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Abstract—This paper is concerned with the problem of how to
better exploit 3D geometric information for dense semantic image
labeling. Existing methods often treat the available 3D geometry
information (e.g., 3D depth-map) simply as an additional image
channel besides the R-G-B color channels, and apply the same
technique for RGB image labeling. In this paper, we demonstrate
that directly performing 3D convolution in the framework of a
residual connected 3D voxel top-down modulation network can
lead to superior results. Specifically, we propose a 3D semantic
labeling method to label outdoor street scenes whenever a dense
depth map is available. Experiments on the ‘“Synthia” and
“Cityscape” datasets show our method outperforms the state-of-
the-art methods, suggesting such a simple 3D representation is
effective in incorporating 3D geometric information.

I. INTRODUCTION

Semantic labeling (semantic segmentation) aims to assign
class labels (e.g., “cars”, “road”, “building”, “pedestrian”)
to pixels in an image. It is an important task in computer
vision and pattern recognition, which has found wide-range
applications in the areas such as autonomous driving [1], robot
SLAM]2], and augmented reality [3].

Deep Convolutional Neural Networks (CNNs) have gained
tremendous success in almost all high-level vision tasks such
as image classification, object detection, as well as semantic
labeling [4][5][6]. The 2D convolution is defined in the image
coordinate, where the filter is applied in the neighborhood
defined by image pixel distance. Deep encoder-decoder (SegNet
[5], dilated convolution (DeepLab-LargeFOV [6]) have also
been proposed under the same framework. The success of
these models mainly lies in their general modeling ability for
complex unseen visual scenes.

To further improve the performance, deeper and wider
networks [7]] have been proposed, which require massive labeled
data during training. Even though these models have achieved
state-of-the-art performance on various benchmarking datasets,
they do not harness the full potentials of available depth/3D
clues for semantic segmentation. Geometric information pro-
vides crucial and discriminative semantic cues for color images.
Depth maps generally provide complement information to color
images, where the 3D structure of the observed scene has been
encoded naturally [8]. Therefore, semantic labeling will benefit
from the availability of depth information. For indoor scenes,
Hazirbas et al.[8] proposed a deep auto-encoder network for
semantic labeling, where the encoder consists of two branches
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of networks that simultaneously extract features from color

and depth images and fuse depth features into the color feature

maps as the network goes deeper. Furthermore, Ma et al.[9]]
proposed to leverage the consistencies between multi-view
semantic labeling.

However, most existing works have focused on indoor scene
labeling where the size of the scene is limited. For outdoor street
scene semantic labeling using depth information is difficult
due to the following reasons: 1) difficulty in accurate depth
acquisition for outdoor scenes; 2) large variation in scene scales;
and 3) lacking of outdoor training datasets with dense depth
information.

In this paper, we advocate the benefit of using 3D information
for outdoor labeling, and propose a simple and efficient way
to use the 3D information. Specifically, we propose a direct
way to represent RGB-D image in its natural 3D space, i.e.,
the way human sense the surrounding 3D world. Given a
color image and the associated depth map (from stereo vision
or from LIDAR), we transform the color image into 3D
voxel space defined by the 3D position of each pixel, which
enables subsequent 3D convolution to cater the 3D geometry
in extracting semantic feature maps and thus achieves 3D
geometry aware semantic labeling.

To learn a geometry-aware representation, we propose a
light-weight 3D Res-TDM (Residual connected Top-Down
Modulation) structure that can squeeze 3D geometric infor-
mation from depth map and own high resistance to noise
and errors. We have performed experiments on the SYNTHIA
dataset with ground truth depth map and the Cityscape dataset
with computed disparity map. Experimental results demonstrate
that our method outperforms the state-of-the-art semantic
labeling methods, which indicates the success of our 3D
voxel representation in effectively and efficiently encoding
3D geometric information.

The main contributions of the paper can be summarized as:
1) A natural and direct 3D representation to encode RGB-D

data, thus representing the semantic cues in 3D;

2) 3D convolution to exploit the geometric constraint for
semantic labeling, enabling 3D geometry aware semantic
labeling;

3) A light weighted 3D res-TDM structure that can squeeze
3D geometric information from depth map and own high
resistance to noises and errors.



II. RELATED WORK

Semantic labeling: Before the era of deep learning, semantic
segmentation has been widely formulated as CRF with hand-
craft features and low-level vision cues. The breakthrough in
deep learning has also been brought to semantic labeling to
learn the nonlinear mapping from image to dense labeling in
an end-to-end manner. The most noticeable deep convolutional
network based semantic labeling method is FCN[4], which
takes advantage of existing image classification architectures
[LO] [11]] [12]. However, the decoder phase of FCN is relatively
simple that makes it difficult to train. SegNet[3] tackles the
above weakness by using an auto-encoder structure. Dilated
convolution [6] has also been introduced to effectively enlarge
the field of view of filters to incorporate larger context
without increasing the number of parameters or the amount of
computation.

RGB-D semantic labeling: Depth information has been
used as an important cue to refine semantic labeling in computer
vision [13]]. Zhang et al.[14] designed hand-crafted depth
features such as surface normals, height above ground and
neighboring smoothness and put them into a classifier. Saurabh
et al.[15] geocentrically encoded depth into disparity, height
and angle as a HHA representation and proposed a 2.5D
proposal for object detection and semantic segmentation. Lai
et al.[[16] utilizes HMP3D features in an MRF framework
to label objects in 3D scenes. More recently, Li et al.[17]
fused contextual information from RGB and depth channels
by stacking convolutional layers with an LSTM layer, which
memorizes both short- and long-range spatial dependencies in
an image along vertical direction. Another LSTM-F layer has
also been used to integrate contexts from different channels
and bi-directional propagation is performed to fuse vertical
contexts. Hazirbas et al.[8] proposed a simpler network with
auto-encoder style, where two encoders are used to extract
features from RGB image and depth image individually and
one decoder is applied to decode RGB-D channels. Extracted
depth features are fused with RGB in every encoder layer. In
these works, color features and depth features are coupled in
a human-designed way, which may fail to exploit the strong
correlation between color image and depth map.

3D convolution: Volumetric (i.e., spatially 3D) convolution
has been successfully used in video analysis ([18]]). VoxNet
[19] and 3D ShapeNet [20] are two pioneer works in applying
3D convolution on voxelized 3D shapes. Very recently, Song
et al.[21] introduced 3D voxel representation of volumetric
occupancy and simultaneously performed scene completion
and scene parsing for indoor scenes. However, both works
only preserve 3D structure information for object recognition
and discard color information in 3D convolution. Moreover,
the output resolution of [21] is only 36 x 60 x 60, which
is insufficient for outdoor applications and it requires large
labeled data for network training. Multi-view strategy has also
been leveraged to exploit 3D geometry information. MVCNN
[22] projects 3D point clouds onto different image planes and
converts each view image into CNN features. However, this

strategy could not be applied to outdoor semantic labeling task
straightforwardly due to the difficulty in warping small objects
between different views.

By contrast to the above works, we propose to make use
of color information as well as 3D structural information for
dense semantic labeling under an unified framework. Our light-
weight network architecture also allows us to increase the
output dimension with a reasonable scale and can be trained
from scratch with only thousands of samples.

III. OUR APPROACH

Here, we describe our geometry-aware semantic labeling
framework by performing 3D convolution in the framework of
3D voxel convolutional neural network. First, by contrast to
existing methods that simply treating depth map as an additional
channel besides the R-G-B channels, we represent the input
RGB-D images in 3D voxel representation, where each voxel
is associated with color. Then a top-down module is proposed
to exploit the rich 3D geometric information for outdoor scene
semantic labeling, where 3D convolution is performed to extract
3D geometry aware features.

A. 3D Representation

Given RGB-D images, existing methods either represent
the generic 3D point clouds with volumetric or multi-view
representation. The volumetric representation encodes a 3D
shape as a 3D tensor of binary or real values while the multi-
view representation encodes a 3D shape as a collection of
renderings from multiple viewpoints. However these represen-
tations are mainly designed for indoor applications and cannot
cope with outdoor scenarios for the following reasons : 1)
difficulty in accurate depth acquisition; 2) large variation in
scene scales; and 3) lack of outdoor training dataset with dense
depth information. Furthermore, for a typical driving scene, the
depth ranges from 0.5 meters to infinity (i.e., the sky), which
makes it impossible to discretize depth values into a certain
range. Therefore direct voxelizing in 3D space for outdoor
street scene is infeasible.

To cater the above difficulties, we propose a new and
yet direct 3D voxel representation for outdoor street scenes.
Specifically, instead of resorting to the XY Z space for 3D
point clouds, we propose to combine the image coordinate and
the disparity directly, thus UV D space, where (U, V') index
the 2D image coordinate while D indexes the discrete disparity.
At a first glance, this 3D voxel representation may introduce
severe distortion in 3D representation. Here we demonstrate
that while providing simplicity in representation, the UV D
3D voxel representation also owns much desired geometric
property as in the original XY Z space.

Theorem 1. Any order curve in the XY Z 3D space corre-
sponds to a 3D curve with the same order in the UV D 3D
space.



Proof. Without loss of generality, we take the second order
surface in 3D as an example. A second order surface in the
XY Z 3D space is defined by the following equation:

(X:, Vi, Zi, 1A[X,,Y;, Zi, 1) =0, (D

where (X;,Y;, Z;) defines the 3D points on the surface and
A € R*** indexes the 3D surface. The UV D space and the
XY Z space are connected via perspective projection:
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while f,b define the transformation from disparity d; to 3D
coordinate Z;. By substituting these relations into the 3D
surface and re-organizing the equation, we have
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It is thus clear that a second order surface in XY Z space has
been transformed to another second order surface in UV D
space. The above proof could be extended to any order 3D
surface directly. O

Therefore, we can conclude that any order parametric
surfaces defined in the XY Z space have a corresponding
surface of the same order in the UV D space. In other words,
the transformation from XY Z space to UV D space is curve
order preserving.

B. 2D convolution VS 3D convolution

State-of-the-art semantic labeling methods use deep convo-
lutional network to learn the nonlinear mapping from image to
dense semantic labeling, where the convolution is conducted
in a 2D manner. As the neighboring relation is defined on the
image plane, the 2D convolution may fail to extract feature with
3D geometry aware. Instead, 3D convolution in the 3D voxel
space could integrate the appearance cues in 3D geometry aware
manner, i.e., the 3D distance has been catered in convolution.

Given a color image, the 2D convolution is expressed as
Eq 4| The value of an unit at position (u,v) in the 7** feature
map is denoted as p;"
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where w[}" is the coefficient at the position (m,n) of the

kernel connected to the k" feature map. M, N are the height
and width of the kernel. When the convolution is conducted in

3D, the value of an unit at position (u,v,d) in the i*" feature
map denoted as p“*"* is given by
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where d is the third dimension of the feature map and L;
is the size of the 3D kernel along the third dimension. 3D
convolution can extract features from both spatial and disparity
dimensions.

In Fig. [I] we compare 2D convolution and 3D convolution
for an outdoor street scene. As observed from the illustration,
the 2D convolution extracts feature in neighborhood defined
on the image plane, which could involve points far away in
3D space. By contrast, 3D convolution in the UV D space
succeeds to extract features in a 3D geometry aware manner.

Fig. 1: Nlustration of 2D convolution and 3D convolution for semantic
labeling. The left image demonstrates the widely used 2D convolution
in extracting feature maps while the right image illustrates the
corresponding 3D convolution conducted in the 3D voxel space. Note
that the natural neighborhood relation is not preserved in the projection
from 3D to 2D.

C. Network Architecture

Our goal is to assign each 3D point with a class label. A
natural solution is to do 3D convolution on these point clouds.
Also, since small objects such as traffic lights and signs play
equally important role in semantic labeling, we adopt the idea
of Top-Down Modulation (TDM) [23]]. We not only convert
it to 3D, but also modify it to better suit for our case. Note
that in our 3D representation, most voxelized 3D labels are
0s. For these points, identity mappings are optimal. Therefore
we swap the lateral connection between Bottom-up features
and Top-down features with residual connection, and let the
solvers simply drive the weights of the multiple nonlinear
layers toward zero to approach identity mappings. Formally,
we define a block from Top-down path:

y = F(xc,, {Wi}) + xpc; s (6)

where y denotes the output of residual connection, x¢, is the
output from the ¢-th convolution layer and xp¢, is output from
the i-th deconvolution layer. The function F(x,{W;}) is the
residual mapping to learn. + represents element-wise addition.
Thus the dimensions of xp, and xpc, must be equal as in Eq.
6
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Fig. 2: A nutshell of our 3D geometry-aware semantic labeling framework. The input RGB-D images are converted to the 3D voxel
representation. C; denotes the 3D convolution layer that encodes geometric and contextual information, R; is residual module that connects
low level features to the top-down pathway. DC; is the 3D deconvolution layer to decode geometric and contextual information. We achieve
a 3D semantic labeling, which could be projected to 2D for the sake of comparison.

In Fig. [2| we present a nutshell of our overall architecture of
the proposed network. Given a color image and its correspond-
ing disparity map, we first represent the RGB-D in the 3D
UV D space as defined in Section 3.1. In the Bottom-up phase,
the 3D volume (H x W x (D + 1) x Ch) passes through a
series of 3D convolutional layers (C;) with the same kernel size
3 x 3 x 3 and a stride 2 until achieving an encoded feature vol-
ume with dimension (1/16)H x (1/16)W x (1/16)(D+1)x F,
where H, W, D, Ch, F represent the height, width, disparity
levels, and number of channels and features respectively. In
the Top-down phase, a mirrored process scales up the encoded
feature volume back to the original size by swapping the 3D
convolution with 3D deconvolution. For each scale, we apply
our Res-TDM with a residual module R;. Each R; consists of
two 3D convolution layers with the same kernel size 3 x 3 x 3
and stride 1.

We employ the cross-entropy loss given by Eq.[7] as our loss
function for training the network.

1
> [ynlogin + (1 = yn)log(l = )] (7)
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where §, = g(wx,,) with logistic function g(z). w is the vector
of weights and each sample is labeled by n = 0,1,2,..., N —1.
Note that there is a large variation in the number of pixels for
each class. Despite of the imbalance distribution of valid labels,
we only have 1/D valid labels in total. In other words, if the
network predict all zeros, it can still achieve a training accuracy
higher than 95%. In order to avoid our network drop to this
local minimum, we apply a residual module R directly from
the input that impose the network only to learn parameters
around the areas with non-zero input.

Training our end-to-end pixel-wise semantic labeling network
is very straightforward, which can be trained under the
supervision of ground-truth semantic labels. Supervision is

applied on the volumized 3D predictions and labels. All void
3D points (e.g., points before an object or behind an object)
cannot be ignored and should be also given a void label 0.
In the prediction phase, we perform max pooling along the
disparity dimension to convert the 3D volume back to a 2D
image and calculate the errors. This strategy can crease the
robustness when dealing with noises and errors on disparity
maps. For example, there is no guarantee that our network will
predict the right label at the exact disparity level. When the
disparity map is noisy, points with the same labels may have
very different disparity levels. In this case, the network may
predict the right label on the similar disparity level rather than
the noise one.

IV. EVALUATION

In this section, we evaluate our proposed method with a
comparison to alternative approaches and present an ablation
study to better understand the proposed framework. Our method
is evaluated on both synthetic and real datasets.

A. Dataset

For synthetic data, we use the SYNTHetic Collection of
Imagery and Annotations (SYNTHIA) dataset [24], which con-
tains 3 subsets: synthia-rand-cvprl6, synthia-rand-cityscapes
and synthia-video-sequence. We choose the synthia-rand-
cityscapes subset for experiments. It consists of 23 classes
and a total of 9400 frames of outdoor scene with different
weather and lighting conditions as well as randomly generated
viewing angles. Since the dataset does not provide training
and testing split, we randomly select 6000 frames for training,
1900 frames for validation and the remaining 1500 frames for
testing. We manually convert the given ground truth depth
maps to scaled inverse depth map in the range of [0,191] and
resize the input image to 80 x 128.



For real data experiment, we use the Cityscape dataset [25]],
which contains 5,000 stereo frames of fine annotated ground
truth semantic labels. We choose 2975 frames for training and
use 500 frames for testing. In experiments, we compute the
disparity map by using state-of-the-art stereo matching method,
which is truncated to the range [0, 111]. The input images are
resized to the resolution of 256 x 512.

Data augmentation We employ the mirror manipulation
to augment the training examples for both datasets, since it
maintains the geometry relationships.

B. Optimization

The proposed network architecture was implemented with
Tensorflow [26]. We employed the RMSProp [27] with a
constant learning rate of 1 x 1073 to optimize all models in
end-to-end manner. For the “Synthia” dataset, we normalized
input images’ RGB values to [—1, 1] and trained our network
from a random initialization for 50 epochs, which took 50 hours
to converge by using a single NVIDIA Pascal Titan-X GPU
and 1 second per frame in testing phase. However, the testing
global accuracy climbs up to over 80% within one epoch. For
the Cityscape dataset, we trained our network (S3D) with color
input for 30 epochs. In order to fit the 12G memory, we reduce
the number of disparity levels to 48. We also trained our S3D
network with feature input. The features were extracted from
Resnet-38[7] with the same input dimension. The input feature
dimension of our network is 32 x 64 x 512. We added 3 extra
upsampling layers in order to match the output resolution. The
network converged quickly within 14 epochs. Note we did not
use any post-processing to refine the results.

C. Evaluation metric

We measure the semantic labeling performance of our
network with three metrics. Denote the total number of classes
as k, p;; as the amount of pixels belonging to class ¢ which

are predicted to be class j, the Global accuracy G = %
i 2.5 Pij

measures the percentage of pixels correctly classified in the
— _1 Pii
dataset. The Class Average Accuracy C' = mZz M
normalizes the accuracy over the classes, therefore all classes
share the same weight under this metric. Mean intersection
. _ 1 Dii . .
oYer union mloU = 5 > D ORTIES S 1s’ used in the
Cityscapes benchmark [25]. It is a more strict metric than class
average accuracy since it penalizes false positive predictions.

D. Experimental results

Results on Synthia. In Table [} we quantitatively compare
our method (S3D) with state-of-the-art RGB semantic seg-
mentation approach “SegNet” [5] and RGB-D based approach
“FuseNet” [8]. For SegNet and FuseNet, we use the same
input size and initialize the network parameters from the VGG
model pre-trained on ImageNet. We train SegNet for 790
epochs and 230 epochs for FuseNet. For FuseNet, we use the
same scaled inverse depth maps to train our network. Our
method significantly outperforms competing methods with a
notable margin under all three metrics: 18.6% on class average
accuracy, 7.6% on global accuracy and 17.8% on mloU. Note

that there are 4 classes never show up in testing set, so we
remove them from the table and during the error calculation. In
Fig. |3] we present qualitative comparison between our method
and state-of-the-art methods on the Synthia dataset, which
clearly demonstrates the superior performance of our method.

Results on Cityscapes. Quantitative comparison with state-
of-the-art semantic labeling methods on the Cityscapes dataset
is shown in Table [[II The weight of FuseNet and SegNet are
initialized from the VGG model trained on ImageNet. We
also compare our method with the top performing one on the
Cityscapes benchmark: ResNet-38[7]]. Given RGB-D pair as
input, we achieve similar performance with FuseNet. However,
by swapping RGB image with trained features, our method
outperforms all competing methods with a margin 1.2%, 0.6 %,
1.0% for class average accuracy, global accuracy and mloU
respectively. The margin is not as clear as previous one is due
to the noise and errors in the disparity map. However, our
algorithm still successfully squeezed useful information from
it and increased the performance. Advanced disparity recovery
algorithm [28]] should lead to better performance. In Fig. 4]
we present qualitative comparison between our framework
and state-of-the-art methods on the Cityscapes dataset, which
proves the superiority of our method.

Ablation study To better understand the effectiveness of
our 3D voxel representation, we perform ablation analysis
and present the results in Table S2D is the 2D version
of our algorithm that replaces all 3D convolutions with 2D
ones, where we stack the RGB image and disparity map into 4
channel input and plug into the S2D. S3D (Depth only) is the
one with colorless “point clouds” which only provides shape
information. According to this study, 3D voxel representation
significantly improves the performance by 20.9% in mIoU.

V. CONCLUSION

In this paper, we have proposed a 3D voxel representation
to integrate both appearance and depth information and a
corresponding light-weight 3D Res-TDM network architecture
for 3D geometry aware semantic segmentation. Our method
provides an efficient and effective way to use geometric
information to achieve better semantic labeling. Experiments
on the “Synthia” and “Cityscape” datasets demonstrate that
direct 3D convolution with our light-weight Res-TDM network
can lead to superior performance, suggesting that such a simple
3D representation with Res-TDM is effective in incorporating
3D geometric information.
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(a) Color image (b) Disparity (c) Ground truth (d) Our method (e) FuseNet (f) SegNet

Fig. 3: Quality comparison on the SYNTHIA dataset We select images with different lighting and weather conditions as well as different
viewing angles. Our method (d) shows superior performance, particularly it generates sharp boundaries for small objects. FuseNet (e) and
SegNet (f) achieve similar performance but with the help of disparity map, FuseNet (e) captures more small objects such as pedestrians and

poles.

TABLE I: Performance evaluation on the SYNTHIA dataset

112 655 18.6 45.9 | 43.7
164 609 13.7 209 | 42.9
32.6 833 58.2 421623

SegNet[3] | 955 933 850 872 249 799 169 608 02 502 14 106 403
FuseNet[8] [ 92.4 945 79.9 702 356 73.0 299 644 25 575 28 94 464
S3D(ours) | 974 97.1 91.8 91.2 59.6 90.7 47.8 87.6 155 729 13.5 364 72.24
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TABLE II: Performance evaluation on Cityscapes validation set

Method
SegNet[3] 97.4 82.0 92.5 352 358 409 8.2
ResNet-38[7] [97.9 81.1 93.6 62.0 584 419 554

626 962 719 11.8 92.7 463 41.6 272 99 61.2]551 90.5 45.8
63.8 923 79.1 549 94.7 745 765 66.1 61.4 751|729 922 633
FuseNet[8] |[88.6 82.1 93.3 254 482 427 05 47.0 385 968 758 05 93.6 569 22 124 0.0 602|505 874 39.1
S3D(RGB-d) |94.5 722 86.1 15.7 17.7 34.0 38.1 52.3 659 962 643 8.0 869 220 205 146 35 282|482 869 39.1
S3D(feature-d) | 98.0 87.4 933 66.2 71.3 46.8 60.2 623 952 674 92.8 78.0 41.8 91.8 78.7 81.2 733 475 750|741 92.8 64.3
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TABLE III: Ablation study on the SYNTHIA dataset
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S2D(RGB-d) | 98.0 92.0 62.6 822 41.6 809 334 686 25 669 03 89 602 09 16 370 0.0 166|419 779 33.6
S3D(d only) | 100.0 98.2 91.4 91.7 59.5 92.6 525 83.8 03 808 12.6 2.8 464 0.7 259 760 380 0.1 [529 899 47.0
S3D(RGB-d) | 974 97.1 91.8 912 59.6 90.7 478 87.6 155 729 13.5 364 7224 31.7 32.6 833 58.2 42.1| 623 90.2 54.5
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Fig. 4: Qualitative evaluation on the Cityscapes dataset. Our method with feature and disparity inputs (d) clearly outperforms the
competing methods. The shape of pedestrians and poles are well preserved in our predictions. We shall see that FuseNet is effected by the
noisy disparity map that has worse performance than SegNet. Note the invalid label is colored with black.
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