
Cross-Dataset Data Augmentation for
Convolutional Neural Networks Training

Andrea Gasparetto, Dalila Ressi, Filippo Bergamasco, Mara Pistellato
Luca Cosmo, Marco Boschetti, Enrico Ursella and Andrea Albarelli

Università Ca’ Foscari Venezia
Dipartimento di Scienze Ambientali Informatica e Statistica

via Torino, 155 - Venice, Italy

Abstract—Within modern Deep Learning setups, data aug-
mentation is the weapon of choice when dealing with narrow
datasets or with a poor range of different samples. However,
the benefits of data augmentation are abysmal when applied to
a dataset which is inherently unable to cover all the categories
to be classified with a significant number of samples. To deal
with such desperate scenarios, we propose a possible last resort:
Cross-Dataset Data Augmentation. That is, the creation of new
samples by morphing observations from a different source into
credible specimens for the training dataset. Of course specific
and strict conditions must be satisfied for this trick to work.
In this paper we propose a general set of strategies and rules
for Cross-Dataset Data Augmentation and we demonstrate its
feasibility over a concrete case study. Even without defining any
new formal approach, we think that the preliminary results of
our paper are worth to produce a broader discussion on this
topic.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are a very effective
and versatile tool to address a wide range of Computer Vision
classification problems. Unfortunately, such power comes at
a price: CNNs need to be trained, and this task, in order to
succeed, often requires a huge amount of available samples for
each category to be recognized. Since this is not always the
case, specialized techniques to deal with sample scarcity have
been proposed in literature and widely studied during the last
years. Two of the most important categories of approaches
to tackle this problem are certainly Data Augmentation and
Transfer Learning.

Data Augmentation is about variance: while the exact num-
ber of samples is strictly tied to the particular case-of-study,
it is central for the data to have a good diversity to allow the
network to efficiently generalize the object of interest. In other
words, the more diversity the network can see, the better the
results. Data Augmentation tackles the problem by creating
new samples out of the available ones. In particular, new data
is generated through the application of several transformations
to the original images. Scaling, translation, rotation, flipping,
noise addition, perspective transform, color balance are some
of the most widely used transformation when it comes to
augmentation [1]. To this end, these techniques can be re-
garded more as a way of simulating new capturing conditions
rather than new samples for the categories of interest. But
generic data augmentation [2] is not the only successfull data
augmentation technique. Indeed, more advanced techniques

Fig. 1. Edremit and Pink are two families of delicious Turkish olives. They
are affected by similar defect patterns which must be detected. However Pink
are more rare and it is difficult to gather a significant dataset. Would it be
possible to design a training process exploiting the abundance of Edremit to
better classify Pink ?

have been proposed recently. In particular, Goodfellow et
al. [3] show how to generate new samples after being trained
on samples drawn from some distribution in their seminal
work Generative Adversial Networks. Rogez and Schmid [4]
propose a scheme that artificially inflate the data set by using
domain specific synthesization to produce more training data.
A similar approach have been proposed by Peng et al. [5].

A very different approach to the same task is the one taken
by Transfer Learning [6]. In this case the problem is solved by
means of a machine learning method where a model developed
for a task is reused as the starting point for a model on a second
task, or, as defined in [7], transfer learning is the improvement
of learning in a new task through the transfer of knowledge
from a related task that has already been learned. From a more
practical point of view, transfer learning involves the usage of
pre-trained models (which are usually general enough to cope
with different tasks) as the starting point, allowing to re-train
just a part of the network to improve the performance on a
specific setting.

The advantages are twofold. First, training a network from
scratch is a time and resource consuming task, in particular
if such training happens on a very large dataset. Secondly,
training a network for a more general purpose task allows to

use huge database freely available, like ImageNet [8] (which
counts millions labelled images belonging to a thousand
different categories).

Transfer learning comes into two different flavours. The first
takes the name of Develop Model Approach. This technique
expects to use a related predictive modelling problem (for
which a lot of data is available) to train the network. Next,
the model is reused as the starting point for a model of our
task of interest, usually after a fine tuning step. The second
approach, which is the most common one, takes the name of
Pre-trained Model Approach, and makes use of model trained
on large and challenging datasets. The use of datasets with
a great variety of objects allows to train networks which are
capable to generalize different task. Again, these network are
used as a starting point and re-trained to cope with the specific
case-of-study that must be dealt with.

The main idea underlying this paper is to spread a bridge
between these two widely adopted strategies. Specifically
we are dealing with the case where very few samples are
available for the family of objects to be classified, still large
datasets exists for similar, but not identical, objects. Within
this scenario we are seeking to exploit the information from
the second set (and from networks trained on it) to obtain
a network capable of classifying objects from the first set.
For this process to be feasible a few conditions must hold.
Broadly speaking, our ideal scenario provides objects that
are mostly similar between the two datasets except for some
features. Such set of inter-dataset distinctive features must be
disjoint with the set of the inter-category features that are
to be used for classification within each dataset. These inter-
category features, in turn, must be shared between datasets.

While, at this stage, it is difficult to generalize some cross-
dataset data augmentation approach, with this paper we try to
define some basic principles and to define a general recipe to
adopt to deal with similar scenarios. In particular, we are in-
terested in comparing different combinations of augmentation
strategies to see which one yields better results. In order to
perform this task, we apply cross-dataset data augmentation
to solve a real-world problem: the classification of olive fruits
that can be affected by specific defects. By doing this, we
supply additional collateral contributions by designing two
novel network architectures to cope with fruit defect detection
with special attention to performance and by releasing the
datasets used in this work.

II. CROSS-DATASET DATA AUGMENTATION

According to the generally adopted semantic within the
Deep Learning field, data augmentation is any synthetic alter-
ation of dataset images, performed with the goal of inflating
the number of samples to be supplied to the training process.

In this paper we introduce the concept of Cross-Dataset
Data Augmentation (CDDA), a term used to describe a novel
pre-processing strategy involving the transfer of information
between two datasets by means of image processing. The term
recall the idea of a data augmentation step which, instead
of processing the samples internal to a dataset, works by

transforming samples between a source and a destination
dataset.

The main assumption is the existence of a strong relation
between the source and destination datasets. That is, we
assume that they share most of the features that are significant
to perform a certain classification task, while they differ with
respect to features that can be ignored by the classifier.

Specifically, we model each dataset as a (possibly infinite)
set of features (see Fig. 2). Some feature are global, such as
color histograms, orientation of the blob, PCA components,
etc. Some others are local, such as intensity maxima, corners,
and so on.

Given two datasets, A and B, each of their features can be
deemed to belong to one of the following three sets:

• Dataset Characteristic Features (DCF): these are features
that distinguish one dataset from the other. The idea
is that these features should not take a role in the
classification we want to perform. For instance, if we
want to classify vehicles with respect to the size of the
wheels, then the number of the wheels is a DCF. In
fact, it distinguishes bikes from cars, still it is not a
constraint if the classification is about the size and not
the number of wheels. Of course, this does not mean that
DCFs are not distinctive in general. Of course a classifier
trained to distinguish bikes from cars will exploit them.
They are just not distinctive with respect to the specific
classification task we are dealing with.

• Category Characteristic Features (CCF): these are fea-
tures that are important for the classification task we are
considering. For CDDA to work, CCFs must be shared
between datasets A and B. Going back to the example
with vehicles and wheel sizes, the radius of the tire is a
DCF and the number of spokes could be one, depending
on the classifier. In principle a classifier that uses CCFs
to distinguish A from B should not work as they are
preserved between the two datasets.

Dataset A Dataset B

Dataset Characteristic Features (DCF)

Category Characteristic Features (CCF)

"d
on

't
ca

re
"

F
ea

tu
re

s "don't care" F
eatures

Cross
Dataset

Data
Augmentation

(CDDA)

Fig. 2. A graphical representation of the main concept underlying Cross-
Dataset Data Augmentation.

Fig. 3. Some samples drawn from the dataset used in the experimental session.
The rows show, respectively, sample from the Red dataset (good on the left,
wrinkled on the right), from the Green dataset and the same images from
the second row transformed according to the proposed Cross-Dataset Data
Augmentation approach.

• ”don’t care” features: these are simply the features that
are in the datasets, but are not significant for a specific
classification task.

Let A and B two strongly related datasets, with B that
contains too few samples to be effectively used to train a CNN.
We assume the two datasets to be strongly related if there
exists a set of features in common (CCF) and a disjointed
set of features that allows to distinct samples belonging to
the two (DCF). Then, the CDDA is some image processing
function fCDDA : A→ B that transforms samples belonging
to the dataset A into samples that could belong to the dataset
B. This is achieved by applying a transformation to the DCF
features of the sample. This results in a new dataset with higher
cardinality that could be used to train a more efficient CNN.
Our bet is that the newly forged dataset allows to train more
efficient networks which outperform networks trained using
standard data augmentation strategies. Of course the nature
of fCDDA strongly depends on the characteristics of A and
B and it is not possible to give a general rule at this point.
However it is possible to experiment the effectiveness of the
concept with a real-world case.

In our specific case-of-study, we address the problem of

Da CD
DA

Ca

Dba

Cba

Db

Cb
Tab

Tax

Tay

Dx

Dy

Learning LearningCross-Dataset D.A. Transfer Learning

Fig. 4. An overview of the possible strategies for data augmentation,
including both traditional methods and cross-dataset data augmentation. D
blocks represent dataset used to train a network, while a C block is a classifier
obtained after the optimization process.

low cardinality dataset in an image classification task. While
a more in-depth introduction of the datasets can be found
in Section III, we anticipate that the dataset contains olive
images belonging to two different families. Figure 3 shows
some sample images from the dataset. As will be shown in
Section V, the number of samples are not enough to achieve
satisfying accuracy level, in particular when compared to the
results obtained on a similar dataset (Green olives dataset). On
the other hand, the Green dataset can be considered strongly
related to the Red dataset and thus a CDDA approach can be
used to transform samples from the Green dataset to sample
that belongs to the Red dataset.

In this first stage of the study, we decided to focus on
the two most trivial differences between samples belonging
to the two datasets, namely the shape and the colour of the
olives. Thus, we define a two-step transformation function.
Both transformations include a learning phase in which a
standard representation of that particular feature is learned.

In the first step, we compute a set of parameters tied to
the geometry (the shape) of the olives. In particular, after
the extraction of the boundary from the images, we fit a
bounding box and retrieve both the two perpendicular axes
and their orientation. Then, we compute the mean bounding
box representative of the red olives used to compute the affine
transformation between each green olive bounding box to the
mean red olive one. This results in the creation of several
reddish-shaped green olives.

To deal with the colour difference, we simply learn the mean
colour histogram for each channel and then apply a histogram
equalizer in order to match the colour histogram of the green
olives with the mean colour histogram of the red ones. The
third row in Figure 3 shows the result of the application of
these two steps to the olives in the second row.

III. DATASETS OVERVIEW

The olives data evaluated in this paper consists of two
fruit varieties: Endremit olives (characterized by a greenish
texture) and Pink olives (which are more reddish). The olive
images were captured in a controlled environment. A carousel
transports the olives through an obscuration box while simulta-
neously rotating them along their major axis (using a system
of parallel rolls). The camera has both an rgb and a infra-
red sensor used to take 8 images for each olive sample. This
results in a collection of images from different angles as the
machine let the olives spin around their major axis. Since not
specifically related to our thesis, we restrict the analysis on the
rgb channels only, and use the infra-red just for background-
foreground segmentation. Nevertheless, we will release the
complete (full-channel) dataset along with this paper.

We created a test bed to compare the performance of the
proposed data augmentation strategy with respect to some
of the more well-established data augmentation techniques.
In particular, we will test a set of different datasets (which
are the result of different pre-processing strategies) on both
pre-trained networks (through transfer learning) and ad hoc
networks, trained from scratch. The performance are assessed

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Green+Red | TRed Green|TRed Green|VRed|TRed G2R|TRed G2R|VRed|TRed G2R+Red|VRed|TRed

FruitDef 80.157 59.175 59.461 85.591 86.387 98.782

FruitDefV2.0 82.479 62.899 63.227 86.555 88.866 98.739

AlexNet 89.748 95.582 96.301 97.991 97.629 96.504

VGG16 90.555 95.537 94.139 98.396 99.581 97.699

VGG19 94.685 88.730 89.859 98.744 98.814 98.773

GoogleNet 96.892 96.093 98.372 99.650 99.650 99.028

ResNet50 96.683 97.350 96.373 98.605 98.117 99.744

Inception-v3 97.301 98.465 98.601 99.930 99.841 99.744

TABLE I
PERFORMANCE ACHIEVED BY SEVERAL NETWORKS IN TERMS OF CLASSIFICATION ACCURACY. TEST 4 TO 6 SHOW THE RESULTS ON THE DATASET

CREATED USING THE PROPOSED DATA AUGMENTATION APPROACH.

in terms of classification accuracy. In the proposed case-of-
study, the datasets contain olive images belonging to two
different categories, the ones labelled as Good and the the ones
labelled as Wrinkled. The former contains defect-less olives,
while the latter contains olives with wrinkles on the surface.

The first dataset (which will be referred to as Green)
contains 14340 green olives, of which 7580 belongs to the
good category while 6760 are wrinkled. The second dataset,
which is much smaller, contains a different type of olives,
which will be called the red ones. The Red dataset consists of
108 olives, divided into 60 belonging to the good class and
48 which show surface wrinkles.

As introduced in Section II, our Cross-Dataset Data Aug-
mentation counts two independent pre-processing steps that
are pipelined together in order to transform a numerous but
different dataset of images (the Green dataset) into the less-
numerous dataset containing red olives. We will refer to this
dataset as the Green2Red (G2R in shorts) dataset.

The performance of each net is assessed against eight
different datasets. Each dataset is a combination of olives took
from the Green, the Red and the Green2Red datasets. Images
contained in a dataset are usually splitted into three subsets.
The first, the most numerous one, contains the images which
will be used to learn the weights of the net and is referred to
as the training set. Basically, these are the sample data used
to fit the model. The second is the validation set. It contains
the sample data used both to provide an unbiased evaluation
(at least at the beginning) of a model fit on the training dataset
and tuning model hyper-parameters. The last set is the test set,
which contains the sample data used to provide an unbiased
evaluation of the final model. Each network has been trained
and tested on the following aggregated datasets.

• Green: the networks are trained and tested only on olives
contained in the Green dataset. The green dataset contains
a large number of samples, giving a basic idea of the
performance that can be achieved in this specific case-
of-study in the best possible scenario.

• Red: the dataset contains all (and only) the olives be-
longing to the Red dataset. The images are divided into
the three sub-datasets introduced above, training (90%),
validation (5%) and test (5%). Like for the previous
one, the performance achieved on this dataset should be
used only as a reference for the worst scenario for this
particular case-of-study.

• Test 1 (Green+Red): in this test, the dataset contains
olives from both the Green and Red dataset. Red olives
are distributed consistently among the training, the vali-
dation and the test set (with a 8 : 1 : 1 ratio).

• Test 2 (Green|TRed): the dataset contains all the olives
belonging to the Green dataset, which are splitted into
a training and validation set, while the test set contains
only red olives.

• Test 3 (Green|VRed|TRed): the difference between the
previous dataset and the current one is that a subset of
red olives is used both for validation and test purposes,
while the training set contains only Green olives.

• Test 4 (G2R|TRed): in this test, the training and the
validation set images are picked from the Green2Red
dataset (i.e. green olives after the proposed preprocessing
steps), while for the testing phase we used only red olives.

• Test 5 (G2R|VRed|TRed): in the fifth test we train the
networks on the Green2Red dataset, while the red olives
are used in both validation and test set.

• Test 6 (G2R+Red|VRed|TRed): in the final test, we split
olives belonging to the Red dataset among the training,
the validation and the test set. Like in Test 1, red olives
are consistently distributed with the same ratio.

Each test has been created to answer to a specific question.
In particular, test 1 to 3 should answer to the question: are
the two dataset similar enough to allow networks mainly
trained on the most numerous dataset to perform well on
the less numerous one? On the other hand, test 4 and 5
show how the proposed approach tackle the problem of low
sample number datasets in our specific scenario. All datasets

have been augmented with scale, random rotations, PCA
transformation, flipping and translation.

The cross-dataset data augmentation and the tests on the
neural networks (pre-trained nets and the ad hoc ones) are
implemented in Matlab using the Neural Network Toolbox.
Both the source code and the datasets are publicly available
on the authors web pages.

IV. NETWORK ARCHITECTURES

To assess the efficacy of the proposed cross-category feature
transfer framework, we compare the classification accuracy
achieved by the current state-of-the-art pre-trained networks
for image classification alongside with the results achieved by
two custom networks developed and trained from scratch for
the specific task of defective fruits detection.

AlexNet [9] is a network proposed by Krizhevsky et
al. which won ILSVRC 2012 [10], achieving highest clas-
sification performance. AlexNet has 8 layers with learnable
weights (5 convolutional layers and 3 fully connected layers).
As pros, this network is fast for re-training and classifying
new images. On the other hand, the network results large and
not as accurate as newer pre-trained models.

GoogleNet [11] main advantages are its simplicity (9
identical and relative simple blocks), the parallelism of the
network (each block is structured in 4 parallel pathway) and
its efficiency in terms of both computation time and memory
usage (it allows GoogleNet to beat both VGG and ResNet
execution-time wise). The high efficiency comes at a small
cost in term of model accuracy on ILSVRC 2012.

ResNet [12] (Residual Network) is a very deep network
proposed by He et al. It comes into two variants: ResNet-50
(which counts 50 layers) and ResNet-101 (101 layers deep).
The complexity of the networks represents its major drawback.
Only the simpler version has been used in the experimental
session.

VGG network [13] also comes into two different variants,
VGG-16 and VGG-19. The former has 16 layers with learnable
weights: 13 convolutional layers and 3 fully connected layers.
VGG-19 has 19 layers with learnable weights: 16 convolu-
tional layers and 3 fully connected layers. In both networks, all
convolutional layers have filters of size 3-by-3. VGG networks
are larger and typically slower than other pretrained networks
(in particular with respect to GoogleNet and ResNet). We test
both versions in our experimental session.

Finally, we test the Inception-v3 [14] networks, which
is an evolution of the GoogleNet architecture. Compared to
GoogLeNet, Inception-v3 is larger, deeper, typically slower,
but more accurate on the original ILSVRC data set. Inception-
v3 is 48 layers deep.

All the above networks have been trained on the ImageNet
database (or on a subset of it).

Furthermore, we propose two novel network structures
to tackle our specific case-of-study. A discussion about the
reasons that lead us to develop the ad hoc networks can be
found in Section V, while now we provide some insight on the
network architectures. The first proposed architecture counts 6

Green Red

FruitDef 99.868 94.143

FruitDefV2.0 99.736 94.214

AlexNet 100 94.948

VGG16 96.513 94.948

VGG19 100 91.428

GoogleNet 99.861 86.807

ResNet50 99.650 96.190

Inception-v3 97.350 94.413

TABLE II
PERFORMANCE ACHIEVED ON THE BASE DATASETS. THE PERFORMANCE

ACHIEVED ON THE GREEN DATASET ARE THE BEST-CASE-SCENARIO
PERFORMANCE (THANKS TO THE HIGH NUMBER OF SAMPLES IN THE

DATASET).

computational blocks and will be referred as FruitDef. The first
4 blocks are convolutional blocks. In particular, odd blocks
contain a convolutional layer followed by a max-pooling layer
(which halves the previous layer dimension) and finally an
activation layer (ReLU). The even blocks are pretty much the
same, but we use average-pooling as pooling layer. The fifth
block contains only 2 layers: a convolutional layer and a ReLU
layer. While the last block is a fully connected layer with a
soft max layer which yields the classification result. The first
3 convolutional layers counts 32 filters of dimension 4 × 4,
while the last two have 64 filters of the same dimension.

The second network (FruitDefV2.0) counts 8 macro-blocks.
The last two blocks are the same as the simpler version ones,
while the first 6 blocks are convolutional blocks. Differently
from the network introduced before, only block 2, 3 and 6 con-
tain a pooling layer (average, max and average respectively). In
block two, we use two dropout layers (at the beginning and at
the end of the block) with respectively 35% and 45% dropout
percentages. Each block but the last one contains an activation
layer (ReLU) right after the pooling/convolution layer. Both
networks are trained from scratch using as datasets the ones
introduced in Section III.

V. EXPERIMENTAL RESULTS

Figure 4 shows a schematic representation of the tests that
were conducted in order to assess the performance of the
proposed approach. The Ds blocks represent a dataset, while
Cs blocks represent the classifier learned on it. Without loss
of generality, a possible strategy is to use a numerous dataset

Green Green2Red

FruitDef 88.421 93.684

FruitDefV2.0 90.336 99.370

TABLE III
TRANSFER LEARNING TEST ON CUSTOM NETWORKS.

(i.e. a) to train a classifier. This classifier can be used as it
is in the strongly related but less numerous dataset (i.e. b).
On the other hand, the same network can be re-trained (using
transfer learning) in order to improve the performance on the
less numerous dataset.

Table I shows classification accuracies obtained with the
different datasets on different network architectures. The re-
sults we are most interested in are the ones yield by the ad
hoc networks, which, as you can see, perform slightly worse
than the pre-trained networks. In an industrial application like
the one requested for our case-of-study, run-time performance
are central in the development of the network to be used.
Hence, even if the pre-trained networks are able to achieve
state-of-the-art performance classification-wise, they are too
slow and not practical to use in a real world scenario. This is
due to both the fact that the input images are much bigger than
the original image dimension (about 3 times bigger) and the
network structure of the pre-trained networks are much more
complex than the ad hoc networks we proposed. The adoption
of simpler networks whose input image dimension is equal to
the original dimension of the images allows us to perform the
classification task an order of magnitude faster (about 0.1ms)
on the machine the tests were performed (3.5 Ghz Intel quad
core with nVidia 980 GTX).

The best performance are achieved by the most complex
networks, like the Inception-v3. On the other hand, even
simpler and faster pre-trained networks achieve similar per-
formance. Simpler networks (architecture-wise) are the one
that get the most benefit from the proposed approach. All
pre-trained networks show a performance gain using a CDDA
approach, even if the mean gain is lower overall with respect
to the gain on the custom networks.

Finally, we compare the performance of ad hoc networks
on two last scenarios. The test involves training from scratch
the same networks directly on a dataset of objects of interest
(in opposite to general purpose dataset) followed by a transfer
learning step on a more specific problem. In particular, we
trained the custom networks on both the Green dataset and
the Green dataset plus the Green2Red dataset. Then, transfer
learning is performed using the olives in the Red dataset.
Performance achieved are shown in Table III.

VI. CONCLUSION

In this paper we proposed a new data augmentation ap-
proach in which the additional samples are created by mapping
elements from a different pool instead of being generated
from the dataset itself. While traditional data augmentation
uses a function to generate unseen samples from the available
ones, we take advantage of a different dataset which we
assume can be mapped to the former by means of an image
processing function. We observed that such approach tends to
outperform the classical data augmentation, probably because
it has better chance to preserve features that are relevant for
the classification but not easily embeddable into the generator
function. The advantage is particularly visible in small custom

CNNs, where the training phase is sensitive to the even
distribution of different sample categories.

We tested this approach in a real-world classification sce-
nario of food quality assessment. In our case, one of the two
species of olives were far more common than the other so that
the direct training was ineffective in practice. Since the two
species differ in term of shape and color, but not on the nature
of their defect to classify, we investigated a mapping approach
instead of the generative one. Results show that, especially for
small networks, the former gives better results in almost all
the tests.

REFERENCES

[1] L. S. Yaeger, R. F. Lyon, and B. J. Webb, “Effective training
of a neural network character classifier for word recognition,” in
Advances in Neural Information Processing Systems 9, M. C. Mozer,
M. I. Jordan, and T. Petsche, Eds. MIT Press, 1997, pp. 807–816.
[Online]. Available: http://papers.nips.cc/paper/1250-effective-training-
of-a-neural-network-character-classifier-for-word-recognition.pdf

[2] L. Taylor and G. Nitschke, “Improving deep learning using generic data
augmentation,” CoRR, vol. abs/1708.06020, 2017. [Online]. Available:
http://arxiv.org/abs/1708.06020

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems 27, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds.
Curran Associates, Inc., 2014, pp. 2672–2680. [Online]. Available:
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

[4] G. Rogez and C. Schmid, “Mocap-guided data augmentation for 3d pose
estimation in the wild,” in NIPS, 2016.

[5] X. Peng, B. Sun, K. Ali, and K. Saenko, “Learning deep object detectors
from 3d models,” in Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), ser. ICCV ’15. Washington,
DC, USA: IEEE Computer Society, 2015, pp. 1278–1286. [Online].
Available: http://dx.doi.org/10.1109/ICCV.2015.151

[6] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” CoRR, vol. abs/1411.1792, 2014.
[Online]. Available: http://arxiv.org/abs/1411.1792

[7] E. S. Olivas, J. D. M. Guerrero, M. M. Sober, J. R. M. Benedito,
and A. J. S. Lopez, Handbook Of Research On Machine Learning
Applications and Trends: Algorithms, Methods and Techniques - 2
Volumes. Hershey, PA: Information Science Reference - Imprint of:
IGI Publishing, 2009.

[8] J. Deng, W. Dong, R. Socher, L. jia Li, K. Li, and L. Fei-fei, “Imagenet:
A large-scale hierarchical image database,” in In CVPR, 2009.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1, ser. NIPS’12. USA:
Curran Associates Inc., 2012, pp. 1097–1105. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2999134.2999257

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015, pp. 1–9.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 770–778.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.
[Online]. Available: http://arxiv.org/abs/1409.1556

[14] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna, “Rethinking the inception architecture for computer
vision,” CoRR, vol. abs/1512.00567, 2015. [Online]. Available:
http://arxiv.org/abs/1512.00567

