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Abstract—Pain is a transient physical reaction that exhibits
on human faces. Automatic pain intensity estimation is of
great importance in clinical and health-care applications. Pain
expression is identified by a set of deformations of facial features.
Hence, features are essential for pain estimation. In this paper,
we propose a novel method that encodes low-level descriptors and
powerful high-level deep features by a weighting process, to form
an efficient representation of facial images. To obtain a powerful
and compact low-level representation, we explore the way of
using second-order pooling over the local descriptors. Instead
of direct concatenation, we develop an efficient fusion approach
that unites the low-level local descriptors and the high-level deep
features. To the best of our knowledge, this is the first approach
that incorporates the low-level local statistics together with the
high-level deep features in pain intensity estimation. Experiments
are evaluated on the benchmark databases of pain. The results
demonstrate that the proposed low-to-high-level representation
outperforms other methods and achieves promising results.

I. INTRODUCTION

Pain expression is one of the vital signs in health related
condition evaluation. Automatic estimation of pain aims to
identify and quantify pains from visual sources such as images
or videos, and thus plays a key role in real-time health-care
applications. However, pain is difficult to capture and quantify,
owing to its transience and subjectivity. Besides, the variations
in illumination, head poses, and articulation among different
people make the problem much more challenging. Usually
the “golden standard” of pain estimation is self-report mea-
surements, i.e., subjects are asked to describe the experienced
pain at certain levels. Nevertheless, this method suffers from
subjective biases [1] and cannot be applied to the people who
are not able to talk, such as infants and unconscious people in
ICU. Major advances on the measurement of pain are made by
Ekman and Friesen’s observational system - the “Facial Action
Coding System (FACS)” [2] and Prkachin and Solomon’s
“Prkachin and Solomon Pain Intensity Metric (PSPI)” [3]1.
Yet this kind of observer rating methods are time-consuming
and requires certified experts to annotate face images. Under
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1PSPI is currently the only quantification metric of pain intensity from

observer view on a frame-by-frame basis.

this circumstance, automatic pain estimation is indispensable.

Over the past decades, with the booming advances in
machine learning and computer vision, considerable progress
are achieved on automatic recognition of pain from facial
images. Since local descriptors are the fashion of capturing
the local properties in image patches, a number of researches
deploy local descriptors with various classifiers to identify
pain from facial images [4], for instance, Discrete Cosine
Transform (DCT) [5], Local Binary Pattern (LBP) [6], and
Histogram of Oriented Gradient (HOG) [7]. To form the global
representation of an image, a pooling stage is commonly
used to combine the local features. Most widely used pooling
techniques compute the first-order statistics via an average
or maximum operation over individual feature dimensions.
These methods perform well in practice when it is combined
with appropriate coding methods [8]. However, the first-order
pooling discards the inter-correlations among the individual
local features and processes each dimension of the local
features independently. By describing the correlations among
different local features, a few works [9]–[15] demonstrate that
second-order pooling can outperform the commonly used first-
order pooling methods. Hong et al. [16] investigate different
modes of second-order pooling to describe the global facial
features with only a few feature dimensions.

Many works employ fusion methods to build global rep-
resentations. Fusion methods are commonly categorized into
early fusion (a.k.a. feature fusion) and late fusion (a.k.a.
decision fusion). Early fusion is usually applied to concatenate
multiple features before classification, while late fusion refers
to the judgment of the output scores from different classifiers.
Lucey et al. [17] combine shape features together with ap-
pearance features at feature level to achieve improved results
for pain monitoring. Kaltwang et al. [4] propose a three-stage
approach, where they train their classifiers using Relevance
Vector Regression (RVR) with three local descriptors sepa-
rately. In the third step they employ late fusion: the outputs
from previous regressors are combined and fed into a new
RVR to obtain the final prediction. These fusion methods
are simple and easy to implement. However, since different
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Fig. 1. Framework of the proposed method. Our approach contains three main parts: 1) extracting low-level (local) features from image patches and
assembling them using second-order pooling method; 2) obtaining high-level representations via deep convolutional neural network; 3) integrating the low-
level and high-level representations by a weighting process.

features convey different types of information, for specific
tasks, multiple features should not be treated equally in the
fusion stage. Recently, research attentions have moved to pain
intensity estimation by using deep features from, for example,
the recurrent convolutional neural network (RCNN) [18] or
the deep convolutional neural network (CNN) [19]. They are
semantically high-level features. However, the advantages of
the low-level descriptors (local descriptors) and the high-level
representations (deep features) have not yet been integrated.

To fill this gap, in this paper, we propose a weighted method
to explore and incorporate the second-order local features
and the deep features. Our method is applied to the task of
continuous pain intensity estimation and achieves promising
results.

The contributions of this paper are two-fold: 1) We develop
the efficient second-order pooling method for a set of local
descriptors extracted from facial images. Particularly, we take
advantages of symmetric positive definite matrices that form
the Riemannian structure, to assemble sets of local features,
while preserving their inter-correlations. 2) We incorporate
the low-level descriptors with high-level deep features by
an efficient weighting method, in conjunction with linear
classifiers, which further enhances the performance of pain
intensity estimation and the simple implementation also allows
for scalability in the number of features.

II. RELATED WORK

The changes in facial appearances could be useful cues
for pain expression recognition [20]. Facial Action Coding
System (FACS) [2] pinpoints this correlation. FACS is used to
describe the corresponding correlation between different facial

muscle movements and facial expressions described by 44
independent action units (AU). Later, Prkachin and Solomon
[3] propose the Prkachin and Solomon Pain Intensity Metric
(PSPI), where pain is defined as the sum of the intensities
of brow lowering, orbital tightening, levator contraction, and
eye closure (four core AUs that are most related with pain).
This metric is able to discern among 16 discrete pain levels
on a frame-level basis. Early researches on pain analysis
focus on the recognition from static images [21] and on
posed expressions [22] which cast the light on automatic
identification of pain. During the past years, the advent of
UNBC-McMaster Shoulder Pain Database Archive [23] has
propelled the research field toward analyzing spontaneous pain
expression [4], [17], [24]–[32].

The methodologies used in estimating spontaneous pain
vary across studies. Generally, the key to successfully identify-
ing pain is the robust representations, where local descriptors
have exhibited its powerful ability on capturing discriminative
features from image patches on pain expressions [4], [33].

Local descriptors encode facial features from image pixels
into the form such as histogram (HOG), statistics, orthogonal
transform (DCT), and have shown their discriminative power
in various face analysis tasks. Brahman et al. [34], Ashraf et
al. [28], and Lucey et al. [23] use local low-level (DCT) or raw
features (AAM shape features) as descriptors to identify pain
and no pain from images. Extending pain detection as a multi-
level classification problem, Hammal and Cohn [35] extract
appearance features to classify pain intensities into a four-level
scale. It is worth noting that Kaltwang et al. ’s work [4] is the
first that estimated the continuous pain intensities of the entire
16 levels of PSPI metric, by applying shape features, local
descriptors of Local Binary Patterns (LBP), Discrete Cosine



Transform (DCT) and their combinations.
Recently, high-level representations such as the features

extracted from Convolution Neural network (CNN) have been
implemented successfully on computer vision tasks [36].
CNNs could grasp subtle information within image patches
by applying a set of filters and build a global representation
via a set of consecutive layers with different activation and
pooling functions. Rodriguez et al. [19] apply a very deep
convolutional neural network (VGG-16) [37], which is pre-
trained on millions of face images, together with Long Short-
Term Memory (LSTM) [38] to estimate pain intensity. Zhou
et al. implement the Recurrent Convolution Neural Network
(RCNN) as a regressor to predict the frame-level pain intensity.

Many of the existing pain estimation methods utilize fea-
tures of a particular type. However, each type of representation
has its advantage in a speciality. For instance, low-level repre-
sentations are robust to illumination variations and registration
errors, while high-level representations are adept at generating
features that are semantically interpretable. Therefore, it is
desirable to bond low-level and high-level representations
so that they provide complementary information. Currently,
there is no such research that attempts to incorporate local
descriptors with deep features for pain intensity estimation.

In this paper, we come right from this perspective. To
form our low-level representations, we use the combination of
several local descriptors. Then through a weighting process,
the low-level representations are integrated with the deep
features to generate the global representation of the face. Ex-
perimental results show that our integrated low-to-high-level
representation 2pooldeep can efficiently exploit discriminative
information among local descriptors and deep features, and
lead to the boost of performance compared to other fusion
methods.

III. THE PROPOSED FRAMEWORK

The proposed framework can be summarized in the diagram
as depicted in Fig. 1. As we can see in Fig. 1, our pain intensity
estimation framework mainly consists of assembling the low-
level descriptors, extracting deep features, and integrating the
low-level and high-level representations through a weighting
procedure.

A. The assembled low-level descriptors

In the case of combining local descriptors, the existing
works usually aggregate different descriptors by simple con-
catenation, which may not be capable of capturing higher cor-
relations between local feature pairs. Encouraged by second-
order pooling from [11] and [16], we formulate it into our pain
estimation framework to reveal the correlations among local
descriptors.

1) Local descriptors: The local descriptors that we use
consist of statistics-based and histogram-based descriptors. We
assume that an image is represented by I , and R is the region
inside I , with the size of W × H . x = (x , y) is the pixel
inside region R, where x and y are the pixel positions.

Statistics-based descriptors: For each pixel x, a set of
raw features fr(x), fr(x) ∈ Rn, are first extracted, which
describe the properties of pixels, such as the intensity, the
first and second-order partial derivatives with respect to the
pixel locations. Here, we use the following raw feature sets:
fr(x) = [I, |Ix|, |Iy|, |Ixx|, |Iyy|]T , where Ix and Iy are the
horizontal and vertical derivatives, Ixx and Iyy are the second-
order partial derivatives. We then choose the statistics-based
local descriptor [10] to perform on fr(x) in region R, which
first computes the covariance matrix across each dimension of
fr(x). The covariance matrix of fr(x) in region R is defined
as:

G(R) = cr
∑
x∈R

(fr(x)− µr)(fr(x)− µr)
T, (1)

where cr is the normalization factor, µr is the mean value
of {fr(x)}x∈R. To obtain G(R), integral image [9] is applied
to achieve fast implementation. Due to the symmetric posi-
tive define property of covariance matrix, the statistics-based
descriptor fs(R) is finally obtained by choosing the upper
triangular entries of G(R) into a vector.

Histogram-based descriptors: The Histogram of Image Gra-
dient Orientation [16] is used as histogram-based local descrip-
tor fh(R). For each region R, the statistics-based descriptor
fs(R) and histogram-based descriptor fh(R) are concatenated
to form the assembled low-level descriptors:

f(R) = [fs(R); fh(R)]. (2)

We then apply the second-order pooling to f(R) to obtain a
global representation. Here we name the second-order pooling
feature of an image as 2poolfeat.

2) Second-order average pooling: We focus on second-
order interactions (such as the outer product) with the average
operation, which is performed on f(R). There are two main
stages of second-order average pooling, namely, the pre-
defined mapping and the non-linear mapping.

Pre-defined mapping: Second-order central moment [39] is
first applied on f(R) to obtain the pre-processed feature vector
p(R). Specifically, central moments are the moments about
variable’s mean. Therefore, the pre-processed feature vector
p(R) is defined as:

p(R) = f(R)− µ, (3)

where µ is the mean of f(R). Normalization is then applied
on the features, thus the pre-defined mapping here is named
as normalized central moment.

We then define the second-order average pooling G2Avgp

as the matrix:

G2Avgp(I) = c
∑
R⊂I

p(R)p(R)T, (4)

where c is the normalization factor.
Non-linear mapping: Logarithmic mapping [22] are applied

to second-order average pooling to form non-linear mapping.
Since the second-order average pooling results in symmetric



positive definite (SPD) matrices, they form a Riemannian
manifold [12]. This could be mapped to an Euclidean tan-
gent space via logarithmic mapping under strong theoretical
guarantee [22]. Hence, the non-linear mapped second-order
average pooling of image I is defined as:

g2pool(I) = logm(G2Avgp(I)). (5)

As G2Avgp(I) is symmetric, we form the final assembled
low-level descriptor by concatenating the elements in the upper
triangle of G2Avgp(I).

B. High-level descriptors

In parallel, we compute our high-level representations
through a type of Convolution Neural Networks (CNN) [40],
which are variations of multilayer perceptrons (MLPs) inspired
by biological structure of neural connections in brain. Typ-
ically, CNN is a sequence of Convolutional Layer, Pooling
Layer and Fully-Connected Layer, stacked on top of each
other, and every layer transforms a volume of data (in ten-
sor form) of activations to another through a differentiable
function. Different from the traditional neural network, CNN
connects neurons to a local region of the input volume
(spatially sparse connectivity), and share the parameters across
the entire visual field among a set of filters (i.e., the same
layer). These constraints of the model enable CNNs to achieve
faster and better generalization on vision problems.

To obtain the high-level representation, we feed the pain
data (frames in each video) into VGG-16 [37], a very deep
CNN that has shown its power through a number of visual
tasks. Since we want to obtain the representation of the pain
frames, the fully connected layer is removed, and the outputs
of fc6 layer are chosen. This process results in a 4096-d
feature vector gvgg ∈ R4096 representing each frame.

C. Integration of low-level and high-level representations

Each type of descriptors has different properties and the
power of robustness against the impacts from the variations
in subject identity, head pose, illumination conditions. Local
representations encode features in patches which are defined
in terms of the facial landmark locations. The high-level rep-
resentations convey facial information through a hierarchical
procedure. By integrating multiple types of representations, we
can exploit the potential facts from face images.

We employ a weighted method to incorporate the low-
level and high-level features. To make the evaluation more
reasonable, we normalize each feature by applying L2 norm.
Let ĝ2pool and ĝvgg be the normalized feature for g2pool and
gvgg, and the integrated low-to-high representation of image
I is defined as:

g = [ω0ĝ2pool; ω1ĝvgg], (6)

where 0 < ω0 < 1, 0 < ω1 < 1 are the weighted coefficients
of ĝ2pool and ĝvgg , and constrained by ω0 + ω1 = 1. In this
research, the parameters ω0 and ω1 are obtained empirically:
we try different sets of ω0 and ω1 and choose the pair that
achieves the best performance. Having obtained ω0 and ω1, the

local and deep features can be effectively combined. Note that
in practice, the features using our method are not limited to the
two described above. Indeed, other combinations of features
can be employed by our weighted integration method.

IV. EXPERIMENTS

We focus on evaluating our method on the UNBC-McMster
Shoulder Pain Archive Database [23] and view pain intensity
estimation as a regression process.

A. The UNBC-McMaster Shoulder Pain Archive

The UNBC-McMaster Shoulder Pain Expression Archive
Database [23] is a widely used database for pain estimation.
It contains in total 200 video sequences of 48,398 FACS
coded frames from 129 volunteers (63 males, 66 females).
The subjects are of various occupations and age groups. These
subjects are self-identified as suffering from shoulder pain
and the videos are recorded when they are experiencing a
series of active and passive motions of their affected and
unaffected limbs. In this database, each frame is AU-coded
by certified FACS coders, and the corresponding PSPI scores
are computed in 16 discrete levels (0-15), according to the
following equation:

Pain = AU4+(AU6||AU7)+ (AU9||AU10)+AU43. (7)

As the database is unbalanced across the 16 levels, many
previous researches manually balance the data by down-
sampling the majority class (no pain). In our experiments,
we utilize a weighted loss function during training, to learn a
better model.

B. Experimental Settings

To mitigate the influence of possible inconsistent colors and
poses across the videos included in the database, the first step
of our approach is to segment the face region from each video
sequence. For that purpose, we employ part of the 66 facial
landmarks detected by Active Appearance Model (AAM) [41],
which are provided by the database publisher [17]. We fix a
set of key landmark points which consist of the positions of
left eye, right eye, the outermost points of left and right side
of the face, and the points on the bottom of jaw. By utilizing
AAM landmarks, it is straightforward to track faces along the
video. The facial regions are then cropped from each video
frame according to the key landmarks.

We evaluate the performance of the proposed feature inte-
gration method on the continuous pain intensity estimation.
To achieve this, we learn a regression function which maps
the features into corresponding pain intensities. The function
is learned by the linear L2-regularized L2-loss Support Vector
Regressor (SVR). For fast computing, we adopt the Liblinear
package tool [42]. The Mean Squared Error (MSE) and Pear-
son Correlation Coefficients (PCC) are used as the evaluation
measurements.



C. Experimental Results

We perform the proposed weighted integration 2pooldeep of
the two features: 2poolfeat and vgg, and compare the results
from each of them to see the enhancement of performances.
In all our experiments, a leave-one-subject-out cross validation
procedure is applied. To be more specific, we train our model
using the data from 24 subjects and test on the left one. The
mean MSE and mean PCC are computed across all subjects.
For training the SVR, the best c is selected through a loop
search on training data.

Following [16], each input frame is divided into 8× 8 non-
overlapping blocks with a resolution of 16×15. The 2poolfeat
is then computed and vectorized into a feature vector as the
low-level representation of the frame. After that, L2-norm is
applied on the feature vector. We tried different parameters of
HIGO (e.g., 4bin, 8bin), and reported the best in this paper.
In addition, we also evaluate the performance of single deep
feature vgg, together with linear SVR, as the baseline method
of high-level representations.

For a fair comparison with the state of the art, we only
include the methods that utilize the whole database with simi-
lar evaluation methods. However, the evaluation measurements
may still differ from researches. For instance, Kaltwang et al.
[4] mention that their MSE and PCC are computed per subject
and per sequence and correspondingly weighted by the number
of frames in each sequence. In our experiments, MSE and
PCC are computed for each subject, and the average MSE
and PCC across subjects are reported. In addition, to better
reveal the actual performance on test data, we also introduced
a measurement that calculate the MSE and PCC weighted by
the ratio of test samples and all the samples, denoted as SMSE,
SPCC.

As we can see in Table 1, comparing to the low-level
features 2poolfeat and the deep feature vgg, our proposed
method 2pooldeep achieves the best performance2, showing
its power in incorporating the potential information between
low-level local descriptors and the high-level deep features.
In addition, vgg obtains slightly better results than 2poolfeat,
which indicates the power of high-level representations.

In Table 2, we report the results into two parts, the upper
rows are the comparisons of the single feature performances
with the state of the art, and the bottom three rows present
the methods that combine multiple features. As the results
indicated in Table 2, among all the low-level single fea-
tures, 2poolfeat outperforms other single features, showing the
advantage of utilizing second-order information. For feature
integration, it can be seen that the proposed 2pooldeep obtains
the promising performance with average MSE and PCC of
1.446 and 0.520, respectively, indicating our weighting method
is highly discriminative. Compared to [4], where they fuse the
outputs of three local descriptors that are treated equally, we go
one step further, to incorporate low-level descriptors with high-

2The reported results of 2poolfeat [16] is slightly better than the one imple-
mented in this paper. This is caused by the different ways of pre-processing
which has showed the importance of face alignment and registration.

TABLE I
THE PERFORMANCE OF THE PROPOSED METHOD

Features MSE PCC SMSE SPCC

2poolfeat 1.636 0.366 1.453 0.350

vgg 1.553 0.523 1.470 0.495

2pooldeep 1.446 0.520 1.325 0.504

TABLE II
PERFORMANCES COMPARED TO THE STATE OF THE ART

Features MSE PCC

PTS [4] 2.592 0.363

DCT [4] 1.712 0.528

LBP [4] 1.812 0.483

Hessian Histograms [31] 3.760 0.250

Gradient Histograms [31] 4.760 0.340

vgg 1.553 0.523
2poolfeat 1.636 0.366

PTS+DCT+LBP(RVR) [4] 1.804 0.502

Hes+Grad [31] 3.350 0.410

2pooldeep (ours) 1.446 0.520

level deep features, and consider their different characteristics
via a weighting process. As a result, our proposed 2pooldeep
achieves improved performance. With regard to encoding the
inter-correlation among local descriptors using higher-order
statistics, we also obtain superior results, compared to [31].
Florea et al. [31] combine gradient information with Hessian-
based histogram, whereas we consider extracting the invariant
features from several local descriptors at the same time and
uniting them by second-order average pooling.

V. CONCLUSION

Automatic pain intensity estimation is of great importance
since it is vital for the intelligent health-care and can be
applied in both clinics and home cares. In this paper, we
introduced a discriminative weighted approach that integrates
second-order pooling based low-level descriptors with high-
level deep representations. Different from traditional feature
combination methods, our weighting approach is able to cap-
ture the most important facial cues from higher-level semantic
representations together with the low-level local ones that
describe the statistical attributes of the face images. Besides,
it is simple to implement, requiring few parameters, and
can obtain high estimation performance in conjunction with
linear regressors. Furthermore, instead of fusing one specific
local descriptor with deep features, we also presented second-
order pooling procedures for a set of local descriptors, which
can squeeze the redundant information while preserving their
pairwise correlations. The experimental results on the bench-
mark pain database suggest that our method outperforms the
previous works that employ fusion methods. Considering the
importance of facial dynamics throughout time, and with the
encouraging results, we plan to extend the method to fully



exploit the temporal information in video sequences for better
performance in future works.
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