arXiv:1706.08098v2 [cs.CV] 29 Jan 2018

FReLLU: Flexible Rectified Linear Units for
Improving Convolutional Neural Networks

Suo Qiu, Xiangmin Xu and Bolun Cai
School of Electronic and Information Engineering, South China University of Technology
Wushan RD., Tianhe District, Guangzhou, P.R.China
Email: q.suo@foxmail.com, xmxu@scut.edu.cn, caibolun@ gmail.com

Abstract—Rectified linear unit (ReLU) is a widely used activa-
tion function for deep convolutional neural networks. However,
because of the zero-hard rectification, ReLU networks miss the
benefits from negative values. In this paper, we propose a novel
activation function called flexible rectified linear unit (FReLU)
to further explore the effects of negative values. By redesigning
the rectified point of ReLLU as a learnable parameter, FReL.U
expands the states of the activation output. When the network is
successfully trained, FReLU tends to converge to a negative value,
which improves the expressiveness and thus the performance.
Furthermore, FReLLU is designed to be simple and effective
without exponential functions to maintain low cost computation.
For being able to easily used in various network architectures,
FReLU does not rely on strict assumptions by self-adaption. We
evaluate FReLU on three standard image classification datasets,
including CIFAR-10, CIFAR-100, and ImageNet. Experimental
results show that the proposed method achieves fast convergence
and higher performances on both plain and residual networks.

I. INTRODUCTION

Activation function is an important component in neural
networks. It provides the non-linear properties for deep neural
networks and controls the information propagation through
adjacent layers. Therefore, the design of an activation function
matters for the learning behaviors and performances of neural
networks. And different activation functions have different
characteristics and are used for different tasks. For example,
long short-term memory (LSTM) models [1] use sigmoid
or hyperbolic tangent functions, while rectified linear unit
(ReLU) [2], [3], [4] is more popular in convolutional neural
networks (CNNGs). In this paper, we mainly focus on extending
ReLU function to improve convolutional neural networks.

ReLU [5] is a classical activation function, which effec-
tiveness has been verified in previous works [6], [2], [3], [4].
The success of ReLU owes to identically propagating all the
positive inputs, which alleviates gradient vanishing and allows
the supervised training of much deeper neural networks. In
addition, ReLU is computational efficient by just outputing
zero for negative inputs, and thus widely used in neural
networks. Although ReL U is fantastic, researchers found that
it is not the end of story about the activation function — the
challenges of activation function arise from two main aspects:
negative missing and zero-center property.

Negative missing. ReLU simply restrains the negative value
to hard-zero, which provides sparsity but results negative miss-
ing. The variants of ReLU, including leaky ReLU (LReLU)

relu(x)

frelu(x)

(a) ReLU (b) FReLU

Fig. 1. Illustration of (a) ReLU and (b) FReLU function.

[7], parametric ReLU (PReLU) [§]], and randomized ReLU
(RReLU) [9], enable non-zero slope to the negative part. It is
proven that the negative parts are helpful for network learning.
However, non-hard rectification of these activation functions
will destroy sparsity.

Zero-like property. In [10], the authors explained that
pushing the activation means closer to zero (zero-like) can
speed up learning. ReL.U is apparently non zero-like. LReLU,
PReLU, and RReLU cannot ensure a noise-robust negative
deactivation state. To this end, exponential linear unit (ELU)
[10] was proposed to keep negative values and saturate the
negative part to push the activation means closer to zero.
Recent variants [[11], [12f], [13]], [14], [15] of ELU and penal-
ized tanh function [16] also demonstrate similar performance
improvements. However, the incompatibility between ELU and
batch normalization (BN) [17] has not been well treated.

In this paper, we propose a novel activation function called
flexible rectified linear unit (FReLU), which can adaptively
adjust the ReLU output by a rectified point to capture nega-
tive information and provide zero-like property. We evaluate
FReLU on image classification tasks and find that the flexible
rectification can improve the capacity of neural networks. In
addition, the proposed activation function FReLU brings the
following benefits:

« fast convergence and higher performance;

o low computation cost without exponential operation;
« compatibility with batch normalization;

o weak assumptions and self-adaptation.

II. THE PROPOSED METHOD
A. Flexible Rectified Linear Unit

As illustrated in Fig. [I(a)] let variable x represent the input,
and rectified linear unit (ReLU) [2] is defined as:

relu(z) = {g

By redesigning the rectified point of ReLU as a learnable
parameter, we propose flexible rectified linear unit (FReLU) to
improve flexibility on the horizontal and vertical axis, which
is expressed as:

if x>0

) 1
ifx <0 M

frelu(z) = relu(x + a) + b, 2)

where a and b are two learnable variables. By further consid-
eration, activation function follows convolutional/linear layer
generally, the variable a can be learned together with the bias
of the preceding convolutional/linear layer. Therefore, the Equ.
[2) equals to

frelu(xz) = relu(z) + b, 3)

which is illustrated in Fig.

Therefore, the forward pass function of FReLU is rewrite
as:
T+ b ifx >0

, 4
by ifx <0 @

frelu(z) = {
where b; is the [-th layer-wise learnable parameter, which con-
trols the output range of FReLU. Note that FReLU naturally
generates ReLU when b; = 0.
The backward pass function of FReLU is given by:

dfrelu(z) |1 ifz>0
dfrelu(x))
o,

B. Parameter Initialization with FReLU

As mentioned in [8], it is necessary to adopt appropriate
initialization method for a novel activation function to prevent
the vanishing problem of gradients. In this subsection, we
provide a brief analysis on the initialization for FReLU. More
discussions about the initialization of neural networks can refer
to [L8], [8].

1) Back propagation: For the back propagation case, the
gradient of a convolution layer is computed by: %‘;St =
Wl%?'“, where z; = W;2;. Wl is a c-by-n matrix which
is reshaped from W;. Here, c¢ is the number of chan-
nels for the input and # = k2d (k is the kernel size,
and d is the number of channels for the output). We as-
sume 7; w;s and w; and %?St are independent of each
other. When wj; is initialized by a symmetric distribution

around zero, Var [‘9%“} = mVarjw]E [(QCT‘Z’“)Q} And

for FReLU. we have: 0Cost __ Ofrelu(zi) 9Cost
’ o Dz, Tit1

to Equ. (3), we know that E [(86‘;72“)2} = 1Var[%est],

Ti41
Therefore, Var {%ﬁ’“} = Iy Var[w]Var {M} Then

Ti+1

. According

GC:ost}

for a network with L layers, we have Var{ %

Var laq"“} (HZL:_; s Var [wl]) Therefore, we have the

TL

initialization condition:

1
iﬁlVar [w] =1, VI, (6)

which is the same with the msra method [8]] for ReLU.

2) Forward propagation: For the forward propagation
case, that is x; = W;x;, where W; is a d-by-n ma-
trix and n = k%c. As above, we have Var[ry]| =
mVarlw]E[Z}] with the independent assumption. For
FReLU, 77 = max(0,z7 ;) + max(0,2bz;—1) + b7. In
general, x is finite or has Gaussian shape around zero, then
E[#}] ~ 3Var[zyi—i] + b}. Thus, we have Var[zy] =~
(3mVar(z;—1] + nb})Varw;]. And for a network with L
layers, Var[zr] = Var|x] H1L=2 inVar[w] + ¢, where { =
S, gbiﬂlk I, anar[wl}). We found that the term &
makes forward propagation more complex. Fortunately when
using Equ. (6) for initialization, Var[zp] ~ FVar[z] +

L Ck 12
Dk=2 bk

In conclusion, when using the initialization condition (Equ.
(6)) for FReLU, the variance of back propagation is stable and
the variance of forward propagation will be scaled by some
scalars. FReLU has a relatively stable learning characteristic
except in complex applications. Thus, for stable learning, the
absolute of b; prefers to be a small number, especially for very
deep models. In practice, by using batch normalization [17],
networks will be less sensitive to the initialization method.
And the data-driven initialization method LSUV [19] is also
a good choice. For convenience, in this paper, we use MSRA
method [8] (Equ. (6)) for all our experiments.

C. Analysis and Discussion for FReLU

In this section, we analyze the improvement of FReLU for
neural networks and discuss tips for FReLU.

1) State Extension by FReLU: By adding a learnable bias
term, the output range of FReLU [b, +00) is helpful to ensure
efficient learning. When b < 0, FReL U satisfies the principle
that activation functions with negative values can be used to
reduce bias effect [[10]. Besides, negative values can improve
the expressiveness of the activation function. There are three
output states represented by FReLU with b < 0:

positive ifr>0andz+b>0
frelu(z) = < negative ifz>0andz+b<0. (7)
inactivation ifx <0

Considering a layer with n units, FReLU with b = 0 (equal
to ReLU) or b > 0 can only generate 2™ output states, while
FReLU with b < 0 can generate 3™ output states. Shown in
Table the learnable biases tend to negative b < 0 and bring
the improvement in the network by training success. Another
factor is that FReLU retains the same non-linear and sparse
characteristics as ReLU. In addition, the self-adaptation of
FReLU is also helpful to find a specialized activation function.

2) Batch Normalization with FReLU: According to the
conclusion in [10] and the experiments in Table PReLU,
SReLU, and ELU are not compatible with batch normalization
(BN) [L7]. It is because training conflict between the repre-
sentation restore (scale v and bias) in BN and the negative
parameter in the activation function. In FReLU, max (z,0)
isolates two pairs of learnable terms between BN and FReL.U.
In this paper, we introduce batch normalization (BN) [17] to
stabilize the learning when using the large learning rate for
achieving better performance. With BN, backward propagation
through a layer is unaffected by the scale of its parameters.
Specifically, for a scalar ¢, there is BN (Wu) = BN ((¢W)u)
and thus BBN%(EW)“) = 831\67,5?/“). Batch normalization is
also a data-driven method, does not rely on strict distribution
assumptions. We show the compatibility between BN and
FReLU in our experiments (Table [[).

D. Comparisons

We compare the proposed FReLU function with a few cor-
relative activation functions, including ReLU, PReL.U, ELU,
and SReLU.

m— RelLU
= PReLU
ELU
SReLU
m— FReLU

6 = arctank

Fig. 2. Illustration of the correlative activation functions.

1) ReLU: The activation function ReLU [2] is defined as
relu(x) = max(x,0). The proposed FReLU function is an
extension of ReLU by adding a learnable bias term b. There-
fore, FReLU retains the same non-linear and sparse properties
as ReLU, and extends the output range from [0,+o0) to
[b, +00). Here, b is learnable parameter for adaptive selection
by training. When b = 0, FReLU generates ReLU. When
b > 0, FReLU tends to move the output distribution of
ReLU to larger positive areas, which is unnecessary for state
extension proven in the experiments. When b < 0, FReLU
expands the states of the output to increase the expressiveness
of the activation function.

2) PReLU/LReLU: The activation function PReLU [8] is
definded as prelu(z) = max(z,0) + k * min(x,0), where k
is the learnable parameter. When £ is a small fixed number,
PReLU becomes LReLU [7]. To avoid zero gradients, PReLU
and LReLU propagate the negative input with penalization,
thus avoid negative missing. However, PReLU and LReLU
probably lose sparsity, which is an important factor to achieve
good performance for neural networks. Note that FReLU also
can generate negative outputs, but in a different way. FReLU
obstructs the negative input as same as ReLU, the backward

gradient of FReLU for the negative part is zero and retains
sparsity.

3) ELU: The activation function ELU [10] is defined as
elu(x) = max(z,0)+min((exp(xz) —1),0). FReLU and ELU
have similar shapes and properties in some extent. Different
from ELU, FReLU uses the bias term instead of exponential
operation, and reduces the computation complexity. Although
FReLU is non-differentiable at * = 0, the experiments
show that FReLLU can achieve good performance. In addition,
FReLU has a better compatibility with batch normalization
than ELU.

4) SReLU: In this paper, shifted ReLU (SReLU) is defined
as srelu(z) = max(z,A), where A is the learnable param-
eter. Both SReLU and FReLU have flexibility of choosing
horizontal shifts from learned biases and both SReLU and
FReLU can choose vertical shifts. Specifically, SReL.U can be
reformed as srelu(z) = max(z, A) = max(z — A,0) + A =
max(x—(a—A)—A,0)+A, where (a«—A) is the learned bias
for SReLU. To some extent, SReLU is equivalent to FReLU.
In the experiments, we find that SReLU is less compatible with
batch normalization and lower performance than FReLU.

III. EXPERIMENTS

In this section, we evaluate FReLLU on three standard image
classification datasets, including CIFAR-10, CIFAR-100 [20]
and ImageNet [21]. We conduct all experiments based on
fb. resnet.torc [22] using the default data augmentation and
training settings. The default learning rate is initially set to 0.1.
The weight decay is set to 0.0001, and the momentum is set to
0.9. For CIFAR-10 and CIFAR-100, the models are trained by
stochastic gradient descent (SGD) with batch size of 128 for
200 epochs (no warming up). The learning rate is decreased by
a factor of 10 at 81 and 122 epochs. For ImageNet, the models
are trained by SGD with batch size of 256 for 90 epochs. The
learning rate is decreased by a factor of 10 every 30 epochs.
In addition, the parameter b for FReLU is set to —1 as the
initialization by default in this paper. For fair comparison and
reducing the random influences, all experimental results on
CIFAR-10 and CIFAR-100 are reported with the mean and
standard deviation of five runs with different random seeds.

A. The Analyses for FReLU

1) Convergence Rate and Performance: We firstly evaluate
the proposed FReLLU on a small convolutional neural network
(referred to as SmallNet). It contains 3 convolutional layers
followed by two fully connected layers detailed in Table [I|
The ACT module is either ReLU, ELU or FReLU. We used
SmallNet to perform object classification on the CIFAR-100
dataset [20]]. Both training and test error rates are shown in
Table |lI| and we also draw learning curves in Fig. [3] We find
that FReLU achieves fast convergence and higher generation
performance than ReL U, FReL U, ELU, and SReLU. Note that
the error rate on test set is lower than training set is a normal
phenomenon for a small network on CIFAR-100.

Uhttps://github.com/facebook/fb.resnet.torch

https://github.com/facebook/fb.resnet.torch

®
3

Error rates
P
3

40-
0 50 100 150 200 0 50 100 150 200
Epochs Epochs

(a) Training error (b) Test error

—BN+ReLU
—BN+ELU
80- —BN+FRelU

30 —BN+ReLU
—BN+ELU
—BN+FReLU

70-

~
S

60-

Error rates
Error rates

=
3

50~

40-

0 50 100 150 200 0 50 100 150 200
Epochs Epochs

(c) Training error with BN (d) Test error with BN

Fig. 3. Error curves on the CIFAR-100 dataset for SmallNet. The base learning rate is 0.01. Best viewed in color.

TABLE I
SMALLNET ARCHITECTURE ON THE CIFAR-100 DATASET. (BN: BATCH
NORMALIZATION; ACT: ACTIVATION FUNCTION.)

[Type | Patch Size/Stride | #Kernels |
Convolution 3x3/1 32
(BN +) ACT — —
MAX Pool 2x2/2 —

Dropout (20%)
Convolution
(BN +) ACT
MAX Pool

Dropout (20%)
Convolution
(BN +) ACT -
MAX Pool 2x2/2 -

Dropout (20%) - —

Linear -
(BN +) ACT - -
Dropout (50%) - —
Linear -
Softmax - -

3x3/1 64

2x2/2 —

3x3/1

2) Compatibility with Batch Normalization: We investigate
the compatibilities with batch normalization (BN) on Small-
Net. As same in [10], BN improves ReLU networks but
damages ELU networks. We also empirically find that BN
does not improve PReLLU, SReLLU and FReLLU when the base
learning rate equals to 0.01. No matter with or without BN,
FReLU all achieves the lowest testing error rates. Moreover,
when using large base learning rate 0.1, ReLU, PReLU, ELU,
SReLU, and FReLU networks all cannot converge without
BN. With higher learning rates, ReLU, PReLU, and FReLU
enjoy the benefits of BN, but ELU and SReLU does not.
These phenomenons reflect that FReLU is compatible with
BN, which avoids exploding and achieves better performances
with large learning rate.

3) Different Initialization Values for FReLU: In this sub-
section, we further explore the effects of different initialization
values for FReLU. We report the results on the CIFAR-100
dataset with the SmallNet. By using a small network, the pa-
rameter of FReLU can be fully learned. The test error rates and
the convergence values b are shown in Table Interestingly,
networks with different initialization values (including positive
and negative values) for FReLU are finally converged to close
negative value. Assuming the input x ~ N (0, 1), the output

o

Activation of the 2nd neuron

-100
2100 50 0 50 100 150 200 250 300 350 -50 0 50 100 150 200

Activation of the 1st neuron

(a) ReLU

Activation of the 1st neuron

(b) FReLU

Fig. 4. The distribution of deeply learned features for (a) ReLU and (b)
FReLU on the test set of MNIST dataset. The points with different colors
denote features from different classes. Best viewed in color.

expectation of activation function f (z) can be expressed as
Elz] = [\/%exp (—0.52%) f (z). When the parameter of
FReLU b ~ —0.398 proven in Table[ll] £[z] is approximately
equal to zero. Therefore, FReLU is a normalize activation
function to ensure the normalization of the entire network.

4) Visualize the Expressiveness of FReLU: In order to
explore the advantage of FReLU, we further visualize the deep
feature embeddings for ReLU and FReLU layers. We conduct
this experiment on MNIST [23] dataset with LeNets++El As
the output number of the last hidden layer in LeNets++ is 2, we
can directly plot the features on 2-D surface for visualization.
In LeNets++, we use ReLLU as the activation function. To
visualize the effect of FReLU for feature learning, we only
replace the activation function of the last hidden layer as
FReLU. We draw the embeddings on the test dataset after
training, which are shown in Fig. 4 and ten classes are shown
in different colors. We observe that embeddings of the FReLU
network are more discriminative than ReLLU’s.The accuracy
of the FReLU network is 97.8%, while the ReLU network is
97.05%. With negative bias, FReLU provides larger space for
feature representation than ReLU.

B. Results on CIFAR-10 and CIFAR-100

1) Results on Network in Network: In this subsection,
we compare ReLU, PReLU, ELU, SReLU and FReLU on
the Network in Network (referred to as NIN) [24] model.
We evaluate this model on both CIFAR-10 and CIFAR-100
datasets. We use the default base learning rate 0.1 and test with

Zhttps://github.com/ydwen/caffe-face/tree/caffe-face/mnist_example

https://github.com/ydwen/caffe-face/tree/caffe-face/mnist_example

TABLE 11
COMPARING RELU [5], PRELU [8]], ELU [10], SRELU, AND FRELU WITH SMALLNET ON THE CIFAR-100 DATASET. WE REPORT THE MEAN (STD)
ERROR RESULTS OVER FIVE RUNS.

Base Learning Rate 0.01 0.1
Method Training [Test Training [Test
ReLU 44.20 (0.31) 40.55 (0.25) not converge not converge
PReLU 42.49 (0.12) 38.48 (0.33) exploding exploding
ELU 40.79 (0.14) 37.55 (0.47) exploding exploding
SReLU 39.85 (0.15) 36.91 (0.17) exploding exploding
FReLU 38.69 (0.17) 36.87 (0.35) exploding exploding
BN+ReLU 44.07 (0.18) 39.20 (0.32) 42.60 (0.16) 38.50 (0.43)
BN+PReLU 42.46 (0.27) 39.42 (0.54) 40.85 (0.17) 37.14 (0.42)
BN+ELU 45.10 (0.18) 38.77 (0.18) 43.27 (0.11) 37.80 (0.16)
BN+SReLU 43.47 (0.09) 38.22 (0.28) 40.15 (0.07) 37.20 (0.26)
BN+FReLU 40.38 (0.26) 37.13 (0.30) 38.83 (0.18) 35.82 (0.12)
TABLE III

MEAN (STD) ERROR RESULTS ON THE CIFAR-100 DATASET AND
CONVERGENCE VALUES (LAYER 1 TO 4) FOR FRELU WITH SMALLNET.

[Init. Value [Error Rate [Layerl [Layer2 [Layer3 [Layer4 |
0.5 37.05 (0.07) | -0.3175 | -0.4570 | -0.2824 | -0.3284
0.2 36.71 (0.32) | -0.3112 | -0.4574 | -0.2749 | -0.3314
0 36.91 (0.34) | -0.3144 | -0.4367 | -0.2891 -0.3313
-0.4 37.10 (0.33) | -0.3235 | -0.4480 | -0.2917 | -0.3315
-1 36.87 (0.35) | -0.3272 | -0.4757 | -0.2849 | -0.3282
TABLE IV

COMPARING RELU [3], PRELU [8], ELU [[10f], SRELU AND FRELU
WITH NIN [24] MODEL ON THE CIFAR-10 AND CIFAR-100 DATASETS.
THE BASE LEARNING RATE IS 0.1. WE REPORT THE MEAN (STD) RESULTS
OVER FIVE RUNS.

Dataset CIFAR-10 CIFAR-100
Method Training | Test Training | Test
BN+ReLU 2.89(0.11) | 8.05(0.15) | 14.11(0.06) | 29.46(0.29)
BN+PReLU | 1.36(0.03) | 8.86(0.18) 8.96(0.12) 33.73(0.29)
BN+ELU | 4.150.07) | 8.08(0.26) | 13.36(0.10) | 28.33(0.32)
BN+SReLU | 2.68(0.06) | 7.93(0.24) | 13.48(0.12) | 29.50(0.34)
BN+FReLU | 2.02(0.06) | 7.30(0.20) | 11.40(0.11) | 28.47(0.21)

BN. Results are shown in Table [V] PReLU seems overfitting
and does not obtain good performance. The proposed method
FReLU achieves the lowest error rates on the test datasets.

2) Evaluation on Residual Networks: We also investigate
the effectiveness of FReLU with residual networks on the
CIFAR-10 and CIFAR-100 datasets. Results are shown in
Table [V] In order to compare the compatibility of FReLU and
ELU with BN, we first investigate the performances of residual
networks with simply replacing the ReLU with FReLU and
ELU, that is using the architecture in Fig. 5(a)] We observe
that ELU damages the performances but FReLU improves,
which demonstrates that FReLLU has the higher compatibility
with BN than ELU. Inspired by [25], we further compare the
performances with the modified networks, where ELU uses
the architecture in Fig. and FReLU uses the architecture
in Fig. We also observe that FReLU achieves better
performances.

BN BN

' +
Act Act

BN BN

('i);'—/;'—/

. ACT
Output Output Output

(a) Ori. bottleneck [4] (b) w/o ACT after ad- (c) w/o BN after first
dition Conv [25]

/\

ACT
BN

Fig. 5. Various residual blocks.

C. Results on ImageNet

We also evaluate FReLU on the ImageNet dataset. Table
shows the results with NIN model and a modified CaffeNet,
where the result of CaffeNet comes from a benchmark testing
[26] and the detailed settings can refer to their project web-
siteﬂ FReLU performs well, outperforming other activation
functions.

IV. CONCLUSION AND FUTURE WORK

In this paper, a novel activation function called FReL.U
is proposed to improve convolutional neural networks. As a
variant of ReLU, FReLU retains non-linear and sparsity as
ReLU and extends the expressiveness. FReLU is a general
concept and does not depend on any specific assumption.
We show that FReLU achieves higher performances and
empirically find that FReLU is more compatible with batch
normalization than ELU. Our results suggest that negative
values are useful for neural networks. There are still many
questions requiring further investigation: (1) How to solve the
dead neuron problem well? (2) How to design an efficient

3 https://github.com/ducha- aiki/caffenet-benchmark/blob/master/
Activations.md

https://github.com/ducha-aiki/caffenet-benchmark/blob/master/Activations.md
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/Activations.md

activation that can use negative values better

TABLE V
COMPARING RELU, ELU ((A) [[10] (¢) [25]) AND FRELU WITH RESNET-20/32/44/56/110 [4]] oN THE CIFAR-10 AND CIFAR-100 DATASETS. WE
REPORT THE MEAN (STD) ERROR RATES OVER FIVE RUNS.

Dataset CIFAR-10

#Depths 20 32 44 56 110
Original 8.12(0.18) 7.28(0.19) 6.97(0.24) 6.87(0.54) 6.82(0.63)
ELU (a) 8.04(0.08) 7.62(0.21) 7.51(0.22) 7.71(0.26) 8.21(0.21)
FReLU (a) 8.10(0.18) 7.30(0.17) 6.91(0.25) 6.54(0.22) 6.20(0.23)
ELU (c) 8.28(0.09) 7.07(0.17) 6.78(0.10) 6.54(0.20) 5.86(0.14)
FReLU (b) 8.00(0.14) 6.99(0.11) 6.58(0.19) 6.31(0.20) 5.71(0.19)
Dataset CIFAR-100

#Depths 20 32 44 56 110
Original 31.93(0.13) | 30.16(0.32) | 29.30(0.45) | 29.19(0.61) | 28.48(0.85)
ELU (c) 31.90(0.36) | 30.39(0.37) | 29.34(0.39) | 28.81(0.42) | 27.02(0.32)
FReLU (b) | 31.84(0.30) | 29.95(0.27) | 29.02(0.25) | 28.07(0.47) | 26.70(0.38)

TABLE VI [12] Y. Li, C. Fan, Y. Li, and Q. Wu, “Improving deep neural net-

COMPARING RELU, ELU AND FRELU WITH NIN MODEL ON THE
IMAGENET DATASET.

[Network | Method [Top-I error | Top-5 error |

BN+ReLU 35.65 14.53
NIN BN+ELU 38.55 16.62
BN+FReLU 34.82 14.00

ReLU 53.00 -

PReLU 52.20 -

3
CaffeNet ELU 51.20 -
FReLU 51.20 -

and also has

better learning property?

(1]
(2]

(3]

(4]

(5]

(6]
(71

(8]

[9]

[10]

[11]

REFERENCES

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
arXiv preprint arXiv:1602.07261, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770-778.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807-814.

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks.” in Aistats, vol. 15, no. 106, 2011, p. 275.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. ICML, vol. 30, no. 1,
2013.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026-1034.

B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified
activations in convolutional network,” arXiv preprint arXiv:1505.00853,
2015.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

L. Trottier, P. Giguere, and B. Chaib-draa, “Parametric exponential
linear unit for deep convolutional neural networks,” arXiv preprint
arXiv:1605.09332, 2016.

[13]

[14]

[15]

[16]

(171

[18]

[19]
[20]

[21]

[22]

[23]
[24]
[25]

[26]

work with multiple parametric exponential linear units,” arXiv preprint
arXiv:1606.00305, 2016.

B. Carlile, G. Delamarter, P. Kinney, A. Marti, and B. Whitney, “Im-
proving deep learning by inverse square root linear units (isrlus),” arXiv
preprint arXiv:1710.09967, 2017.

G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” arXiv preprint arXiv:1706.02515, 2017.
R. Duggal and A. Gupta, “P-telu: Parametric tan hyperbolic linear
unit activation for deep neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 974—
978.

B. Xu, R. Huang, and M. Li, “Revise saturated activation functions,”
arXiv preprint arXiv:1602.05980, 2016.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, 2010,
pp. 249-256.

D. Mishkin and J. Matas, “All you need is a good init,” arXiv preprint
arXiv:1511.06422, Nov. 2015.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211-252, 2015.

S. Gross and M. Wilber, “Training and investigating residual
nets,” Facebook Al Research, CA.[Online]. Avilable: http://torch.
ch/blog/2016/02/04/resnets. html, 2016.

C. J. B. Yann LeCun, Corinna Cortes, “The mnist database of handwrit-
ten digits,” http://yann.lecun.com/exdb/mnist/, 1998.

M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

A. Shah, E. Kadam, H. Shah, and S. Shinde, “Deep residual networks
with exponential linear unit,” arXiv preprint arXiv:1604.04112, 2016.
D. Mishkin, N. Sergievskiy, and J. Matas, “Systematic evaluation
of convolution neural network advances on the imagenet,” Computer
Vision and Image Understanding, 2017. [Online]. Available: http:
/Iwww.sciencedirect.com/science/article/pii/S10773142173008 14

http://www.sciencedirect.com/science/article/pii/S1077314217300814
http://www.sciencedirect.com/science/article/pii/S1077314217300814

	I Introduction
	II The Proposed Method
	II-A Flexible Rectified Linear Unit
	II-B Parameter Initialization with FReLU
	II-B1 Back propagation
	II-B2 Forward propagation

	II-C Analysis and Discussion for FReLU
	II-C1 State Extension by FReLU
	II-C2 Batch Normalization with FReLU

	II-D Comparisons
	II-D1 ReLU
	II-D2 PReLU/LReLU
	II-D3 ELU
	II-D4 SReLU

	III Experiments
	III-A The Analyses for FReLU
	III-A1 Convergence Rate and Performance
	III-A2 Compatibility with Batch Normalization
	III-A3 Different Initialization Values for FReLU
	III-A4 Visualize the Expressiveness of FReLU

	III-B Results on CIFAR-10 and CIFAR-100
	III-B1 Results on Network in Network
	III-B2 Evaluation on Residual Networks

	III-C Results on ImageNet

	IV Conclusion and Future work
	References

