by the authors for generating a training (80%) and a validation
(20%) splits balanced along all classes; PASCAL, where an
object detector [2] was used to extract 50 object proposals per
image on the ’trainval’ set. All the resulting bounding boxes
were treated as negative samples (class Non Food). Again,
we divided the data in 80/20% for training and validation;
and ILSVRC, where we selected the 70 classes (or synsets) of
food or food-related objects available. In this case, we only
used the training/validation split provided by the authors. The
bounding boxes were extracted and used as positive samples
(class Food).

Food Recognition training: we used the Food101 dataset
as the first dataset for fine-tuning the food recognition network
pre-trained on ILSVRC. The previously applied 80/20% split
of the training set provided by the authors was used for
training and validation, respectively. The test set provided was
used for testing. On the second fine-tuning, the same pre-
processing was applied on both UECFood256 and Egocen-
tricFood: a random 70/10/20% split of images was applied
for training/validation/testing on each class separately and the
bounding boxes were extracted.

Joint Localization and Recognition tests: the previous
70/10/20% split was also used on the localization and recog-
nition test. We made sure that any image containing more than
one instance was included only in one split.

C. Localization Metrics

The metric used for evaluating the results of a localization
algorithm is the Intersection over Union (IoU). This metric
defines how precise is the predicted bounding box (bb) with
respect to the ground truth (GT) annotation, and is defined as:

IoU(bb) =
GT ∩ bb

GT ∪ bb
, (2)

where usually a bounding box is considered valid when its
IoU ≥ 0.5. The other evaluation metrics used are: Precision =

TP
TP+FP , Recall = TP

TP+FN , and Accuracy = TP
TP+FP+FN ,

where the true positives (TP) are the bounding boxes correctly
localized, the false positives (FP) are the predicted bounding
boxes that do not exist in the ground truth, and the false
negatives (FN) are the ground truth samples that are lost by
the model. Note that given the convention from [8], if more
than one bounding box overlaps the same GT object, only one
will be considered as TP, the rest will be FPs.

D. Experimental Setup

The Food vs Non Food binary network used for food
localization was trained during 24,000 iterations with a batch
size of 50 and a learning rate of 0.001. A decay of 0.1 was
applied every 6,000 iterations. The final validation accuracy
achieved on the binary problem was 95.64%. During localiza-
tion, the bounding box generation is applied on the FAM only
if the image was classified as containing food by the softmax

Fig. 4. Curves of Precision vs IoU (left), Recall vs IoU (centre) and Accuracy
vs IoU (right) on the test sets of UECFood256 (top), EgocentricFood (middle)
and both combined (bottom). Our method is shown in blue, Selective Search
in red and Faster R-CNN in black.

(see Fig. 3). A grid search was applied on the localization-
validation set for choosing the best hyperparameters {t, s, e}
for localization (named threshold, size, and expansion percent-
ages, respectively). The values tested were from 0.2 to 1 in
increments of 0.2 for both t and e, and from 0.0 to 0.1 in
increments of 0.02 for s.

Considering that no food localization methods currently
exist, we used Selective Search [22] and Faster R-CNN [19]
as baselines for being two of the top performing object local-
ization methods. The former obtains generic objects and the
latter is optimized for localizing PASCAL’s classes (although
we will treat its predictions as generic proposals).

For the food recognition models, first, the GoogleNet-
ILSVRC model was re-trained on Food101 using Caffe [10],
achieving the best validation accuracy after 448,000 iterations.
A batch size of 16 and a learning rate of 0.001 with a decay
of 0.5 every 50,000 iterations were used. The model was
converted to Keras before applying the final fine-tuning to the
respective datasets UECFood256 or EgocentricFood.

During the joint localization and recognition tests, a bound-
ing box is only considered TP if and only if it is both correctly
localized (with a minimum IoU value of 0.5) and correctly
recognized.

E. Food Localization

Taking into account that some of the tested methods [22]
lack the capability of providing a localization score for each
region, we are not enable to calculate a Precision-Recall curve.
For this reason, we chose the accuracy as our guideline for
comparison, which enables a trade-off between the capabilities
of the methods to find all the objects present (Recall) and
produce as little miss-localizations as possible (Precision). We
chose the best {t, s, e} parameters on the combined validation
set (UECFood256 and EgocentricFood) in terms of the average
accuracy value among all the IoU scores, resulting in t = 0.4,
s = 0.1 and e = 0.2.



TABLE I
FOOD RECOGNITION RESULTS ON EACH DATASET. BEST TOP-1 RESULTS ARE SHOWN IN BOLDFACE.

Dataset Pre-training Validation Accuracy Test Accuracy
Top-1 Top-5 Top-1 Top-5

Food101 ILSVRC 74.75 91.11 79.20 94.11

UECFood256 ILSVRC 52.72 78.61 51.60 78.26
Food101 65.71 86.40 63.16 85.57

EgocentricFood ILSVRC 91.50 99.80 90.77 99.37
Food101 90.85 99.65 90.90 99.37

In Fig. 4 we can see the precision, recall and accuracy
curves obtained by the different localization methods.

Fig. 5. Examples of localization on UECFood256. Ground truth in green,
our method in blue and Selective Search in red.

Comparing the methods in terms of precision, it can be
appreciated that ours outperforms the other methods in all
cases. This pattern is easy to explain given that any generic
object localization method (Selective Search in this case)
usually outputs several thousands of proposals per image (see
some examples in Fig. 5), causing it to get a lot of FPs.
In comparison, Faster R-CNN only provides some tens of
proposals per image given that it is optimized for finding
bounding boxes of the specific classes in the PASCAL dataset.
This means that it can focus on the most interesting proposals
per class, which is a great advantage compared to Selective
Search and makes its precision higher. Even though, it is
still far from the optimum considering that usually there
are less than 10 food-related elements in an image. Note
that, curiously, Faster R-CNN is able to find food-related
objects even without being optimized to do so. Comparing the
methods in terms of recall, the Selective Search, in contrast to
our method and Faster R-CNN, is clearly the best given that
its goal is to find any object appearing in the image even
if it is necessary to sacrifice the precision of the method.
We can see that, although on most of the cases our method
and Faster R-CNN are paired, in EgocentricFood the latter is
better. This can be explained by the fact that the purpose of
Faster R-CNN, which is to localize objects, is more aligned
with the annotations found in EgocentricFood, which are of
food-related objects. If we compare the methods in terms of
accuracy, we can see that our proposal, which is able to obtain
more balanced precision-recall results, outperforms both state
of the art methods in UECFood256 and the combined datasets,
and is paired with Faster R-CNN on EgocentricFood.

As we saw, a great part of the proposed bounding boxes
are correctly predicted by our method. Although, we could
say that this ability is also its weak point in terms of recall,
where it obtains lower values considering it is not always able
to find all the food-related elements in the image, mostly when
they are very close or overlapping.

Additionally, comparing them in terms of execution time,
Selective Search needs an average of 0.8s per image, Faster
R-CNN needs 0.2s and our localization method needs only
0.06s using a GPU and a batch size of 25. Thus, it is able to
apply a near real-time inference.

F. Food Recognition

From the food recognition side, the results on the different
trainings performed can be seen on Table I. Note that the
results are comparable to the state of the art on food recog-
nition: either on Food101 [23], or in UECFood256, where an
alternative would be to apply the method on [4]. We can see
that, when fine-tuning on a model which is already adapted for
food recognition, we can obtain better accuracy. The difference
is more remarkable on UECFood256 because all the samples
in the dataset are different types of food, while EgocentricFood
is more focused on food-related objects.

G. Localization and Recognition

Finally, we test the whole localization and recognition
pipeline proposed. We present the final results fixing the
minimum IoU to 0.5 in Table II. To take into account the
results of both steps at the same time, we evaluated the
precision, recall and accuracy separately for each class and
applied a final mean over all the classes. Note that when
combining both datasets, we have a total of 265 classes (256 on
UECFood256 and 9 on EgocentricFood). Our method is able
to find most of the food-related objects in the UECFood256
dataset with only a few bounding boxes (usually at most 5).
On the EgocentricFood dataset the difficulty of the problem
becomes clear, where there are three additional issues to
overcome: 1) the quality of the pictures is lower and objects are
taken in a lateral point of view, 2) some classes are ambiguous
and difficult to distinguish from non food-related objects and,
3) a great part of the samples are occluded and far from the
camera wearer (see examples in Fig. 1 and 6).

Finally, in Fig. 6 we show some examples of the complete
method. In some cases, the GT ambiguity produces recognition
or localization misclassification. For instance, in the first image
at the bottom right zone we can see a glass (GT) with a lemon
(food prediction) inside, and in the second one, we can see a
dish in the foreground (GT) and a bounding box of bread in
the dish (food prediction).

V. CONCLUSION

We proposed the first methodology for simultaneous food
localization and recognition. Our method is applicable to
conventional and to egocentric point-of-view images. We



Fig. 6. Examples of localization and recognition on UECFood256 (top) and EgocentricFood (bottom). Ground truth is shown in green and our method in blue
(recognition score between parenthesis). Some overall good (left), good recognition, but bad localization (centre) and good localization, but bad recognition
(right) examples are shown.

TABLE II
SIMULTANEOUS TEST LOCALIZATION AND RECOGNITION.

Dataset Precision Recall Accuracy
UECFood256 54.33 50.86 36.84
EgocentricFood 17.38 8.72 6.41
Combined 53.58 49.26 35.82

have proven that this methodology outperforms the baseline
achieved by generic object localizers. As future work, we will
focus on the ability of the method to distinguish very close or
overlapping food-related objects.
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