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ABSTRACT

Using content-based binary codes to tag digital images has
emerged as a promising retrieval technology. Recently, Radon
barcodes (RBCs) have been introduced as a new binary de-
scriptor for image search. RBCs are generated by binariza-
tion of Radon projections and by assembling them into a vec-
tor, namely the barcode. A simple local thresholding has been
suggested for binarization. In this paper, we put forward the
idea of “autoencoded Radon barcodes”. Using images in a
training dataset, we autoencode Radon projections to perform
binarization on outputs of hidden layers. We employed the
mini-batch stochastic gradient descent approach for the train-
ing. Each hidden layer of the autoencoder can produce a bar-
code using a threshold determined based on the range of the
logistic function used. The compressing capability of autoen-
coders apparently reduces the redundancies inherent in Radon
projections leading to more accurate retrieval results. The
IRMA dataset with 14,410 x-ray images is used to validate the
performance of the proposed method. The experimental re-
sults, containing comparison with RBCs, SURF and BRISK,
show that autoencoded Radon barcode (ARBC) has the ca-
pacity to capture important information and to learn richer
representations resulting in lower retrieval errors for image
retrieval measured with the accuracy of the first hit only.

Index Terms— Image retrieval, neural networks, autoen-
coder, Radon transform, Radon barcode, medical imaging

1. INTRODUCTION

In recent years, the number of digital images in private and
public archives has been steadily growing due to advances
in imaging and communication technologies. When a query
image is given, the purpose of “content-based image retrieval”
(CBIR) is to find the most similar images in the database.
Here, the general assumption is that images are not annotated
with descriptive texts and keywords, or it is more desirable to
search within the image due to domain requirements, e.g., in
medical imaging. CBIR systems, hence, need to numerically

characterize the image content somehow, i.e., through some
type of feature extractions, in order to facilitate the search
queries. More recently, CBIR methods have shifted toward
“binary” descriptors. Binary information is compact, and its
processing is fast. One of the most recent proposals is to use
Radon barcodes. Based on a well-established transform with
diverse applications, among others in medical imaging, one
can assemble binary vectors by proper thresholding of Radon
projections.

In this paper, we propose to train “autoencoders” to gen-
erate Radon barcodes. Presently, simple local thresholding is
used to binarize Radon projections. This, as we will demon-
strate, causes loss of information and hence an increase in
retrieval error. By employing autoencoders we binarize the
compressed version of Radon projections with less loss re-
sulting in higher retrieval accuracy. As the Radon projections
of neighbouring angles are highly redundant, the proposed
approach constitutes a neural approach to redundancy reduc-
tion.

In the following sections, we first briefly review the rele-
vant literature in Section 2. The proposed autoencoded Radon
barcodes are described in Section 3. The dataset, error mea-
surements, settings of the autoencoders, and the experimental
results are reported in Section 4.

2. BACKGROUND REVIEW

In this section, we briefly review the relevant literature on im-
age retrieval, autoencoders, and Radon barcodes.

Image Retrieval – Recent annotation or tagging meth-
ods for image retrieval have moved toward binary descriptors.
Binary codes require less space and can be processed fast.
Calonder et al. used binary strings and developed an efficient
feature point descriptor called BRIEF [2]. Rublee et al. pro-
posed another binary descriptor called ORB based on BRIEF,
which should be rotation invariant as well as resistant to noise
[14]. Leutenegger et al. proposed a novel method, named
Binary Robust Invariant Scalable Keypoints (BRISK) for im-
age key point detection, description and matching [12], and
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reported good performance at a low computational cost. In
2015, Radon barcodes based on the Radon transform was in-
troduced [16]; good overall results for medical image retrieval
on the IRMA dataset were reported. Recently, autoencoders
have been increasingly used for image retrieval tasks [5, 3].
Krizhevsky et al. first applied a deep convolutional neural
network to the ImageNet LSVRC-2010 dataset and achieved
the best result in that challenge [7].

Autoencoders – The autoencoder is a type of artificial
neural network which is trained to encode the input into some
representations such that the input can be reconstructed from
that representation [1]. An autoencoder transforms an input x
into hidden representation y through a deterministic mapping

y = s (Wx + b) , (1)

where s is a non-linear function (e.g., Sigmoid), W is a d′×d
weight matrix, and b is an offset vector of length d′. The
prediction of original input can be reconstructed by mapping
back the hidden representation:

z = s
(
W′y + b′

)
. (2)

Generally, the reconstruction z is not to be interpreted as
exactly the same as the input x, “but rather in probabilistic
terms as the parameters (typically the mean) of a distribution
that may generate x with high probability” [18]. In order to
minimize the reconstruction error, the squared errors L(x, z)
can be used:

L(x, z) = ‖x− z‖2 . (3)

Radon Barcodes – The idea behind Radon barcodes
(RBC) [16, 15] is to apply Radon transform on an image and
to binarize the projections in a proper way with minimum
information loss. If the image I is regarded as a 2D func-
tion f(x, y), then one can project f(x, y) along a number
of projection angles θ. The projection is basically the sum
(integral) of f(x, y) values along lines constituted by each
angle θ. The projection creates a new image R(ρ, θ) with
ρ = x cos θ + y sin θ. Hence, using the Dirac delta function
δ(·) the Radon transform can be written as

R(ρ, θ) =

+∞∫
−∞

+∞∫
−∞

f(x, y)δ(ρ− x cos θ− y sin θ)dxdy. (4)

It has been proposed to threshold all projections for each an-
gle based on a “local” threshold for that angle, such that a
barcode of all thresholded projections can be generated (Fig-
ure 1). Further, it has been proposed to use a typical value
(e.g., median value of all non-zero values of each projection)
as the threshold [16]. Algorithm 1 describes how Radon bar-
codes (RBC) are generated. In order to receive same-length
barcodes Normalize(I) resizes all images into RN×CN im-
ages (i.e., RN =CN =2n, n ∈ N+).

The main difference between this work (described in the
following section) and the original work on Radon barcodes

Fig. 1. All projections (P1,P2,P3,P4) generated by the
Radon transform are thresholded to generate code fragments
C1,C2,C3,C4 resulting in a barcode [C1 C2 C3 C4] [Source:
[16]].

Algorithm 1 Radon Barcodes via thresholding [16]
1: Initialize Radon Barcode r← ∅
2: Initialize angle θ ← 0 and RN = CN ← 32
3: Normalize the input image Ī = Normalize(I,RN , CN )
4: Set the number of projection angles, e.g. np ← 8
5: while θ < 180 do
6: Get all projections p for θ
7: Find typical value Ttypical ← mediani(pi)|pi 6=0

8: Binarize projections: b← p ≥ Ttypical
9: Append the new row r← append(r,b)

10: θ ← θ + 180
np

11: end while
12: Return r

in [16] is that we use the compressing capability of autoen-
coders in order to reduce the redundancies inherent in Radon
projections. This clearly leads to, as we will report in the ex-
periment section, more accurate retrieval results.

3. THE PROPOSED METHOD

We first pre-process images to subsequently autoencode them
with a suitable architecture and setting of the autoencoder.

Pre-Processing of Images – In order to generate same-
length inputs for the autoencoder, all images in the training
dataset are resized to fixed dimensions (e.g., 32×32). Radon
transform with selected number of projection angles nθ is em-
ployed to extract the Radon features (i.e., the projections).
This representation of each image is then normalized to only
consist of values between 0 and 1 by dividing each element
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in the feature vector by the maximum value of that projection
angle. The normalized Radon features can then be fed to the
autoencoder.

Autoencoded Radon Barcodes – After the autoencoder
is trained, the barcode can be generated by feeding each nor-
malized Radon feature vector to the autoencoder and looking
at the output of each hidden layer (the value of the Sigmoid
function of each neuron in that layer) that is passed on to the
next layer. If this value is greater than 0.5, it becomes a “1”
in the barcode and if it is less than 0.5, it becomes a “0”.
The barcode can be generated for every hidden layer in the
autoencoder.

Figure 2 illustrates the proposed method. Figure 3 shows
four sample images from IRMA dataset with their Radon bar-
codes (with local thresholding) and the autoencoded Radon
barcodes. For a better display, both barcodes are displayed
with the same length (the length of autoencoded Radon bar-
codes are 1/4 of the length of Radon barcodes).

Autoencoder Setting – We use the traditional autoen-
coder instead of the optimized one which trains fairly slowly
and does not provide the most accurate results when com-
pared to a much more advanced autoencoder 1. The standard
learning algorithm for neural networks, known as mini-batch
stochastic gradient descent [13] is adopted. No regularization
techniques were implemented. The weights of the autoen-
coder were initialized using a Gaussian distribution, N (0, 1),
over the square root of the number of weights connecting to
the same neuron and the biases were initialized using a Gaus-
sian distribution with mean 0 and standard deviation 1. We
use the mean squared error as the cost function. Other pa-
rameters such as learning rate, mini-batch size and training
epochs are set empirically as described in the next section.

4. EXPERIMENTAL RESULTS

We first describe the IRMA dataset that we used for exper-
imentation. The error measurement will be describe next.
Subsequently, we report the parameter settings for the autoen-
coder. Finally, we analyze the performance of the proposed
approach based on the experimental results. A comparison
with SURF and BRISK methods will be reported at the end.

Image Test Data – The Image Retrieval in Medical Ap-
plications (IRMA) database2 is a collection of more than
14,000 x-ray images (radiographs) randomly collected from
daily routine work at the Department of Diagnostic Radiol-
ogy of the RWTH Aachen University3 [8, 17]. All images
are classified into 193 categories (classes) and annotated with
the IRMA code which relies on class-subclass relations to
avoid ambiguities in textual classification [10, 9]. The IRMA
code consists of four mono-hierarchical axes with three to

1We used a Python implementation (unoptimized) that can be found here:
https://goo.gl/lFdwVn

2http://irma-project.org/
3http://www.rad.rwth-aachen.de/

four digits each: the technical code T (imaging modality), the
directional code D (body orientations), the anatomical code
A (the body region), and the biological code B (the biological
system examined). The complete IRMA code subsequently
exhibits a string of 13 characters, each in {0, . . . , 9; a, . . . , z}:
TTTT-DDD-AAA-BBB. More information on the IRMA
database and code can be found in [8, 9]. IRMA dataset of-
fers 12,677 images for training and 1,733 images for testing.
Figure 4 shows some sample images from the dataset along
with their IRMA code in the format TTTT-DDD-AAA-BBB.
IRMA x-rays images are a challenging benchmarking case
mainly due to the imbalanced class distribution.

Error Measurements – We used the evaluation scheme
provided by ImageCLEFmed09 to compute the difference be-
tween the IRMA codes of the testing image and the first hit
retrieved by the proposed approach. The total error for all test
images can then be calculates as follows [8, 9]4:

Etotal =

1733∑
m=1

4∑
j=1

lj∑
i=1

1

blj ,i

1

i
δ(Imlj ,i, Ĩ

m
lj ,i) (5)

Here, m is an indicator to each image, j is an indicator to
the structure of an IRMA code, and lj refers to the number of
characters in each structure of an IRMA code. For example,
in the IRMA code: 1121-4a0-914-700, l1 = 4, l2 = 3, l3 = 3
and l4 = 3. i is an indicator to a character in a particular
structure. Here, l2,2 refers to the character “a” and l4,1 refers
to the character “7”. blj ,i refers to the number of branches,
i.e. number of possible characters, at the position i in the
lthj structure in an IRMA code. Im refers to the mth testing
image and Ĩm refers to its top 1 retrieved image. δ(Imlj ,i, Ĩ

m
lj ,i

)
compares a particular position in the IRMA code of the testing
image and the retrieved image. It then outputs a value in {0,
1} according to the following rules:

δ(Imlj ,i, Ĩ
m
lj ,i) =

{
0, Imlj ,h = Ĩmlj ,h∀h ≤ i
1, Imlj ,h 6= Ĩmlj ,h∃h ≤ i

(6)

Parameters for Autoencoder – In our experiments, we
used the mean squared error as the quadratic cost function.
The network was trained using stochastic gradient descent on
training images for 300 epochs using a mini-batch size of 10
images. The learning rate was set to 0.5. No regularization
techniques were implemented. Single hidden layer (shallow
layer) and the multiple layers (deep layer) are both employed
in the experiments. Each hidden layer reduces or increases
the number of neurons from the previous layer by a factor of
2. For instance, in the case of the deep autoencoder with 3
hidden layers, it compresses the input by a factor of 4 in the
second hidden layer and raises to the half size of input in the
third layer (decoder).

4We used the Python implementation provided by ImageCLEFmed09 to
compute the errors according to this scheme: http://www.imageclef.org/
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Fig. 2. Schematic illustration of the proposed method. The Radon projections (P1, P2, . . . ) of the preprocessed image are
autoencoded. For n hidden layers, n barcodes can be generated.

Fig. 3. Visual comparison of Radon barcode (top) and autoencoder Radon barcode (bottom) for sample x-ray images from
IRMA dataset. Images are normalized to 32× 32 with 16 projections.

Performance – To validate the performance of the pro-
posed method, the Radon barcodes5 are generated as well for
comparing the error score computation according to Eq. 5.
A total of 12,677 images in the training dataset are used to
generate Radon barcodes (RBC) and the autoencoded Radon
barcodes (ARBC). The remaining 1,733 images are used to
retrieve the top hit image by generated barcode through k-NN
direct search (k=1) with minimum Hamming distance.

Table 1 represents the error performance for RBC and
ARBC with various normalized image sizes and number of
projection angles nθ. From Table 1, it can be clearly seen that
although the length of the ARBC has been compressed, it is
able to achieve better results than RBC. And generally, the
ARBC compressed to half size works slightly better than the
one compressed by a factor of 4. The increase in image size

5Matlab code from http://tizhoosh.uwaterloo.ca/

Table 1. Error for RBC vs. ARBC with one hidden layer of
1/4 or 1/2 of size of input layer.

Downsampling 32× 32 64× 64
nθ 8 16 8 16
RBC 605.83 576.45 585.76 559.46
ARBC1/2 474.83 465.14 493.37 426.06
ARBC1/4 477.27 475.14 477.32 440.69

and the number of Radon projections seems to provide better
results, but leads to a longer barcode.

The ARBC generated by multi-layers autoencoders were
also implemented. Table 2 shows error comparison among
several ARBC versions generated from two shallow hidden
layers (one in encoding and the other in decoding) and deep
hidden layer. Each hidden layer reduces or increases the num-

4
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(a) 1121-127-700-500 (b) 1121-120-942-700 (c) 1121-120-200-700 (d) 1121-120-918-700

Fig. 4. Sample images from IRMA Dataset with their IRMA codes TTTT-DDD-AAA-BBB.

Table 2. Error for different layers/settings for Radon transform when three hidden layers are used
32× 32 64× 64

Hidden Layer 8 Projections 16 Projections 8 Projections 16 Projections
1st(encoder) 519.52 453.33 466.92 392.09
2nd(deep) 509.70 463.76 484.57 415.93
3rd(decoder) 679.54 623.16 624.23 583.21

Table 3. Time comparison (in seconds)
Downsampling 32× 32 64× 64

nθ 8 16 8 16
RBC 0.006 0.006 0.006 0.007

ARBC1/2 0.243 0.869 0.762 5.408
ARBC1/4 0.139 0.455 0.431 1.843
ARBC 3 0.364 1.163 1.102 6.791

ber of neurons from the previous layer by a factor of 2.
It can be observed that for the multi-layer autoencoder, the

performance is similar to the single layer autoencoder, namely
that the error score drops proportional to the increase of the
normalized image size and the number of projection angles.
It seems that the number of projection angles has a greater
impact on error performance than image downsampling size.
Obviously, more projection angles bring additional image in-
formation. In contrast, the increase in image size (less down-
sampling) only enhances the information from the original
image for certain angles. It can also be observed that the
dataset generated by the shallow layer (the first hidden layer)
performs slightly better than the deep layer one (the second
hidden layer). However, it should be mentioned that the size
of the barcode from the deep layer is half the size of the one in
the shallow layer, which is 1/4 the size of the Radon barcode.

Table 3 represents the processing time for generating the
RBC and the proposed autoencoded Radon barcode (ARBC).
The time for ARBC is only shown in one epoch and autoen-
coder with 3 hidden layers is denoted as ARBC 3 (1st hidden
layer size: 1/2 of RBC, 2nd :1/4 size of RBC, 3rd: 1/2 size
of RBC). From Tables 1 and 2, it can be seen that larger nor-

malized image sizes and more projections do deliver better
results in general. However, they also increase the computa-
tional costs. We used a MacBook Pro with a 2.5 GHz quad
core intel core i7 (16 GB RAM). We did not use GPUs.

Barcodes versus SURF and BRISK – In this series of
experiments, we also examined SURF [4] (as a non-binary
method) and BRISK [11] (as a binary method). Using k-
NN as before was not an option because initial experiments
took considerable time as SURF and BRISK appear to be
slower than barcodes. Hence, we used locality-sensitive hash-
ing (LSH) [6] to hash the features/codes into patches of the
search space that may contain similar images6. We made
several tests in order to find a good configuration for each
method. As well, the configuration of LSH (number of tables
and key size for encoding) was subject to some trial and er-
rors. We set the number of tables for LSH to 30 (with compa-
rable results for 40) and the key size to a third of the feature
vectors’ length. We selected the top 10 results of LSH and
chose the top hit based on highest correlation with the input
image for each method. The results are reported in Table 4.

As apparent from the results, the main drawback of both
SURF and BRISK for medical image retrieval is that they do
fail to extract descriptors for some images. BRISK, as a bi-
nary descriptor, has very high error rate. Although SURF has
lower error than RBC, its non-binary descriptors does con-
stitute a major disadvantage due to high storage requirement
for big image data. ARBC, however, does provide the lowest
error rate, and much lower storage needs.

6Matlab code: http://goo.gl/vFYvVJ

5
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Table 4. Comparing barcodes with SURF and BRISK.
Method Total Error Failure
SURF 526.05 4.6% (79 images)
BRISK 761.96 1.1% (19 images)
RBC 559.46 0.0%
ARBC 392.09 0.0%

5. CONCLUSIONS

Tagging images with binary descriptors seem to be a pow-
erful approach to image retrieval for big image data. Radon
barcodes, recently introduced, constitute an interesting frame-
work for generating content-based binary features, probably
a suitable approach for tagging medical images. Many as-
pects of Radon barcodes still require investigations. Among
others, the method for binarizing Radon projections has a sig-
nificant effect on the descriptiveness of the barcode. In this
paper, we proposed autoencoded Radon barcodes. By mak-
ing use of an autoencoder with 1 or 3 hidden layers, Radon
barcodes can be generated via thresholding of compressed
projections accessed at the output of hidden layers. Using
IRMA dataset with 14,410 x-rays images, we demonstrated
that thresholding via autoencoders is superior to local thresh-
olding via median of non-zero projection values. The experi-
mental results show that the barcodes generated by deeper au-
toencoder achieve better performance than shallow networks.
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