Abstract:
Person Re-Identification (ReID) refers to the task of verifying the identity of a pedestrian observed from nonoverlapping surveillance cameras views. Recently, it has bee...Show MoreMetadata
Abstract:
Person Re-Identification (ReID) refers to the task of verifying the identity of a pedestrian observed from nonoverlapping surveillance cameras views. Recently, it has been validated that re-ranking could bring extra performance improvements in person ReID. However, the current re-ranking approaches either require feedbacks from users or suffer from burdensome computation cost. In this paper, we propose to exploit a density-adaptive kernel technique to perform efficient and effective re-ranking for person ReID. Specifically, we present two simple yet effective re-ranking methods, termed inverse Density-Adaptive Kernel based Re-ranking (inv-DAKR) and bidirectional Density-Adaptive Kernel based Re-ranking (bi-DAKR), which are based on a smooth kernel function with a density-adaptive parameter. Experiments on six benchmark data sets confirm that our proposals are effective and efficient.
Date of Conference: 20-24 August 2018
Date Added to IEEE Xplore: 29 November 2018
ISBN Information:
Print on Demand(PoD) ISSN: 1051-4651