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Abstract—This paper studies the problem of crack detection in
images characterized by high gradient backgrounds. We propose
an extension of a Marked Point Process model which has been
successfully used for wrinkle detection. We show that our method
exhibits state of the art results on a difficult image dataset, by
proposing a robust trade-off between local analysis approaches,
which exploit a limited amount of information around the area of
interest, and global reconnection strategies, which aim to detect
the crack at image level. Additional tests on a standard dataset
show that the proposed method exhibits excellent performance
on images with a more uniform background as well, underlining
its usefulness in varying contexts.

I. INTRODUCTION

A crack has the appearance of a discontinuity in a back-
ground corresponding to the material (asphalt, concrete, etc.).
The detection is hindered by the fact that the background may
be not homogeneous, e.g. due to the presence of some lumps
or roughness of the material. Besides, since the crack is a
thin structure, a major difficulty comes from the fact that it
may easily be concealed by noise. Thus we aim to define a
process able to distinguish between the gradient response due
to background ruggedness and that due to crack presence. Such
a distinction may be provided by specific spatial interactions
between line segments presenting high gradient response.

Marked Point Processes (MPP) have been proposed for
various applications such as road extraction, tree detection or
crowd analysis [1]–[4]. For instance, the ‘candy’ model was
proposed [1] to represent a line segment network such that
(i) alignments and connections between segments are favored,
(ii) unconnected or overlapping line segments are penalized,
(iii) crossings are authorized. Recently, [5], [6] proposed a
MPP model for wrinkle detection, based on the candy model
but different in several senses. In these works, the wrinkles are
modeled as sequences of interconnected line segments, with
the proposed model relying on adapted prior probability and
data likelihood terms. On account of the similarity between
crack and wrinkle physical features, in particular the prior
model about the type of interactions, we have developed a
MPP model for crack detection that nevertheless presents some
specificity for our problem.

Many alternative approaches have been explored in the
literature, which are either local or global in terms of pixel
neighborhood vs. entire image level analysis. An example of
the first type of strategy is percolation [7] which classifies a
pixel depending on the outcome of a simulated percolation

process in its neighborhood. An example of the second kind
of approach is [8]. In this latter, maximum paths (in terms
of significance) are researched through the image, so that the
algorithm of [8] is able to overcome some low contrast parts
of the crack in order to detect a global crack. In this work,
we argue that the proposed approach based on MPP models
offers a robust compromise between a local decision and a
global solution which may occasionally drift from a regular
crack model. A second contribution of our work is that, with
respect to wrinkle detection, we extend the MPP model in
order to cope with structures which exhibit less alignment and
more complex interactions than wrinkles.

II. PROPOSED APPROACH BASED ON MPP MODEL

A Marked Point Process handles a random set of elements,
such that each element has the form of a couple consisting of a
point and a vector of parameters, called a ‘mark’. Usually, the
point represents the position of an object of interest whereas
the mark supplements its geometric description. All the points
pi, i ∈ {1, . . . , n} are included in a compact area that is the
image domain, F ∈ R2. Then, the marks associated to the
elements of F provide the geometrical features that allow us
to specify the object and to evaluate its likelihood from its
appearance in the data image. It also allows for the analysis
of the interactions between marked points in order to evaluate
a global solution (configuration of marked points on F) versus
a prior about favorable configurations.

For instance, a crack will be represented by a group of line
segments that are the marked points, themselves represented
by a point (the segment’s center in our case, but it could
equivalently have been one extremity) and a mark including
two features, namely the orientation and the length of the
line segment. Then, each marked point defines a set of image
pixels so that the likelihood for these pixels to belong to a
crack can be computed (like in any probabilistic classification),
corresponding to the ‘data fidelity term’.

Since a crack is more or less a fine rectilinear structure,
the favorable configurations correspond to close and aligned
marked points. Then, the marked point interactions derive from
the point orientation (given in the mark) and its location (given
by the point coordinates and the length given in the mark).
These geometric interactions provide the prior probability of
the configuration (spatial arrangement), corresponding to the
‘prior term’. Considering a given configuration of marked



points, its probability is finally estimated by the product
between the likelihood term and a prior probability.

Specifically, let us denote wi = (pi,mi) a line segment,
where pi = (xi, yi) encodes the center of the segment, while
the mark mi = (li, θi) encodes its length and orientation. wi
is a realization of the random set of variables taking its values
in S × [lmin, lmax] × [θmin, θmax], with S the image lattice
and [lmin, lmax] and [θmin, θmax] the continuous intervals for
parameters li and θi, respectively. The optimal line segment
configuration should then maximize the posterior probability
defined by the MPP model specified in the next section.

A. MPP model for crack detection
Assuming w is the realization of a Gibbs random set, the

posterior probability density is f(w) ∝ βn(w)exp [−U (w)]
with β the intensity of the point process and U (w) called the
energy function that, in case of pair interactions, writes

U (w) =

n∑
i=1

Ud (wi) +
∑

1≤i<j≤n

Up (wi, wj) . (1)

In [5], the data fidelity term is a sum over the line segment
pixels of the response of the Laplacian of Gaussian (LoG)
filter. In [6], the authors propose rather to consider the direc-
tional response using a steerable filter [9] defined so that a filter
of arbitrary orientation is obtained as a linear combination of
a set of basis filters. If, as in [6], we consider the second
derivative basis at pixel s, G2 (s) =

[
∂2g(s)
∂x2

∂2g(s)
∂x∂y

∂2g(s)
∂y2

]ᵀ
where g (s) is the Gaussian 2D function and vᵀ denotes the
transpose vector of vector v, then the interpolating function
of orientation is [9]:

G2,θ (s) =
(
cos2 θ − sin 2θ sin2 θ

)
G2 (s) . (2)

In our case, we follow the idea of [6] that the data fidelity
term takes into account the line segment orientation. However,
instead of computing the response corresponding to the ‘exact’
line segment orientation, we approximate this latter at ± π

16 .
This allows us to precompute the images I2,θ̃ = G2,θ̃ ∗ I of
the filter response for θ̃ ∈

{
0, π8 ,

π
4 ,

3π
8 ,

π
2 ,

5π
8 ,

3π
4 ,

7π
8

}
and to

obtain the data fidelity term value directly from these images.
Specifically, for a line segment wi with θ ∼= θ̃, the data term
Ud (wi) is the sum of wi pixel values in image I2,θ̃.

For the prior term, we modify the energy proposed in [5],
[6] to take into account some specificities of crack detection:
if the basic idea remains to favor the aligned close line seg-
ments, we stand out from previous work by the neighborhood
definition and the weight of each neighbor in the prior energy
definition. The aim of this prior energy term is to encourage
smoothly connected lines while rejecting occurrences of abrupt
intersection or overlapping between line segments. We first
define the set of interacting segments (called ‘neighbors’) with
given segment wi: a segment wj is a neighbor of wi if the
distance distt (wi, wj) between wi and wj is lower than the
sum of their half lengths, which may be interpreted as an ad-
hoc adaptive threshold:

wi ∼ wj if distt (wi, wj) ≤
li + lj

2
. (3)

In [5], [6], segment distance was simply the distance be-
tween their centers. However, such a distance fails in taking
into account the respective orientations of the segments and
depends on the ‘fragmentation’ of the segments (i.e. the
number of subsegments in which a long segment is sub-
divided). Thus, in our case, distt (wi, wj) is defined from
the actual distance between segments dist (wi, wj), that is
the minimum distance between any couple of points belong-
ing to wi and wj , respectively. dist (wi, wj) is computed
according to [10]. Then, in order to cope with segment
fragmentation, we apply a transitivity property on previous dis-
tances: having computed dist (wk, wl) ,∀ (wk, wl) ∈ w ×w,
distt (wi, wj) = minwk∈wdist (wi, wk) + dist (wk, wj). The
distances distt (wi, wj) are initialized with dist (wi, wj) and
then updated iteratively, until convergence.

Two neighbors wi and wj can interact either ‘repulsively’
or ‘attractively’. In [5], the prior energy term only considers
repulsive neighbors (defined as belonging to a spatial rejection
area) in order to avoid some congested areas having over-
lapping line segments, and does not penalize isolated line
segments. In [6], attractive interaction occurs only between
sufficiently aligned and smoothly connected segments:

wi ∼a wj if
{
θij = min (|θi − θj | , π − |θi − θj |) ≤ θmax,
dij = distt (wi, wj) ≤ dmax.

(4)
For each couple of attractive neighbors, the prior energy

term of [6] maps the marks (mi,mj) onto the interval [0, 1],
thus penalizing neighbors which are farther and less aligned.
However, the term proposed in [6] penalizes multiple neigh-
bors. Since in our case, we want to favor multiple neighbors,
e.g. one neighbor at each extremity, we modify this term in
two ways: firstly, each couple of neighbor marks (mi,mj)
are mapped onto the interval [−1, 0] and secondly, previous
values are weighted by the length of the line segments:

∀ (wi, wj) | wi ∼a wj ,

K (li, lj) =
1

2

[
1

1 + eλ−li
+

1

1 + eλ−lj

]
, (5)

Ua (wi, wj) = −K (li, lj) [φ (dij , dmax)+

φ (θij , θmax)] , (6)

with λ = dmax in our case and φ (x, xmax) =(
1−

(
x

xmax

)2)
×
(
1 + x2

)−1
the Quality Function used

in [6] to map dij or θij values onto [0, 1]. Finally, the prior
energy term is:

Up (w) = β0
∑
i|∀j 6=i,
wi�wj

K (li, lj) + βr
∑

(i,j)|j 6=i,
wi∼wj ,
wi�awj

K (li, lj) +

βa
∑
(i,j)|

wi∼awj

Ua (wi, wj) , (7)

with � denoting the absence of neighborhood relationship, β0,
βr and βa three parameters of the MPP model. The choice of
these parameter values depends on the weight given to prior
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Fig. 1. Toy example with segment neighborhoods shown in gray. For θmax =
π
4

, on the left, 3 out of the 4 interactions are repulsive and 2 line segments
are isolated, whereas, on the right, the 2 segment interactions are attractive.

energy relatively to data fidelity and on the strength with which
we want to reject the isolated segments or the ones exhibiting
repulsive interaction.

Figure 1 shows a configuration example with nine line seg-
ments and four neighborhood relationships (the neighborhood
areas are represented in gray): w1 ∼ w2, w3 ∼ w5, w5 ∼ w7

and w7 ∼ w8 (in this simple case there is no supplementary
neighbourhood relationship added by transitivity), so that
Up (w) = 2β0 + 3βr + βa (Ua (w1, w2)) for θmax = π

4 .

B. MPP algorithm for crack detection

The Reversible Jump Markov Chain Monte Carlo (RJM-
CMC) was proposed [11] to allow comparison (and ‘jump’)
between different configurations possibly having different di-
mensions, i.e. numbers of line segments for our case.

Let us first recall that modifying one line segment wi has
only an impact on a finite subset of energy terms: the data
fidelity term of the modified segment itself U (wi) and the
prior terms of line segments belonging to the disjunction of the
sets of neighbors of wi before and after its modification (one
of these sets being possibly empty when the wi modification is
a ‘death’ or a ‘birth’). Then, the computation of the difference
between global energy after and before modifying wi boils
down to the sum of the differences on impacted energy terms.

Like [5], we use a set of transition kernels that help the con-
vergence of the model toward the solution. However, in [5] the
initialization was good enough (due to the fact that the problem
is different, the authors start from a specific initialization) to
require only transitions which deal with the addition of new
segments relying on already existing segments or extending
(ending) them. In our case, the considered transitions are:

• Birth of a new line segment connecting two other line
segments that are repulsive because of their distance;

• Death of a line segment that is isolated (distance with
the closest line segment is greater than the sum of the
segment lengths);

• Birth of a new line segment connecting two other line
segments wi and wj that are aligned (θij < θmax);

• Birth of a new line segment connecting at least one
extremity of another line segment that belongs to the set
of the large connected components (clusters of connected
line segments);

• Death of a line segment belonging to the repulsive area
of a another line segment (with repulsive area of wi being
equal to the dilation of wi by a linear structuring element
perpendicular to wi and of half length);

• For a given segment, modification of one of its extremities
by moving it in its 8-connectivity neighborhood.

C. Preprocessing

The preprocessing aims at obtaining an image on which
the previous MPP model corresponds better to the crack.
Two phenomena penalize the crack detection. The first one
is the presence of shadows whose borders may present a high
response to derivative filters and whose low radiometric values
may be close to some crack pixel values. The second one is
the presence of some asperities or textons due to the important
roughness of the material. This is in particular the case of
road surfaces or rough plaster walls. These asperities look like
a texture that provides both unwanted response to derivative
filter and some dark pixels because of micro-shadows.

The shadow removal is simply done using background
subtraction technique. To estimate the background first a
morphological closing is applied to the original image to
remove the thin dark structures (cracks and asperities) and
then a Gaussian filtering (σ = 5) is applied to recover large
scale variations on the image. Then, denoting I the original
image, fG(σ) the Gaussian filter, ∗ the convolution, and φ()
the morphological closing operator: I−B = I − fG(σ) ∗ φ(I).

The textons removal is more difficult. Due to light/shadow
phenomenon, they present a dark part and a bright part.
To remove at least the bright part, we perform a functional
geodesic reconstruction of I−B from its copy lowered of the
Otsu threshold value. Let Ĩ denote the obtained image.

Finally, as in [8], an image composition is computed that is a
linear combination between Ĩ and the maximum ratio value of
its derivative response in one direction and the perpendicular
one (see [8] for further details).

D. Postprocessing

A postprocessing step is beneficial for precise crack detec-
tion for two reasons. Firstly, when segment ends are detected
reliably, a min-cost path algorithm between them follows
accurately the actual crack. Once this segment relaxation step
is performed, we compute the average µ of the crack pixels.
Thus, for long (more than 15px) crack segments with more
than two ends, we relax first the path between the most distant
ends, then we check all the secondary smaller paths against
µ and we prune them if they are not dark enough. Then we
identify and try to reconnect independent crack ends by new
min-cost paths; we accept conservatively only the paths which
have an average value lower than µ. This step is important, as
it allows us to apply high-quality connections in some areas
which were not favored by MPP, such as short sinuous paths
between two almost perpendicular crack segments. Finally, in
a last step, we try to connect the path ends with the border of
the image in order to recover potential peripheral crack parts,
and we apply the same test based on µ.



Fig. 2. Crack detection steps on both datasets. Row 1: original images with
ground-truth cracks highlighted in red. Row 2: shadow removal results. Row
3: cracks detected as segments with proposed MPP. Row 4: final results after
post-processing.

Note that both preprocessing and postprocessing are re-
quired for the efficiency of the proposed approach, as they
cope with physical features independent of the MPP part
(radiometric features and connectivity, respectively).

III. RESULTS

The crack dataset proposed by the authors of [12] has been
employed for the experimental tests, from now on referred to
as CTD. It fits particularly well the application since asphalt
textons and other degradation artifacts are commonly present.
In order to show the robustness of the method against different
types of surfaces, i.e. noisy concrete surface, also the dataset
proposed in [13] has been considered, referred to as CnD.

Figure 2 shows two examples of crack detection using the
proposed approach on both datasets. Removing the shadows
allows for a better detection of the crack even if the difference
of contrast with respect to the background is not so high. Then,
the MPP algorithm is applied and the segments which compose
the cracks are well detected as they comply with the energy
minimization statement. In order to better follow the behavior
of the actual cracks and to connect close segments, the post-

processing using path minimization resulted to be particularly
well suited since it exploits intensity local minima to refine the
actual path of the crack, which is usually rather jagged. Please
note that only for CnD, after the described post-processing, a
thickening has been applied, as the ground truth cracks come
with varying widths.

In order to validate our new approach, we compared it
with the percolation based local method of [7], and with
NFA [8]. Figure 3 shows the comparison on four meaningful
images of CTD. Please note that for fairness in the second
row the rough results of MPP segments are shown in red,
while the final results are superimposed in yellow so that it
is easy to see how the post-processing step is able to relax
the MPP model following better the actual cracks. Besides,
in green are shown the new connection paths added by the
post-processing. The percolation method, while having the
advantage of being fast, is not able to discriminate well enough
between actual cracks and asphalt textons on this particular
type of images, since it has been designed mostly for concrete
surfaces, and overall it has difficulties on noisy surfaces. The
NFA approach exploits the NFA criterion to select the paths
that are the most likely to represent the cracks. It is reasonably
appropriate for this type of surface, as in most cases it is able to
precisely find crack paths between intensity local minima due
to the asphalt texture. However, in some cases this becomes
a drawback, as it may find very elongated structures between
textons which are erroneously considered as cracks. NFA has
the tendency to overestimate the cracks paths; conversely, by
using MPP we are able to reduce the number of false positive
segments, or at least their lengths, at the same time almost
without influencing true detections. Another advantage of the
new MPP approach is that it overcomes the NFA results in
presence of alligator cracks (like in 4th and 5th columns),
which are usually the most difficult ones. Indeed, the particular
statement of energy minimization that encourages segments
with multiple neighbors is the key, with respect to NFA which
focuses more on obtaining long paths.

As already said, this work focuses more on crack detection
in presence of particular structures like asphalt textons in the
images. However, it is worth performing a comparison also
on CnD, to show the robustness of the method against differ-
ent surfaces. In particular, Fig. 4 proves what we expected:
percolation works reasonably well on this type of images,
being able to detect also thinner cracks, even if sometimes
false positives are present. NFA and MPP are still able to
detect the most important wider cracks, and they also present
less false detections. However, they generally miss the thinner
cracks, and this correlates with our aim of being more robust
to background imperfections.

In order to compare quantitatively the results of these
different approaches on both datasets, precision and recall
parameters are computed at different dilation scales, as in
[8]: true positives and false positives are computed comparing
the detection results with incrementally dilated ground-truth,
while false negatives are computed comparing the ground-truth
with an incrementally dilated version of the detection results.



Fig. 3. Comparison between different crack detection methods on CTD. Row 1: original images with ground-truth cracks highlighted in red. Row 2: results
with proposed MPP. Row 3: results with percolation. Row 4: results with NFA.

Fig. 4. Comparison between different crack detection methods on CnD. Row
1: original images with ground-truth cracks highlighted in red. Row 2: results
with proposed MPP. Row 3: results with percolation. Row 4: results with
NFA.
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Fig. 5. Precision-recall plots on a) CTD and b) CnD.

Specifically, at scale 0 no dilation is performed neither in
ground-truth nor in the results, while dilation scale 9 means
that we allow up to 9px distance between ground-truth and
detected cracks. This allows us to distinguish between errors
due to a slight mislocation of the crack and actual non-
detections or false detections. Figure 5a shows the precision-
recall plot at different scales on the CTD, while Fig. 5b
shows the plot on CnD. We may notice how MPP overtakes
percolation precision on both datasets, and this agrees with
the fact that percolation is less robust against false positives.
MPP algorithm is able to exceed NFA precision and recall on
CTD. Indeed, as we said, MPP usually does not find false long
segments like NFA, allowing for a better precision, and at the
same time it works particularly well in presence of segments
with multiple neighbors, allowing for a better reconstruction of
the crack and therefore higher recall. In particular, considering
a reasonable dilation scale of 2px on CTD, precision and recall
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Fig. 6. a) Recall and b) precision histograms on a subset of 32 images of
CTD.

Fig. 7. Crack detection on difficult images due to the presence of aligned
noise. Row 1: original images with ground-truth cracks highlighted in red.
Row 2: results with MPP.

are quite high, reaching on average respectively values of
90.5% and 81.6%. Nevertheless, allowing just 1px mislocation
of the cracks, MPP exceeds NFA also on CnD, even if looking
at the overall performance it is possible to notice that NFA has
better recall since in some cases it succeeds in detecting thin
cracks, as in the last image of Fig. 4.

We also compare our MPP approach and the CrackTree
algorithm proposed in [12], as both are based on the same
idea of determining seeds and then trying to connect them in
longer structures using segments. We found out that our results
are comparable with CrackTree. In fact, considering CTD and
allowing for 2px mislocation, they obtain an F-measure of 0.85
compared to 0.86 of the proposed method, 0.83 of NFA and
0.65 of percolation.

Lastly, in order to identify the main difficulties of the MPP
approach, we created two histograms for precision and recall
values at dilation scale 2px on a subset of 32 images of CTD,
shown in Fig. 6. The recall histogram is in agreement with our
expectations: with a min value of 58.6% and a max value of
98.7%, the average value is around 80%. Conversely, looking
at the precision plot in Fig. 6b, we note that the average value
is strongly penalized by only 2 (out of 32) values.

Figure 7 investigates more thoroughly two images which are
challenging for our method. The reason of this performance
drop is easily explainable since these two images present

aligned noise, which can be misleading and bring false de-
tection, resulting in lower precision. However, we can also
notice a trade-off due to the post-processing step in the first
image. While improving the detection and the accuracy of the
crack in the upper part, post-processing tends to connect false
positive segments in the lower part of the image, thus having
a notable impact on the final result.

IV. CONCLUSION

We have presented a MPP model based method for crack
detection which benefits at the same time from a local analysis
related to the data fidelity term, and from a more extended
spatial inference provided by the prior energy term. Thanks
to the coupling between the two terms, the proposed method
is able to cope with detections on noisy surfaces while at
the same time avoiding false detections specific to min-cost
path based methods. A final post-processing step allows us
to relax the MPP model and to approach more accurately the
crack configuration. Regarding the validation of the method,
we show that we obtain state of the art results on two different
datasets of varying difficulty. The perspectives of our work
relate to the improvement of the computational cost, and
to the implementation on hybrid architectures for real-time
applications.
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