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Abstract—One of the essential problems on Bayesian networks
(BNs) is parameter learning. When purely data-driven methods
fail to work, incorporating supplemental information, like expert
judgments, can improve the learning of BN parameters. In
practice, expert judgments are provided and transformed into
qualitative parameter constraints. Moreover, prior distributions
of BN parameters are also useful information. In this paper we
propose a Bayesian approach to learn parameters from small
datasets by integrating both parameter constraints and prior
distributions. First, the feasible parameter region is derived
from constraints. Then, using the prior distribution, a posterior
distribution over the feasible region is developed based on the
Bayes theorem. Finally, the parameter estimations are taken
as the mean values of the posterior distribution. Learning
experiments on standard BNs reveal that the proposed method
outperforms most of the existing methods.

I. INTRODUCTION

Bayesian networks [1] are efficient tools for performing
inferences [2]. For BN learning, there are two directions:
parameter learning and structure learning. In practice, domain
experts tend to have problems providing the numerical condi-
tional probabilities of a BN [3] when the structure is known
previously. In this paper, we focus on parameter learning with
fixed structures. In the procedure of data collecting, sufficient
data may be unavailable, or gathered data are unrepresenta-
tive. In those scenarios, data can not reveal underlying true
parameters, so purely data-driven methods often fail to work.
Therefore, enhancing the precision of parameter learning by
incorporating supplemental information is necessary.

Instead of numerical parameters, domain experts prefer to
provide qualitative knowledge about parameters, which can be
transformed into parameter constraints [4]. To detail the trans-
formation from expert judgments to parameter constraints,
preferred qualitative influence is considered. For two binary
variables X and Y (Y is the cause and X is the effect), Y
imposes a positive (or negative) influence on X if a greater
value of Y tends to make X greater (or smaller). Then, a
parameter constraint is obtained as p(X = 1|Y = 1, s) ≥
p(X = 1|Y = 0, s) for the positive qualitative influence,

or p(X = 1|Y = 1, s) ≤ p(X = 1|Y = 0, s) for the
negative qualitative influence, where s is the configuration for
the causes of X other than Y . Analogously, we can trans-
form other judgments into qualitative constraints. In addition,
precise prior distributions of parameters are also helpful for
improving parameter learning. However, they are frequently
not readily available.

A new parameter learning method is proposed in this paper
based on Bayesian estimation incorporating both parameter
constraints and prior distributions. First, feasible parameter
regions are defined by constraints. Then, posterior distributions
over the feasible regions are built based on the prior distribu-
tions. Finally, parameter estimations are taken as mean values
of the posterior distributions. Incorporating prior knowledge,
the proposed method can remarkably improve parameter learn-
ing when data are insufficient or sparse.

The rest of this paper is organized as follow: In section 2
we discuss the related work. In section 3 we introduce basic
concepts of BNs. In section 4 we propose a new parameter
learning method. In section 5 some learning experiments
on standard BNs are implemented. In section 6 we briefly
summarize the work in this paper and indicate the future work.

II. RELATED WORK

Several methods using prior information have been proposed
to improve parameter learning accuracy.

Altendorf [5], Witting [6], Niculescu [7] and Liao [8]
apply CO model to express parameter learning1. Then use the
adaptive probabilistic network method (APN) [9], a gradient-
based algorithm, to solve it. Chang [10] proposed a QMAP
method to learn parameters from data and expert judgments,
whose result is an average of all MAP estimations with
different prior Dirichlet distributions.

Feelders [11] proposes modelling parameter learning with
qualitative influences as a case of IR, and uses the minimum

1Niculescu and Liao explore the CO method to address parameter learning
from incomplete data
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lower sets (MLS) algorithm [12] to solve it. However, de
Campos [13], [14] suggests modelling parameter learning as a
case of convex optimization. Zhou [15]–[17] first reconstructs
an auxiliary BN about querying parameters. Then use a
dynamic discretization junction tree (DDJT) [18] algorithm to
infer the posterior distributions of parameters. Finally, mean
values of the posterior distributions are taken as parameter
estimations.

III. PRELIMINARIES

A. Bayesian Networks

A BN can be defined as a dual (G, θ). The first term G,
which is a directed acyclic graph, can be further represented by
another dual (U,E), where U = {X1, · · · , Xn} is the set of
nodes (or stochastic variables) and E = {Xi → Xj |Xi, Xj ∈
U, i ̸= j} is the set of directed edges that express relevance or
dependency relationships among variables. The second term θ
is the set of parameters associated with G. The set consisting
of all parents of Xi is denoted as pai. According to the Markov
condition, the joint distribution of U can be decomposed as
shown by Equation (1):

p({X1, · · · , Xn}) =
n∏

i=1

p(Xi|pai) (1)

We denote the cardinality of states of Xi and the cardinality
of configurations of pai respectively as ri and qi. Specifically,
a single parameter is marked as θijk in this paper, where i =
1, · · · , n ranges over all the variables in a BN, j = 1, · · · , qi
ranges over all the possible configurations of pai, and k =
1, · · · , ri ranges over all the possible states of Xi.

Let Nijk be the number of data records corresponding to
θijk; i.e., the count of observations where Xi = k and pai = j.
Similarly Nij notates the number of data records for pai = j.
Then the maximum likelihood estimation (MLE) of a single
parameter θijk is given by Equation (2):

θijk =
Nijk

Nij
(2)

B. Constraints on Parameters

Domain experts can provide knowledge about BN pa-
rameters from their experience; however, experts have some
problems giving quantitative prior knowledge, such as the prior
distribution of parameters. In practice experts more easily
give qualitative prior knowledge, which can be transformed
into parameter constraints. Most of these constraints can
be expressed by a linear inequality function [10] given by
Equation (3):

f(θ) ≤ c (3)

where f is a linear function, and c is a scalar. Three types of
typical constraints can be derived from this equation.

(1) An approximate equality constraint is an assertion that
one parameter is very close to another one, and can be given
by Equation (4):

θijk ≈ θi′j′k′ , ∀ijk ̸= i′j′k′ (4)

Alternatively, we introduce a small positive rational number
ε, then rewrite equation (4) as Equation (5):

|θijk − θi′j′k′ | < ε, ∀ijk ̸= i′j′k′ (5)

(2) A range constraint defines the upper and lower bounds
of a single parameter, and can be expressed by Equation (6):

α < θijk < β, ∀ijk (6)

where α < β ∈ [0, 1].
(3) An inequality constraint claims an inequality rela-

tionship between two parameters, and can be represented by
Equation (7):

θijk < θi′j′k′ , ∀ijk ̸= i′j′k′ (7)

Definition 1. A convex constraint is a constraint such that
the region restricted by it is a convex set.

Since the parameter learning method we propose in this
paper will compute linear combinations of random samples
from the regions restricted by parameter constraints, empha-
sizing the convex nature of parameter constraints is essential.
A non-convex constraint may make the linear combinations
violate the constraints, which is unacceptable.

For further information about BN parameter constraints,
please refer to Druzdzel’s paper [4].

IV. THE NEW METHOD

It’s hard to build a precise object function from sparse
data combined with qualitative parameter constraints. Hence,
instead of pursuing a perfect object function, we fuzz the pa-
rameter learning in view of the lack of information. Assuming
the true value of θ satisfies given constraints, we consider
that an arbitrary value in the feasible region restricted by
constraints can be the true value with a certain probability.
We are working on finding the posterior distribution of all
possible values of θ, rather than deciding which one is the
real value.

Based on the above perspectives, a novel approach, called
the constrained Bayesian estimation (CBE), is proposed for
BN parameter learning from small datasets incorporating con-
vex parameter constraints and prior distributions.

A. Assumptions

Assumption 1. The prior distribution π(θ|G) of θ is a
Dirichlet distribution with hyperparameters τ = {τijk|i =
1, · · · , n, j = 1, · · · , qi, k = 1, · · · , ri}. That is

π(θ|G) ∝
n∏

i=1

qi∏
j=1

ri∏
k=1

θ
τijk
ijk

Assumption 2. The true value of θ satisfies all the given
parameter constraints, which means we assume the constraints
are absolutely correct.

Assumption 3. θ is globally independent, which is

p(θ) =
n∏

i=1

p(θi)
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Assumption 4. θi is locally independent, which is

p(θi) =

qi∏
j=1

p(θij)

For assumption 1, if an accurate prior Dirichlet distribution
is unavailable, a uniform distribution is an excellent alterna-
tive. Assumption 2 is significant for the asymptotic correctness
of the CBE method. Otherwise, parameter estimations of the
proposed method will not converge to true values. Assumption
3 and assumption 4 are applied to decompose a higher dimen-
sional integral into lower ones with independent relationships
expressed by the hypotheses.

B. The CBE Approach

Considering the definition of likelihood functions, the con-
ditional distribution of data D given ∀θ ∈ ΘG (G is a fixed
structure of a BN, and ΘG is the corresponding parameter
space) is equal to the likelihood function, which is defined by
Equation (8):

q(D|θ) = l(θ,D) ∝
n∏

i=1

qi∏
j=1

ri∏
k=1

θ
Nijk

ijk (8)

For convenience, we are, from now on, going to omit the
common condition G, as it is always satisfied.

According to the Bayes theorem, the joint probability
f(θ,D) of θ and D is the product of the prior distribution
π(θ) and q(D|θ). Due to assumption 1, π(θ) is a Dirichlet dis-
tribution with hyperparameters. Then we can express f(θ,D)
by Equation (9):

f(θ,D) = π(θ)q(D|θ) ∝
n∏

i=1

qi∏
j=1

ri∏
k=1

θ
Nijk+τijk
ijk (9)

After introducing parameter constraints Ω, there are actually
two transformations on f(θ,D). The first one is that for
∀θ /∈ ΘΩ

G (ΘΩ
G denotes the feasible region restricted by

constraints), f(θ,D) tends to zero from a positive value,
because these values of θ are certainly not the true values
considering assumption 2. The second one is that for ∀θ ∈ ΘΩ

G ,
f(θ,D) changes because of the decreasing of the feasible
region. Nevertheless, since likelihoods of values of θ remain
unchanged, we legitimately suppose f(θ,D) for ∀θ ∈ ΘΩ

G are
increase with the same proportion. Thus we derive Equation
(10):

f(θ,D|Ω) ∝ f(θ,D) ∝
n∏

i=1

qi∏
j=1

ri∏
k=1

θ
Nijk+τijk
ijk , ∀θ ∈ ΘΩ

G

(10)
where f(θ,D|Ω) is the joint distribution of θ and D restricted
by Ω.

To obtain the posterior distribution of θ, first the marginal
probability m(D|Ω) of D given Ω should be determined.
m(D|Ω) can be calculated by integrating f(θ,D|Ω) on θ over
the feasible region ΘΩ

G as shown by Equation (11):

m(D|Ω) =

∫
ΘΩ

G

f(θ,D|Ω)dθ (11)

According to the Bayes theorem, the posterior distribution
h(θ|D,Ω) of θ is the quotient of f(θ,D|Ω) and m(D|Ω),
which can be written as

h(θ|D,Ω) =
f(θ,D|Ω)

m(D|Ω)
(12)

Seen from equations (10) and (11), f(θ,D|Ω) and m(D|Ω)
possess the same nonzero constant coefficient, and it can be
eliminated by the division operation shown in Equation (12).
Then, the posterior distribution of θ can be implemented as
Equation (13):

h(θ|D,Ω) =

∏n
i=1

∏qi
j=1

∏ri
k=1 θ

Nijk+τijk
ijk∫

ΘΩ
G

∏n
i=1

∏qi
j=1

∏ri
k=1 θ

Nijk+τijk
ijk dθ

(13)

The Bayesian estimation of θ is the mean value of the
posterior distribution as shown by Equation (14):

θ̂ =

∫
ΘΩ

G

θh(θ|D,Ω)dθ (14)

The calculation result of Equation (14) is a vector, which
is composed of components shown by Equation (15):

θ̂ijk =

∫
ΘΩ

G
θijk

∏n
l=1

∏qi
m=1

∏ri
w=1 θ

Nlmw+τlmw

lmw dθ∫
ΘΩ

G

∏n
l=1

∏qi
m=1

∏ri
w=1 θ

Nlmw+τlmw

lmw dθ
(15)

Integrating parameters except θij (assume the results is
φ(θij)), Equation (15) can be rewritten as

θ̂ijk =

∫
ΘΩ

G
φ(θij)θijk

∏ri
w=1 θ

Nijw+τijw
ijw dθij∫

ΘΩ
G
φ(θij)

∏ri
w=1 θ

Nijw+τijw
ijw dθij

(16)

φ(θij) is often not a constant, which means parameter
estimations of θij are impacted by data and prior distributions
corresponding to other parameters. It seems to contradict the
global and local independences. To decouple θij from other
parameters, let

Nlmk = 0, τlmk = 0

for l ̸= i or m ̸= j when estimating θij . Then φ(θij)
degenerates into a constant, which is

φ(θij) = c

Thus φ(θij) can be eliminated from Equation (16). Finally,
we obtain the estimation for every single parameter θijk by
the CBE approach as given by Equation (17):

θ̂ijk =

∫
ΘΩ

G
θijk

∏ri
w=1 θ

Nijw+τijw
ijw dθij∫

ΘΩ
G

∏ri
w=1 θ

Nijw+τijw
ijw dθij

(17)

Notice that the integral domain in Equation (17) is still ΘΩ
G

rather than (Θij)
Ω
G , because part of the parameter constraints

Ω don’t just involve parameters θij . Hence, each single
parameter θijk is probably not uniform in its feasible region
when no data given. Take a simple BN X1 → X2 with two
binary nodes as an example (refer to Figure 1). Let there be
a constraint θ211 < θ221, then we find that 0 < θ211 < 1.

3669



Fig. 1: The distribution of a parameter from a two binary nodes
BN. (a) A small BN with a constraint. (b) The feasible region of
(θ211, θ221). (c) The distribution of θ211.

But the distribution of θ211 in interval [0, 1] is not uniform.
It’s unbiased that the dual (θ211, θ221) is uniform in the top
left corner of the unit square shown in Figure 1 (b), so the
distribution of θ211 is a marginal distribution of p(θ211, θ221),
which is

p(θ211) =

∫ 1

θ211

2dθ221 = 2− 2θ211

In Equation (17), if τijk = 0, the prior distribution degen-
erates into the uniform distribution. It’s not a bad thing when
an accurate prior distribution is unavailable, because a poor
prior distribution may lead to terrible results. Actually, to find
precise prior distributions of BN parameters is our future work
to improve the basic CBE method.

There are two multidimensional definite integrals with the
same form in Equation (17). If the integral domain is nor-
mative, it’s easy to obtain results using the property of beta
functions. However, it is hard to compute directly as the
integral domain is not normative after introducing parame-
ter constraints. Therefore, approximating the integral with a
numerical integration [19] is an effective alternative. In this
paper, we use a Monte Carlo (MC)method to compute the
approximate result of a multidimensional definite integral.

Let {ϑ(1), · · · , ϑ(M)} be M (a sufficient number, M =
1, 000 in our experiments) uniform samples randomly gener-
ated from the feasible region ΘΩ

G of BN parameters. Then,
the numerical approximation of Equation (17) is shown in
Equation (18):

θ̂ijk =

∑M
m=1 ϑ

(m)
ijk

∏ri
w=1(ϑ

(m)
ijw )Nijw+τijw∑M

m=1

∏ri
w=1(ϑ

(m)
ijw )Nijw+τijw

(18)

V. EXPERIMENTS

We are going to compare the proposed method with the
ML [20], [21], MAP [21], and CML [13] algorithms from
learning experiments on standard BNs. Databases are synthe-
sized by standard BNs with a common size of 50,000, and
observations will be randomly sampled from databases in each
learning case. Parameter constraints and prior distributions
are representatively synthesized by certain rules described in
the following. Although we don’t consider physical processes

Fig. 2: Learning results of ML, CML, MAP and CBE for Asia
network. The blue-green, carmine, and blue lines respectively repre-
sents the learning result of average baseline of ML, CML, and MAP
approach, and the red and black line respectively shows learning
results of the CBE algorithm with different prior distributions (τ = 0
represents CBE method that doesn’t use a prior distribution, τ > 0
means CBE method that use a prior distribution with K = 10).

when they are synthesized, they possess identical mathematical
properties with prior information provide by domain experts.
To adequately demonstrate the differences in learning results,
we repeatedly learn different standard BNs at various data
sizes and record their average performances. The criterion for
evaluating learning results is the Kullback-Leibler (K-L) di-
vergence between parameter estimations and true parameters,
which is widely used to describe the difference between two
distributions.

A. Experiments on Asia Network

Asia network models the interaction between risk factors,
diseases and symptoms for the purpose of diagnosing the most
likely reason for a patient entering a chest clinic. Each of the 8
nodes in Asia network has two states. There is a logical node
in Asia network, we don’t learn its parameters since they can
be determined previously without any information.

For the Asia network, the data sizes are fixed at 10, 20,
· · · , 100, and we learn all parameters at each data size with
50 repetitions to get an average learning performance. Data
are randomly sampled from the 50,000 size database. The
parameter constraints and prior distributions are synthesized
by the following rules.

Rules for synthesizing parameter constraints: (a) Generate
a constraint 0 ≤ p < 0.05 if p is a small value close to 0;
(b) Generate a constraint 0.95 < p ≤ 1 if p is a great value
close to 1; (c) Generate a constraint p1 ≈ p2 if p1 = p2; (d)
Generate a constraint p1 < p2 if p2− p1 > 0.2, where p, p1,
and p2 are single parameters.

Rules for synthesizing prior distributions: First choose a
constant K (K = 10 in our experiments) to multiply the true
parameters to generate initial hyperparameters. Then random
fluctuations are add onto the initial hyperparameters with an
amplitude of a half of K.
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TABLE I: Learning Results∗ for Standard BNs

BNs Nodes Edges Paras Data ML CML MAP CBE

Andes 223 338 1157 10 0.680± 0.045 0.229± 0.006 0.450± 0.002 0.195± 0.003
50 0.312± 0.029 0.159± 0.005 0.332± 0.002 0.173± 0.007

Win95pts 76 112 574 10 5.370± 0.112 1.441± 0.025 1.364± 0.096 1.517± 0.102
50 4.448± 0.143 1.328± 0.048 1.226± 0.129 1.447± 0.138

Hepar2 70 123 1453 10 0.259± 0.005 0.111± 0.004 0.158± 0.005 0.292± 0.012
50 0.228± 0.006 0.116± 0.004 0.146± 0.005 0.285± 0.009

Hailfinder 56 66 2656 10 0.946± 0.062 0.322± 0.009 0.606± 0.025 0.442± 0.022
50 0.429± 0.043 0.241± 0.014 0.518± 0.023 0.406± 0.019

Alarm 37 46 509 10 0.596± 0.040 0.053± 0.004 0.217± 0.022 0.042± 0.002
50 0.431± 0.024 0.044± 0.003 0.186± 0.019 0.037± 0.002

Insurance 27 52 984 10 2.327± 0.100 0.760± 0.038 1.030± 0.071 0.712± 0.059
50 1.376± 0.077 0.508± 0.034 0.943± 0.071 0.650± 0.043

Boerlage92 23 36 86 10 0.388± 0.096 0.148± 0.017 0.201± 0.008 0.096± 0.005
50 0.134± 0.020 0.084± 0.012 0.125± 0.006 0.076± 0.004

Sachs 11 17 178 10 3.188± 0.291 0.757± 0.053 1.444± 0.023 0.582± 0.009
50 2.901± 0.179 0.724± 0.069 1.537± 0.029 0.602± 0.035

Survey 6 6 21 10 0.679± 0.198 0.443± 0.095 0.321± 0.009 0.227± 0.027
50 0.287± 0.108 0.220± 0.074 0.222± 0.012 0.166± 0.042

Cancer 5 4 10 10 0.430± 0.198 0.088± 0.034 0.227± 0.013 0.045± 0.013
50 0.239± 0.140 0.080± 0.043 0.132± 0.013 0.031± 0.009

Earthquake 5 4 10 10 0.512± 0.128 0.069± 0.041 0.251± 0.020 0.026± 0.005
50 0.455± 0.143 0.103± 0.046 0.114± 0.008 0.023± 0.006

Weather 4 4 9 10 2.558± 4.027 0.470± 0.202 2.344± 0.222 0.048± 0.022
50 0.216± 0.082 0.106± 0.060 1.338± 0.166 0.075± 0.033

∗ The first value is K-L divergence, and the second value is mean square deviation of it.

Learning results of ML, CML, MAP, and CBE algorithms
are shown in Figure 3. We can see that the average error of
ML is always maximal; on the contrary, the CBE algorithm
performs best at all data sizes (tested in this set of exper-
iments). The performances of CML and MAP are between
ML and CBE. What’s more, the CBE method without prior
distributions remarkably performs better than the CBE method
using prior distributions, which means that imprecise prior
distributions will hold back learning process.

B. Experiments on Standard BNs

In this part, we learn twelve standard BNs, whose basic
information is listed in Table 1, to compare different parameter
learning methods. The above BNs are available at the BN
repository2 in addition to Boerlage92 [22], and they are widely
used to evaluate learning algorithms. For each BN, data sizes
are fixed at 10 and 50, and we repeat each learning case 20
times to compute the average learning performance. To make
the K-L divergences of learning all the BNs have similar orders
of magnitude, the learning results of the first eight BNs in
Table 1 are further divided by the numbers of parameters. In
addition, the parameter constraints and prior distributions are
synthesized by rules mentioned in previous experiments.

Table 1 shows the learning results for different BNs of ML,
CML, MAP, and CBE (without prior distributions). We can

see that the CBE method achieves the best performances in
experiments for learning Weather, Earthquake, Cancer, Sachs,
Boerlage92, and Alarm BNs at data sizes of 10 and 50. CBE
also overtakes other methods in experiments of learning such
as Insurance and Andes BNs at 10 data, but the CML method
performs better than CBE in the learning case at 50 data. It’s
no denying that the CBE method does not achieve the best
performance in experiments of learning Hailfinder, hepar2, and
Win95pts BNs.

CML method performs better than proposed method on
K-L divergence in some cases. However, it doesn’t mean
estimations of CML are more accurate. K-L divergences are
computed in this paper by following formula:

KL =
∑

θ̂ijk log
θ̂ijk
θijk

When training data are sparse, numerous estimations of CML
are zeros (however, true parameters are often not zeros), which
don’t accumulate the total K-L divergence.

VI. CONCLUSION

We propose a CBE method for parameter learning incor-
porating expert judgments, which is a derivation approach
of the Bayesian estimation. We first establish the posterior
probability distributions of parameters over feasible regions

2http://www.bnlearn.com/bnrepository/
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with limited training data. Then, mean values of the posterior
distributions are taken as parameter estimations.

In the experiments of learning standard BNs, it is proved
that the CBE method performs best in small BNs learning but
not so good in big BNs learning. In fact, a big BN means more
parameters and constraints, which increase the difficulty in
generating sample by MC method. Since rejection/acceptance
approach fails to work, we generate samples using a linear
transformation approach. Because non-uniform samples are
generated by this sampling approach when BNs are big, it
lowers the performance of CBE. What’s more, the computing
way of K-L divergences is in favour of CML method.

For possible future work, improving quality of samples
generating from parameter feasible region may improve the
CBE method.
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