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Abstract—Among several structured light approaches, phase
shift is the most widely adopted in real-world 3D reconstruction
devices. This is mainly due to its high accuracy, strong resilience
to noise and straightforward implementation. However, Phase
shift also exhibits an inherent weakness, that is the spatial
ambiguity resulting from the periodicity of the sinusoidal wave
adopted. Of course many phase unwrapping methods have been
proposed to solve such ambiguity. One of the most promising
methods exploits additional signals of mutually prime periods,
in order to observe a distinct combination of phases for each
spatial point. Unfortunately, for such combination to be properly
recognized, a very high accuracy in phase recovery must be
attained for each signal. In fact, even modest errors could lead
to unwrapping faults, making the overall approach much less
resilient to noise than plain phase shift. With this paper we
introduce a feasible and effective fault recovery method that can
be directly applied to multi-period phase shift. The combined
pipeline offers an optimal accuracy and coverage even with high
noise conditions, overcoming the setbacks of the original method.
The performance of such pipeline is established by means of an
in depth set of experimental evaluations and comparison, both
with real and synthetically generated data.

I. INTRODUCTION

During the last decade, 3D sensors have gone from being
a specialist tool to a product intended for the general public.
In fact, the decreasing cost of components and the consoli-
dation of fast reconstruction algorithms enabled the adoption
of 3D technology in consumer products ranging from game
consoles [1] to smartphones and tablets [2]. Notwithstanding
the popularity of small and cheap off-the-shelf sensors, many
industrial devices are still based on long-established setups.
This is due to the higher accuracy level sought, which can be
guaranteed only by high-end hardware, proper calibration [3],
[4], [5] and top-notch signal processing. With respect to
these requirements, structured light [6] is still regarded as the
weapon-of-choice. Briefly, the main idea behind structured-
light is the projection of a known light signal onto the objects
to be captured [7]. Such signal, which is observed by one
or more cameras, can then be used to assign a distinctive
code to each material point in the scene. This code is the key
to reconstruction, as it enables the labelling of corresponding
points between different observers and thus 3D triangulation.
In this paper we are not dealing with the triangulation step,
which is itself a wide research topic [8], [9]. Instead, we are
interested in the coding signal recovery. With respect to this
problem, a deluge of different methods has been proposed

Fig. 1. Capturing of a 3D surface by means of phase shift coding.

in literature [10]. Each different approach is designed with
a specific goal in mind. Some of them aim at speed, by
allowing the use of a reduced number of patterns [11]. Others
are focused on the ability to separate the signal from the
natural texture appearing in the scene [12]. Some modern
approaches went as far as using learning techniques to infer
depth from the signal itself, without the need for an actual
triangulation [13]. Regardless of this wide choice in coding
strategies, most commercial solutions still adopt the old-
fashioned phase shift method [14]. This is mainly due to its
ability to provide high accuracy, resilience to noise and surface
textures, great flexibility and easiness of implementation. The
underlying idea is indeed quite simple: the projected frames
are sine wave intensity patterns that are periodic (usually)
along one direction (see Fig. 1). A total of n patterns is
projected over time, each one being shifted by an offset of
2Π
n periods. After all the patterns have been captured by a

camera, each image pixel u, v is labelled with a base phase
value ϕ(u, v) ∈ [0, 1) recovered by means of correlation
(for details see for instance [15]). Unfortunately, since the
signal is periodic in space, the same value of ϕ appears
several times, one for each different sine fringe. To solve this
ambiguity an additional step, commonly referred to as phase
unwrapping, is needed. Most phase unwrapping approaches
resort to the projection of an additional pattern sequence
(often Gray codes), exhibiting lower accuracy, but which is not
affected by ambiguity. This combined technique results in a
labelling which is both unambiguous and reasonably accurate.
However, such methods have the drawback that not all the
projected patterns effectively contribute to the accuracy of ϕ.
To allow a better exploitation of captured signals, some authors
proposed multi-period approaches which use phase shift also
for disambiguation (for instance [16]). While promising, these
latter techniques are seldom adopted in actual devices. In fact,
as we will show in the experimental section, they are quite
sensitive to noise as the unwrapping step requires an extremely
high accuracy in phase recovery.



With this paper we introduce a practical method to address
such noise sensitivity. The resulting pipeline enables the
practical adoption of multi-period phase shift with a minimal
effort and guarantees maximal accuracy at any noise level.

II. MULTI-PERIOD PHASE SHIFT

Multi-period phase shift, proposed by Lilienblum and
Michaelis [16], combines phase recovery and unwrapping by
mean of n independent phase shift sequences of different (and
possibly coprime) period lengths λ1, λ2, ..., λn, resulting in a
vector of recovered phases ϕ = (ϕ1 ϕ2 ... ϕn)T . The main
idea, depicted in Fig. 2, is that, given an unique projector
coordinate ξ, the phases vector ϕ will be also unique. In fact,
the same combination of phases will not appear again until
ξ′′ = ξ′ + k ξmax, where ξmax = LCM(λ1, λ2, ..., λn) (that
is the Least Common Multiple of all period lengths).

More in detail, we can define functions ϕi(ξ) and ηi(ξ)
respectively as phase value and fringe number expected to
be recovered from projector coordinate ξ by the ith pattern
sequence:

ηi(ξ) =

⌊
ξ

λi

⌋
ϕi(ξ) =

ξ

λi
−
⌊
ξ

λi

⌋
(1)

From these definitions we can infer the following system of
equations

ξ = (ηi(ξ) + ϕi(ξ))λi ∀i = 1, ..., n (2)

After the patterns have been projected and the phases ϕi(ξ)
recovered, the only unknowns left are the components of the
fringe numbers η = (η1(ξ) η2(ξ) ... ηn(ξ))T and the projector
coordinate ξ itself. Imposing the condition ξ < ξmax, the
system has an unique solution, thus allowing to recover the
sought projector coordinate ξ.

Such unique solution can be easily found by considering
the differences between phases. Specifically, fixing two pattern
sequences j and k, the right sides of the equations in system
(2) can be equated, obtaining:

(ηj(ξ) + ϕj(ξ))λj = (ηk(ξ) + ϕk(ξ))λk

λjηj(ξ)− λkηk(ξ) = λkϕk(ξ)− λjϕj(ξ)
(3)

In particular, from the right part of such relation, we can define
a phase difference vector based on the offset from pattern
sequence 1:

Φ(ξ) = a = (a1, ..., an); ai = λ1ϕ1(ξ)− λiϕi(ξ) (4)
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Fig. 2. Disambiguation principle in multi-period phase shift.

Since we already limited the code values, elements ai are not
ambiguous and a map H can be defined in the following way:

H(a) =

{
(h1, h2, ..., hn) : ∀i{ai = λihi − λ1h1}
undefined otherwise

(5)

allowing for an easy conversion between phase difference
vectors and fringe numbers:

H(Φ(ξ)) = (η1(ξ), η2(ξ), ..., ηn(ξ)) (6)

The range of values in H is a finite set, which depends
only on period lengths λ1, ..., λn. Therefore, it is possible
to pre compute all the values for H and store them in a
LUT (Look Up Table). This data structure allows to compute
fringe numbers in a fast way given the sequence of phase
observations ϕ.

Of course, in the real-world ϕ will be affected by errors
due to several error sources. So it is not obvious that Φ(ξ)
will be accurate enough for H to map it to the correct fringe
vector. As a matter of fact, as we show in Sec. IV, even modest
levels of noise lead to difference vectors that are not in the
domain of eq. 5. This, in turn, leads to LUT access faults and,
in general, to the inability of recovering the correct value for
ξ (see [16] for details). It should be noted that, once the LUT
access fails, the difference vector offers no hint about where
to search for a fringe vector that would justify the obtained
ϕ. To this end, a brute force solution would be to check for
all the feasible combinations of fringe values and select the
one that minimizes the radius of estimated ξ. Unfortunately
this would lead to a huge number of tests. In the following
section we propose three strategies to reduce the number of
fringe vectors to be checked.

III. NEIGHBORHOOD-BASED FAULT RECOVERY

The following strategies are actually rather naive. However,
the main contribution of this paper is about their evaluation
in terms of effectiveness and feasibility with respect to com-
putational efficiency. Our goal, indeed, is to show that multi-
period phase shift can be easily adopted in real-world scenarios
without drawbacks.

The shared mechanics of all the following strategies in-
volves the selection of a reduced set of fringe vectors η to
be tested, that we call Sη , and a rule to extract among its
elements the optimal fringe vector η∗(Sη).

For a given vector of observed phases ϕ and a fringe
vector η ∈ Sη , we define an estimation for both the projector
coordinate ξ and its error ε. The obvious estimator for ξ is the
average of the independent values obtained from each period
sequence. According to eq. 2, it can be computed as:

ξ(ϕ,η) =

∑n
i=1(ηi(ξ) + ϕi(ξ))λi

n
(7)

One of the main advantages of eq. 7 is that, assuming that no
outliers are present, each single pattern equally contributes to
a better assessment of ξ.

A reasonable estimator for the error of ξ(ϕ,η) could be of
course the standard deviation exhibited by the averaged values.



However, since the number of signals involved in multi-period
phase shift is usually small, we opted for a more conservative
choice. We assess the error commited as the radius of the
independent estimates for ξ, that is:

ε(ϕ,η) = max
1≤i,j≤n

|(ηi(ξ)+ϕi(ξ))λi−(ηj(ξ)+ϕj(ξ))λj | (8)

The optimal fringe vector can thus be found as:

η∗(Sη) = arg min
η∈Sη

ε(ϕ,η) (9)

Consequently, the optimal estimate for ξ within the set of
candidates Sη is ξ(ϕ,η∗(Sη)). Additionally, we also define
a general criterion to be adopted in order to retain or discard
such estimates. This is needed because if no valid candidate
for η exists in Sη , then the obtained value for ξ could be
totally random. Since this is just an outlier detection measure,
the criterion can be very coarse. In this paper we adopt
a threshold tε over ε(ϕ,η). To this end ξ(ϕ,η∗(Sη)) is
considered recovered only if ε(ϕ,η∗(Sη)) < tε. Otherwise,
the point is deemed to be non-recoverable. We propose to set
tε = 0.5 (

∑n
i=1 λi)/n. This is a quite coarse estimate, since

the typical error is much lower than half the average period
length. Still in all our experiments this threshold never resulted
in an outlier accepted as a valid ξ.

A. Vector Fringe Consesus

All the strategies proposed to build Sη for a pixel (u, v)
works by looking at the neighborhood of the pixel itself. We
define Nk(u, v) as the set of the k nearest pixels to (u,v)
that are correctly mapped using map H . Moreover, we define
Nk(u, v,η) as the set of pixels in Nk(u, v) that are mapped
by H to η and we say that η ∈ Nk(u, v) if |Nk(u, v,η)| > 0.

The Vector Fringe Consensus strategy (VFC) defines the set
of fringe vectors to be checked as:

Svfc(u, v) = {η | |Nk(u, v,η)| ≥ |Nk(u, v,η
′)| , ∀η′} (10)

This means that all the most frequent vectors in the neighbor-
hood of (u, v) are checked.

B. Independent Fringe Consesus

We define Nk(u, v, η, i) as the set of pixels in Nk(u, v,η)
such that ηi = η for any η, and the set of best candidates for
a given fringe i as:

Si
ifc(u, v) = {η | |Nk(u, v, η, i)| ≥ |Nk(u, v, η

′, i)| , ∀η′} (11)

This means that each set Siη(u, v) contains the most frequent
fringe numbers for period i within the set Nk(u, v).

Using these sets, the Independent Fringe Consensus strategy
(IFC) defines the set of fringe vectors to be checked as:

Sifc(u, v) =

n∏
i=1

Siifc(u, v) (12)

That is the Cartesian product of all the sets Siifc(u, v).
It should be noted that the set Sifc(u, v) is not necessarily

a super set of Svfc(u, v) as there is no guarantee that the most
frequent combinations as whole fringe vectors η are composed

of the most frequent independent components. Indeed, the
rationale of IFC is to decouple single coordinate of η in order
to deal with corner cases including fringe boundaries, where
only one or two fringe numbers actually changes.

C. Complete Fringe-set Check

The third strategy is the most exhaustive, since it checks
all the possible combinations of fringe numbers that appear in
the neighborhood of the pixel. To this end, we first define the
set of single fringe coordinates as:

Sicfc(u, v) = {η | |Nk(u, v, η, i)| > 0} (13)

In a similar manner to IFC, also the complete Fringe-set Check
strategy (CFC) defines a set of fringe vectors to be checked
as a Cartesian product:

Scfc(u, v) =

n∏
i=1

Sicfc(u, v) (14)

This time, however, for a fringe number to be included it has
just to be present in at least one neighbor. This is a very relaxed
constraint and it is not clear if such allowance would result in
an unfeasible number of fringe vectors to check. As we will
show in the experimental section, this is not the case and the
number of actual fringe combination to validate is in practice
quite modest.

IV. EXPERIMENTAL EVALUATION

The proposed approach is introduced in order to solve a
practical problem with multi-period phase shift. To this end,
it is paramount to assess its effectiveness with an in depth
experimental evaluation.

In this section we perform such analysis with a set of
different goals in mind. First of all, we want to show the ability
of our method in recovering unwrapping faults both in terms of
percentage of recovered points and of their accuracy. Then, we
demonstrate that such ability is not critically affected by the
number of candidates inspected, and thus the method can be
applied without a significant performance loss. Finally a proper
comparison with a standard non multi-period approach is
reported. This last test highlights the improvement in accuracy
granted by the redundant information offered by different (and
independent) signals.

A. Fault Recovery with Noisy Signal

For an useful evaluation of the effectiveness of our method
as a recovery tool, it is very important to know exactly the
expected fringe numbers ηi for each given image pixel. This
is hard to obtain accurately with real-world scans since it
would require to perfectly know the geometry of the observed
object, of the projector frustum and the relative pose of camera
and projector. On the other hand, real-world observation is
not critical to the relevance of this evaluation. In fact, the
error committed with the reconstruction of each phase ϕi is
indeed the only factor affecting the unwrapping step of multi-
period phase shift. Such error can originate by various sources,
however, at the end of the day, the only significant element is
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Fig. 3. Comparison of the recovery rate and resulting RMS error achieved by the proposed methods.

its magnitude. If we model the error as zero-mean Gaussian
additive noise, such magnitude can be expressed as a standard
deviation σ and we can evaluate the resilience to noise by
simulating perturbed phase observations:

ϕ̃i =
ξ

λi
−
⌊
ξ

λi

⌋
+N(0, σ) i ∈ 1..n (15)

where ξ is a randomly generated projector coordinate, n is the
total number of periods and N(0, σ) is a normally distributed
unbiased random variable with standard deviation σ. We also
assume the noise magnitude σ to be identical for all the phase
observations, which is reasonable since it mainly depends on
the number of samples, which is usually the same for all the
periods.

In our first batch of experiments we generated 106 samples
for different values of σ and an amount of neighbors checks
fixed to 10. We applied respectively IFC, VFC and CFC to
recover the faults from plain multi-period phase shift (MPS).
We classified a point as recovered when a method assigns to
it the correct set of fringe numbers. The results are shown on
the left plot of Fig. 3. The red line represents the amount of
points correctly unwrapped by MPS at the first round. The
dotted lines show the amount of points respectively recovered
by IFC, VFC and CFC and the continuous lines of the same
color the total number of unwrapped points by combining the
initial set with the ones recovered by each method. There are
several observation that can be made by looking at this data.
First of all, even with a small amount of noise (about 2%
over the normalized phase value), MPS fails about 50% of
the times. This is a well-known limitation of MPS, which
indeed reduces greatly its feasibility in real-world products.
Interesting enough, both IFC and VFC work reasonably with
low noise levels, still their performance drops fast. The failure
of VFC means that with high noise levels it is difficult for the
correct fringe vector to consinstenly gain major consensus. In a
similar manner, the failure of IVC means that even by seeking
independently the consensus for each phase component, it is
quite common to obtain a broken vector. This effect is likely
due to the fact that each phase is independently observed and
thus the probability of getting a full set of n correct consensus
over fringes, gets smaller as n increases.

Differently, CFC works remarkably well also with a very
high noise level. As a matter of fact it is able to recover all
the correct fringes even when MPS offers less than 10% of
unwrapped points. This is partially expected, since for CFC

to work it is required that the correct fringe appers at least in
one neighbor. This is a very loose requirement, given that the
observations are independent and the probability of not getting
the correct fringe in n neighbors decreases quickly with n.

While this is a very encouraging result, the recovery of the
unwrapping does not automatically implies a good accuracy.
Undoubtedly the overall error obtained by combining errors
in phase recovery when computing the average ξ could still
lead to an unacceptable result. To analyze the overall accuracy
we plotted, in the right part of Fig. 3, the RMS error of the
recovered points with respect to the ground-truth.

By looking at the plot it seems that CFC offers consistently
better accuracy than IFC and VFC. Specifically, the accuracy
of CFC is actually comparable with the degree of precision
obtained by points directly unwrapped by MPS at the first
round. The breaking point seems to be around a standard
deviation on the synthetically-generated data of about 6%,
which is indeed huge (about 1

3 radians). Note also that, until
that point, the recovery error is around a half code unit, which
in practice corresponds to sub-pixel accuracy in projector
coordinates. Finally, it should also be noted that the slow
increase in the error exhibited by MPS after the 6% threshold
is not really due to some particular merit, but its a simple
consequence of the implied biased selection. In fact, only the
observation characterized by low error are actually unwrapped
by MPS at the first round.

B. Effect of the Number of Neighbor Checks

At this point CFC appears to be the best candidate for
unwrapping faults recovery. However, since it works on the
complete Cartesian product of fringe observation sets, it could
end up checking much more candidates than IFC and VFC. For
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this reason, it is very important to verify that its accuracy can
be achieved without needing an extensive search. To this end,
we performed a batch of tests by setting the noise level at 6%
and by exploring the effect of different choices for parameter
k, that is the number of decoded surrounding pixels to be
considered. The results are shown in Fig. 4. It can be noted
that the number of neighbors has actually a very limited effect
on CFC, which is of course an important feature. In detail,
while a choice of only 5 neighbors implies a slight drop in
performance, 10 check points seem to be more than enough.
Finally, we can observe an interesting phenomenon appearing
when the number of checked neighbors grows too much. As a
matter of fact, a large amount of neighbors results indeed in a
slightly diminished accuracy and a larger standard deviation.
This is probably due to the fact that, when the product set
becomes very large, it could happen randomly that a wrong
fringe number configuration is blessed by a higher coherency
than the correct one. This is an important observation, in fact
it offers an additional reason (beside computational feasibility)
to avoid the naive approach of checking all the possible fringe
configurations.

Regarding the computational feasibility of CFC, we are
also interested in assessing how many candidates result from
different number of neighbors checks. This is shown in Fig. 6
for two different sets of period lengths. The number of actual
candidates exhibits a large variance, since it depends a lot on
the position of the observed point. Still, its magnitude is in
general quite low and grows in a linear manner with the size
of the neighbor set. In practice, since 10 neighbors have been
shown to be a reasonable choice for a good performance of

CFC, we can conclude that the recovery step would require
to check a very small amount of candidates, with minimal
impact in the overall execution time of the full pipeline over
plain MPS.

C. Real-World Evaluation

In the previous sections we adopted synthetically generated
data to enable an evaluation under controlled conditions of
noise and with a well defined ground-truth. Nevertheless,
for a complete validation of the approach a demonstration
of its effectiveness with an actual camera-projector setup is
needed. To this end, we used a calibrated camera-projector pair
composed of a CCD machine vision camera with 3Mpixels
resolution, a full hd video projector and a disparity of about
20cm. The system was calibrated using [17] and verified using
artificial markers [18], [19]. Since a proper ground-truth could
not be available, we evaluated the performance by capturing
planar surfaces of different materials and then by computing
the average distance of each reconstructed point from an ideal
plane obtained by fitting all the points reconstructed by using
only MPS. This should be a reasonable substitute for a ground-
truth since its a statistical measure based on a large number
of reliable points. Since it’s not possible to set the amount of
desired noise in such kind of experiment, we evaluated the
RMS error with respect to the plane for different amounts
of samples used for phase recovery. Under these conditions,
the phase recovery error, and thus the observation noise, is
expected to decrease with the square root of the number of
samples. The results are shown in Fig. 5, by mean of two plots
similar to those shown in Fig. 3. The observed trends confirm
those obtained with synthetically generated data. Finally, in
Fig. 7 we also show actual reconstruction examples to supply
a basic intuition about the real effects of the different recovery
rates and accuracy levels. The items reconstructed are a set of
planar surfaces placed at a distance of about 1 meter from the
projector-camera system.

D. Comparison with gray coding

As discussed, multi-period phase shift is very sensitive to
noise. In fact, even a naive approach using a single phase shift,
combined with gray coding disambiguation, can lead to more
stable unwrapping results. Moreover, approaches designed to
deal with the few unwrapping errors from gray coding have
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Fig. 7. Examples of reconstruction of difficult surfaces using plain MPS (1st column), IFC (2nd column), VFC (3rd column) and CFC (4th column).

already been proposed in literature [20]. For this reason the
practitioner could ask if there is any compelling reason to
adopt our CFC extension of MPS. Actually there is a really
important difference between the two approaches. When gray
coding is used for disambiguation, the projected patterns do
not contribute to the accuracy of the coding. In fact they
are simply discarded once the fringe number for a point
is recovered. Differently, with multi-period phase shift, and
thus with CFC, all the single observed phases provide useful
information. In Fig. 8 we report the result of an experiment
performed with the same setup presented in Sec. IV-A, com-
paring the RMS error with respect to ground-truth obtained
with CFC and the technique presented in [20]. The standard
deviation of the noise is set to 6%. We applied this error to all
the phases recovered with CFC (over three periods) and to the
single phase observed by the state-of-the-art method [21]. In
addition we assumed the unwrapping from gray coding to be
always perfect. The advantage of CFC in terms of accuracy is
quite prominent.

V. CONCLUSION

With this paper we examined three strategies for phase
unwrapping faults recovery. Among these, Complete Fringe-
set Check (CFC) exhibited the best behavior and we think
it to be suitable to be adopted in practical scenarios. In
fact, despite being rather simple, it definitely fixes a long
standing problem with multi-period phase shift methods: the
inherent high sensitivity to noise. The effectiveness, efficiency
and accuracy of CFC has been demonstrated by means of a
thorough experimental evaluation performed over both real and
synthetically generated data.

Fig. 8. Enhanced accuracy of MPS/CFC with respect to gray coding
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