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Abstract—Video compression algorithms have been designed
aiming at pleasing human viewers, and are driven by video
quality metrics that are designed to account for the capabilities
of the human visual system. However, thanks to the advances
in computer vision systems more and more videos are going to
be watched by algorithms, e.g. implementing video surveillance
systems or performing automatic video tagging.

This paper describes an adaptive video coding approach for
computer vision-based systems. We show how to control the
quality of video compression so that automatic object detectors
can still process the resulting video, improving their detection
performance, by preserving the elements of the scene that are
more likely to contain meaningful content.

Our approach is based on computation of saliency maps
exploiting a fast objectness measure. The computational efficiency
of this approach makes it usable in a real-time video coding
pipeline. Experiments show that our technique outperforms
standard H.265 in speed and coding efficiency, and can be applied
to different types of video domains, from surveillance to web
videos.

I. INTRODUCTION

Video streaming applications that require transmission of
a high number of streams to some central server, have to
deal with issues such as limited bandwidth channels or a
bandwidth bottleneck on the server itself. Some examples are
video surveillance networks, UHF video streaming networks
connecting dash cams installed in police cars, or streams
transmitted from wearable devices or smartphones. All these
applications require to transmit videos with a reasonable high-
quality for further processing by vision-based systems, e.g. to
identify anomalous activities, detect and identify persons, and
detect objects. A way to improve the video compression
methods currently used is to reduce the amount of irrelevant
information transmitted in the video stream, compressing more
the parts that do not contain semantically interesting objects.
Typically this is performed by computing visual saliency maps
based on some model of the human visual system.

Differently from this approach our method is designed
to compute a binary saliency map designed for computer
vision-based systems, considering the case of a system that
performs automatic object detection. To this end we exploit
the objectness measure, that quantifies how likely an image
window is containing an object of any class [1]. An objectness
saliency map is computed from window proposals, and it is
combined with H.265 quantization parameter map. We propose
a method to learn a map that indicates to the codec which
parts of the frame are relevant for a computer vision algorithm,
combining a semantic and a low-level cue, maintaining also the

perceptual quality for human viewers. Detector performance
improves especially for low bitrates (∼ 1k–2k Kb/s), while for
similar bitrates our compression method preserves perceptual
quality of relevant regions better than standard codecs. An
additional result is that the proposed method is much faster
than standard video coding.

II. PREVIOUS WORK

Saliency and objectness: Visual saliency deals with prop-
erties and qualities of items that stand out with respect to
their neighbors, and typically arises from contrasts in terms
of color, luminance, motion, etc. Works in this area typically
aim at predicting salient points of human eye fixation [23] or
modeling visual attention [6]. Because of this relation with the
human visual system and its attentional model, saliency has
been used to identify parts of images or video frames that are
to be compressed lightly, to preserve their visual content.

However, a detector may need to handle objects that are
not visually conspicuous or that do not draw human gaze,
thus an object proposal method should be able to deal also
with objects that are not salient. Hosang et al. [14] have
recently presented a comparison of the current state-of-the-art
in objectness proposal methods. Uijlings et al. [25] propose
a method that requires no parameter learning, combining
exhaustive search and segmentation in a data-driven selective
search. The approach is based on hierarchical grouping of
regions, using color, texture and region features. The method
of Zitnick and Dollár [28], called Edge Boxes, computes
a scoring function in a sliding window fashion. Scoring is
performed measuring the number of edges that exist in the
box minus those that are members of contours that overlap
the box’s boundary. The method of Cheng et al. [9] is the
fastest approach, as reported in the comparison of [14], and
uses a simple linear classifier over edge features, that is trained
and applied in a sliding window manner. The efficiency of this
approach is due to the use of approximated features, binarized
normed gradients that give the name (BING) of the method.

Video coding: Traditional adaptive video compression
approaches do not consider the semantic content of video
and instead adapt compression depending on the requirements
of the network or device used to deliver video to the end
user. Semantic video compression, instead, alters the video
by taking into account objects [15], [18] or a combination of
objects and events [4], using pattern recognition techniques.
Bagdanov et al. [2] have proposed to use image features
correlated with downstream detector features, like corners
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Fig. 1. Our system pipeline. Binary saliency maps are predicted using [9], [22], [24] fused with our learned model. The final binary map is shown rightmost.

and edges, to select frame areas to be maintained at higher
visual quality and smoothing the rest. This approach has
been applied, as pre-processing step to H.264 encoding, to
surveillance videos. Videos compressed using [2] have a very
low bitrate. Moreover the performance of pedestrian detection
is better on videos compressed with this approach with respect
to those compressed with H.264 at a similar bitrate.

Chen et al. [8] have addressed surveillance video coding,
segmenting moving objects from background using low-rank
and sparse decomposition, and coding the background with
a few independent frames, based on their linear dependency,
to further reduce their temporal redundancy. Guo et al. [11]
follow a similar approach, but separating background from
moving objects by learning a background dictionary, and
coding motion together with the reconstruction coefficients of
the background.

Use of saliency maps for video coding has been proposed
by Gupta et al. [12], where low-level and high-level saliency
features are combined and used to perform a non-uniform
bit allocation over video frames. Since computation of these
saliency maps is expensive the authors propose to use a shot-
detection method to select a reduced number of frames for this
computation. Hadizadeh and Bajić [13] have proposed to add
a saliency distortion term in the rate distortion optimization
(RDO) processing of H.264/AVC, to improve the coding
quality of regions of interest (ROI). Saliency is computed with
an extended version of the Itti-Koch-Niebur saliency model
[16], with an improved temporal saliency that accounts for
camera motion. The proposed RDO is ∼ 3 times slower
than the standard approach. Li et al. [19] have proposed the
use of saliency maps in H.265/HEVC coding to drive the
quantization parameter of the coding units. An initial map
is computed using graph-based visual saliency [7], then a
Markovian algorithm concentrates saliency in a few locations,
followed by a Gaussian filtering.

Differently from [8], [11] the proposed approach can be
applied to standard video coding such as H.264 or H.265.
Differently from [13], [17], [19], [29] the proposed approach
does not compute a saliency that attempts to mimic the
human visual system; instead, our saliency exploits objectness
measures in to order to obtain a better performance with object
recognition algorithms. Differently from [2] the proposed cod-

ing does not pre-process video frames to drive the allocation
of bits of the encoder, but rather intervenes directly on the
quantization parameter of the encoder, thus avoiding an extra
processing step.

III. CODING WITH LEARNED SALIENCY

The goal of the proposed approach is to learn a saliency
map that can drive compression of video frames in a way
that is friendly for computer vision algorithms. The map is
based on few features that are fast to compute, so to allow
the application of the method to tasks that require real-time
coding such as surveillance. Features are also related to the
task of a computer vision-based system; in particular we have
addressed the problem of object detection, that can be useful
for both surveillance and automatic video tagging. This means
that the map should indicate which part of the frame contains
an object of interest for the algorithm. A secondary goal is to
preserve visual quality, in terms of human visual system, for
these objects.

Our method is based on modern video coding algorithms,
specifically we use H.265, and the open source implementation
x265 as practical reference implementation, but it can be
applied also to H.264. Compression quality can be controlled
with different strategies, e.g. using variable bitrate (VBR),
constant bitrate (CBR) or with a constant rate factor (CRF);
these approaches allocate the bits to different granularity levels
of video, then reach the preallocated budget while encoding
by adjusting the quantization parameter (QP) [5]. In particular,
x265 trades distortion for bitrate, following different strategies,
that typically adopt psycho-visual options that improve the
perceived visual quality (e.g. favoring wrong motion over blur,
or preserving the energy of the reconstructed patch). This
approach is geared towards preserving the image appearance
as much as possible. If the coded video has to be principally
consumed by a machine we only need to keep the video quality
good enough for the task at hand to be completed successfully.
The video created with our approach is completely H.265
compliant and requires no changes in the decoder.

We propose to generate a binary saliency map, created
according to the quadtree partitioning of the coding tree unit
(CTU), indicating whether keeping the originally estimated QP
or setting QP to the maximum value 51 (highest compression)



[24]. We take into account i) an objectness saliency map,
ii) motion map, iii) visual saliency map and iv) QP map,
and propose to combine them to predict a binary map. The
objectness map is directly related to the task of the computer
vision system that will consume the video, i.e. object detection,
while motion and saliency map are used to weight how much
visually conspicuous are the objects in the scene; finally, the
QP map account for visual features such as texture and also for
the secondary goal of the proposed approach, that is to obtain
visually pleasant objects for the possible human viewers. Fig. 1
shows a schema of the proposed approach.

More formally, let us consider a video frame t, a patch of
N ×N pixels centered at location (x, y), and Mi, i = 1 . . . 4
maps listed above. We define the operator NNN (x, y,M)
that extracts the vector [Mi(x − N/2, y − N/2) . . .Mi(x +
N/2, y + N/2)] concatenating the values of a neighborhood
of size N ×N centered on (x, y).

To learn how to fuse the maps with the best performing
weights, we learn a function f(x)→ [0, 1] using a RBF kernel
k(xi, xj) = exp(−γ||xi − xj ||2) setting γ and C by five-fold
cross validation.

Positive samples are patches whose center belong to de-
tected objects, while negative patches are sampled from the
background. Patch samples can be collected in an unsupervised
manner by running an object detector with a high threshold on
few frames; as an example on TownCenter we collect ∼ 4000
samples using only 2 frames.

Each saliency map Mi is normalized to zero mean and unit
variance. In the following we review the maps, extracted with
known algorithms, that we combine to create the proposed
objectness-based saliency map.

Objectness Saliency Map: Considering a set of object
proposals Sk ⊆ S we can define an objectness saliency map
Mk by accumulating how many proposals of Sk are present
in each frame at each position. Let us denote Stk the set of
proposals Sk at frame t. For every pixel p = (x, y) of frame t,
we compute the corresponding objectness saliency map value
M t

k(p) as the count of proposals enclosing this position:

M t
k =

∑
s∈St

k

Ψs (1)

where for each proposals s ∈ Stk we define the function of
pixels p in an image:

Ψs(p) =

{
1 if p ∈ s
0 otherwise

(2)

The map M(x, y, t) represents at any moment of the video,
how much each pixel is relevant with respect to the set Sk.
The more proposals overlap in one position the more likely
this pixel belongs to an object and is therefore relevant for
video coding. The BING objectness proposal measure [9] has
been used, because of its low computational cost that makes
it amenable for inclusion in a real-time compression system.

Motion Map: It is simply the difference, pixel by pixel,
of two consecutive frames.

Visual Saliency Map: To consider the visually salient
elements of the scene, we have selected the Fast and Efficient
Saliency (FES) map [22], based on estimating saliency of
local feature contrast in a Bayesian framework. Again, its
good computational performance make it usable in a real-time
context.

QP Saliency Map: This map is the quadtree representa-
tion of the QP values used in the CTU of the HEVC encoder.
QP values are computed over 16 × 16 pixels by the x265
encoder. This saliency is related to the energy of each patch
considered.

IV. EXPERIMENTS

We evaluate structural similarity index (SSIM) [27], a visual
quality metric that models the perception of compression
artifacts, and the average log miss rate for a pedestrian
detection scenario typical of surveillance videos. Furthermore
to evaluate how the method generalizes we evaluated mean
average precision (mAP) of generic object detectors on videos
downloaded from YouTube. We compare these metrics with
many baselines comprised the standard x265 codec for differ-
ent bitrates. The performance of the proposed method has been
evaluated using three measures, as the video bitrate is varied
with the CRF: structural similarity index (SSIM) [27], a visual
quality metric that models the perception of compression
artifacts, and two measures used in object detection: the
average log miss rate and mean average precision of object
detectors.

Surveillance Videos: We used Town Center [3] composed
by a 5 minutes HD video, recorded at 1920× 1080 @ 25 fps
from a fixed camera, showing people walking in the street of
a town, with 71,500 ground truth annotations of persons;

In the first experiment, we have compared the proposed
method with a number of baselines. The original video has
been compressed with the proposed method and with the
baselines. We processed the resulting videos with the ACF
pedestrian detector [10] and its detection results have been
compared with the ground truth annotations. The baselines
are: i) the x265 implementation of H.265 ; ii) a combination
of QP map and motion map; iii) a combination of QP map
with visual saliency computed with the method proposed by
Walter and Koch [26]; iv) a combination of QP map, motion
map and visual saliency by Walter and Koch; v) a combination
of QP map, motion map and FES visual saliency.

It has to be noted that using the visual saliency of [26]
results in a computational cost that is higher than 150 ms; thus
the combinations that use [26] are not suitable for applications
that have constraints on processing time.

Fig. 2 reports the average log miss rate of the person
detector; the lower the value the better the performance of the
detector. The improvement with respect to the x265 baseline is
due to the reduction of false detections, that are eliminated by
the increased compression of non relevant parts of the frame.
Comparison with the other baselines shows that adding the
objectness-based map improves over other visual saliencies.



Fig. 3 evaluates the visual quality of the areas of interest
for the detector, using the SSIM measure. The improvement
obtained by the proposed approach is due to the fact that
the encoder is able to better allocate the bits to the areas of
interest, rather than distributing them also to the background.
The comparison with the other saliency maps, that also beat
the performance of standard x265, shows that the objectness
measure better selects the elements of interest.
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Fig. 2. Detection Average Log Miss rate varying bitrate on Town Centre
(lower is better).
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Fig. 3. SSIM varying bitrate on Town Centre (higher is better).

Fig. 4 shows an example of the various saliency maps
computed. Fig. 5 shows an example of the compression of
TownCenter frames, with the proposed method (lower bitrate,
better person recognition) and using the standard x265 codec.

YouTube Videos: For this experiment we used YouTube
Objects [20], commonly used to test video object detection
methods for different types of objects, evaluating the proposed
approach on 10 classes of objects, from cats to trains, to asses
the capability to generalize. Since the YouTube Objects dataset
videos have typically been captured with non fixed cameras,

Fig. 4. Examples of saliency maps computed on Town Centre.

Fig. 5. Examples of video compression of Town Centre. The proposed method
obtains a much lower bitrate with an improved person detection.

the motion map is not useful, and it has not been used in this
experiment.

Given the sparsity of ground truth annotations of YouTube
Objects (usually just 1-2 frames per video), we have annotated
1500 objects on a subset of the dataset. The method has been
compared to a standard H.265 compression.

Object detections have been computed using Faster R-CNN
[21], on the videos compressed with the proposed approach
and with the baseline. We used the VGG-16 model, pre-trained
on Imagenet and fine-tuned on PASCAL VOC2007 [21]. No
tuning of the detector has been performed on the YouTube
Objects dataset.

Fig. 6 reports the mean average precision for the 10 object
classes of YouTube object. Again, similarly to the previous
case, the improvements of the detection can be attributed to



the reduction of false positives.
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Fig. 6. Mean average precision on YouTube Objects varying bitrate (higher
is better).

Fig. 7 shows an example of the various saliency maps
computed. Fig. 8 shows an example of the compression of
TownCenter frames, with the proposed method (lower bitrate,
better person recognition) and using the standard x265 codec.
It is clearly shown that “uninteresting” parts of the frame like
the road are more compressed, while persons are kept in high
quality.

Fig. 7. Examples of saliency maps computed on Youtube objects dataset.

Computational costs: Another advantage of our method
is in the reduction of computational costs in video encoding.
In Figure 9 we show per-frame encoding time of our approach
compared to H.265. We show the timing for three presets of
increasing quality and varying the CRF. As expected for both
approaches a lower CRF implies more encoding time, setting
on average higher QPs, thus leading to less sparse quantized
coefficients for each CU.

Fig. 8. Examples of video compression of Youtube objects. The proposed
method obtains a much lower bitrate with an improved object detection.

This behavior is afflicting H.265 more than our adaptive
coding algorithm. Frame blocks, predicted to be irrelevant, by
our learned binary map, are quantized with the lowest quality.
This mainly affects two aspects. Firstly the DCT coefficients
will be mostly zero, leading to a less expensive coding later
in the pipeline. Secondly, residues after block matching will
be even more sparse and thus coded more efficiently.

Our method is more than two times faster than standard
H.265 in coding video frames. This improvement is consistent
for all H.265 presets.

V. CONCLUSIONS

We proposed a method for adaptive video coding based on a
learned saliency. Our novel saliency drives video compression
in order to preserve the appearance without damaging the per-
formance of object detectors. Detector performance improves
especially for low bitrates (∼ 1k–2k Kb/s). We also show
that for similar bitrates our compression method preserves
perceptual quality of relevant regions better than standard
codecs. Finally we also found that our codec is more than
two times faster than standard H.265.
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saliency detection using sparse sampling and kernel density estimation,”
in Proc. of Scandinavian Conference on Image Analysis, 2011. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-21227-7 62

[23] B. Schauerte and R. Stiefelhagen, “Quaternion-based spectral saliency
detection for eye fixation prediction,” in Proc. of European Conference
on Computer Vision, 2012.

[24] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 12, 2012.

[25] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders,
“Selective search for object recognition,” International Journal of
Computer Vision, vol. 104, no. 2, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s11263-013-0620-5

[26] D. Walther and C. Koch, “Modeling attention to salient proto-
objects,” Neural Networks, vol. 19, no. 9, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608006002152

[27] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: From error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, 2004.

[28] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals from
edges,” in Proc. of European Conference on Computer Vision, 2014.

[29] F. Zund, Y. Pritch, A. Sorkine-Hornung, S. Mangold, and T. Gross,
“Content-aware compression using saliency-driven image retargeting,”
in Proc. of IEEE International Conference on Image Processing, 2013.


