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Abstract—In this work we present a method to improve
the pruning step of the current state-of-the-art methodology to
compress neural networks. The novelty of the proposed pruning
technique is in its differentiability, which allows pruning to be
performed during the backpropagation phase of the network
training. This enables an end-to-end learning and strongly
reduces the training time. The technique is based on a family
of differentiable pruning functions and a new regularizer specifi-
cally designed to enforce pruning. The experimental results show
that the joint optimization of both the thresholds and the network
weights permits to reach a higher compression rate, reducing
the number of weights of the pruned network by a further 14%
to 33% compared to the current state-of-the-art. Furthermore,
we believe that this is the first study where the generalization
capabilities in transfer learning tasks of the features extracted
by a pruned network are analyzed. To achieve this goal, we
show that the representations learned using the proposed pruning
methodology maintain the same effectiveness and generality of
those learned by the corresponding non-compressed network on
a set of different recognition tasks.

I. INTRODUCTION

In the last five years, deep neural networks have achieved
state-of-the-art results in many computer vision tasks. A pos-
sible limitation of these approaches is related to the fact that
these models are characterized by a large number of weights
that consume considerable storage and memory resources.

The aforementioned drawback makes it difficult to deploy
these models on embedded systems with limited hardware
resources. Furthermore, running large neural networks requires
a lot of memory bandwidth to fetch the weights and a lot
of computation for matrix multiplication, which consume a
considerable amount of energy. Moreover, considering the
mobile market, the majority of the app-stores are particularly
sensitive to the size of the binary files, potentially reducing the
spread of big applications, which can be downloaded just using
a WiFi connection (e.g. if their size is greater that 100MB).

To overcome these limitations, reducing the storage and
energy requirements to run inference of these large networks
also on mobile devices, many different approaches of network
compression have been proposed. Among them, we mention:
(i) weight sharing; (ii) pruning network connections whose
corresponding weights are below some threshold; (iii) quan-
tizing network weights so to reduce the precision with which
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they are stored; (iv) binarizing networks by employing only
two-valued weights.

Han et al. presented in [1] an interesting approach called
Deep Compression, which is able to reduce the storage re-
quirements of neural networks without affecting their accuracy.
This framework: (i) prunes the network by learning only the
important connections; (ii) it quantizes the weights to enforce
weight sharing; (iii) it applies Huffman coding.

The network pruning might be considered the most relevant
part of this framework and is composed of the following steps:

(i) it learns the connectivity via normal network training;
(ii) it prunes the small-weight connections (i.e. all connec-

tions with weights below a threshold);
(iii) it retrains the network to learn the final weights for the

remaining sparse connections.
The main limitation of this part is due to the fact that,

to identify the appropriate threshold parameter value, this
approach has to re-iterate steps (ii) and (iii) many times,
wasting a lot of computational resources. Moreover, since the
threshold and the network weights are not jointly optimized
during the training phase, this can produce a sub-optimal
solution not able to achieve the maximum compression rate.

We improved the pruning methodology of Deep Compres-
sion by making it differentiable with respect to the threshold
parameters. This allows to automatically estimate the best
threshold parameters, together with the network weights, dur-
ing the learning phase, thus strongly reducing the training
time. This is due to fact that, we execute the learning phase
only once instead of repeating the retraining of the network
for each of the (many) tested threshold parameters (i.e. step
(iii)). This approach allows to overcome another limitation
of Deep Compression: Han et al.’s technique limits the ex-
ploding complexity of its iterative algorithm by seeking for
one threshold value shared by all the layers, which then
are pruned according to threshold value and the standard
deviation of their weights. This approach might lead to a
sub-optimal pruned configuration compared to a procedure
finding a per-layer threshold. The approach proposed in this
paper is able to find layer-specific thresholds thanks to its
differentiable nature, thus avoiding the simplification needed
by Deep Compression. Moreover, our pruning technique is
able to achieve better results considering the compression rate
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of the pruned model, obtaining a number of weights of the
pruned networks that is 14% to 33% lower than the ones
obtained by Deep Compression.

It is important to underline that, in this paper, we focus
only on the pruning stage of the Deep Compression pipeline,
since quantization is orthogonal to network pruning [2] and it
is known that pruning, quantization, and Huffman coding can
compress the network without interfering each other [1].

Since deep neural networks are very often used in transfer
learning scenarios [3], we investigate here if the representa-
tions learned using the proposed pruning methodology have
the same effectiveness and generality of those learned by a
non-compressed network. The transfer learning experiments
are performed on different recognition tasks, such as object
image classification, scene recognition, fine grained recogni-
tion, attribute detection, and image retrieval. To the best of our
knowledge, this is the first study where such experiments have
been performed using the features extracted by a compressed
network.

Summarizing, our main contributions are the following:
(i) an approach that automatically determines the threshold

values of the pruning phase in a differentiable fashion,
reducing the training time and achieving better compres-
sion results with no or negligible drop in accuracy.

(ii) the evaluation of the compressed network in terms of
transfer learning on different recognition tasks, showing
that the compression does not alter the effectiveness and
generality of the learned representations.

II. RELATED WORK

Redundancy in parameterization of neural networks is a
well-known phenomenon. Indeed, Denil et al. showed that it
is possible to predict the 95% of the weights of a neural
network (without drop in accuracy) just using the remaining
5% of the weights [4].

In literature, many approaches have been proposed to deal
with the task of reducing the size of the networks without
affecting performance, to improve both computational and
memory efficiency. One of the first explored ideas is weight
sharing, i.e. to constrain some of the weights of a layer in a
neural network to be the same. Among them, we recall (i) the
use of locally connected features [5]; (ii) tiled convolutional
networks [6]; (iii) convolutional neural networks (CNNs) [7].
Based on the same idea, HashedNets exploit a hash function
to randomly group connection weights, so that all connections
within the same hash bucket share a single weight value [8].

Another interesting approach is to take an existing net-
work model and compress it in a lossy fashion. A fairly
straightforward approach proposed by Denton et al. employs
singular value decomposition to a pre-trained CNN model, so
to get a low-rank approximation of the weights while keeping
the accuracy within 1% of the original model [9]. Another
approach to lossy compression is network pruning. This tech-
nique tries to remove edges in a neural architecture with small
weight magnitudes. Viable implementations of network prun-
ing are: (i) weight decay [10]; (ii) Optimal Brain Damage [11];

(iii) Optimal Brain Surgeon [12]. Optimal Brain Damage and
Optimal Brain Surgeon prune networks based on the Hessian
of the loss function and the results obtained suggest that such
pruning is more accurate than magnitude-based pruning and
weight decay. Recently, Han et al. achieved in [2] pruned
networks by setting to zero the weights below a threshold,
without drop of accuracy and reducing the final number of
weights by an order of magnitude. More recently, Han et al.
extended in [1] the aforementioned approach: they lengthened
the compression pipeline by quantizing the network weights
(to 8 bits or less) and finally Huffman encoding is employed.
They also showed that pruning and quantization are able to
compress the network without interfering each other. This
technique, called Deep Compression, has been deployed on
custom hardware accelerator called Efficient Inference Engine,
achieving substantial speedups and energy savings [13].

Deep Compression wasn’t the first technique exploiting
quantization to achieve network compression. Indeed, quan-
tization approaches have been largely explored, since it is
well-known that deep networks are not highly sensitive to
floating point precision. In [14], for the first time, Gong et
al. employed quantization techniques for deep architectures,
achieving a compression rate of 4-8× just using quantization,
while keeping the accuracy loss within 1% on the ILSVRC-
2012 dataset. In [15], Hwang and Sung proposed an opti-
mization method for the fixed-point networks with ternary
weights and 3-bit activation functions, while Vanhoucke et
al. explored in [16] a fixed-point implementation with 8-bit
integer activation functions (vs 32-bit floating point).

The extreme version of weight quantization is to build a
network with only binary weights. Courbariaux et al. presented
BinaryConnect for training a network with +1/-1 weights
[17], and Hubara et al. introduced BinaryNet for training a
network with both binary weights and binary activation func-
tions [18]. Both BinaryConnect and BinaryNet achieve good
performance on small datasets, but they perform worse than
their full-precision counterparts by a wide margin on large-
scale datasets. In [19], Rastegari et al. presented Binary Weight
Networks and XNOR-Nets, two approximations to standard
CNNs that are shown to highly outperform BinaryConnect and
BinaryNet on ImageNet.

Our work is inspired by Deep Compression [1], and it
enhances the pruning stage of the compression pipeline by
making it differentiable with respect to the threshold weights.

On the other hand, transfer learning in the field of machine
learning is the ability to exploit the knowledge gained while
solving one specific problem and applying it to a different
related problem [20]. Many approaches have been proposed
[21], and it has been demonstrated that deep neural networks
have very good transfer learning capabilities [22] and that
can be applied to a very different set of related problems
outperforming methods specifically designed to solve them [3].
Considering the aforementioned results, in this work we tried
to assess if the representations learned using a compressed
network can achieve comparable results compared to those
obtained by the non-compressed one.



III. METHOD

Given the structure of a generic neural network N—the
number of nodes, their connections, the activation functions
employed, and the untrained weights—the complete pipeline
to compress N is composed of three parts: (i) building a
sibling network Ns that is explicitly able to shrink the trainable
weights of N ; (ii) training Ns by means of a gradient descen-
t-based technique, where a regularization term Lt is introduced
to enforce the shrinkage of the weights; (iii) building Np from
Ns, where Np is the pruned version of the original network
N .

To better describe the aforementioned steps, in the next
section we will present some useful definitions.

A. Preliminaries

N can be seen as the functional composition of many layer
functions Li, where the i subscript determines the depth of
the layer within the network: N = Ld ◦ . . . ◦ L1. Each layer
function is identified by:

(i) the parameterized family of functions T where the layer
function belongs;

(ii) the collection of (learnable) weights W :=
{. . . ,Wj , . . .} needed to specify the layer function
within T .

For example, if we want to describe a fully-connected layer
with activation f , T is the family of affine transformations
followed by f , and W is the collection of weights and bias
of the affine map. Hereinafter, we will write L[Wi] when the
type of layer is apparent from the context, in order to stress the
weight dependency and simplifying the notation. Moreover,
given a function f and a set A, we will use the convention
that f(A) represents the image of the function f when applied
on the elements of the set A, i.e. f(A) := {f(x) | x ∈ A}.

Definition 1 (Pruning function): The pruning function
ϑα(·; t), needed for the compression procedure, is defined as
follows:

ϑα(x; t) := ReLU(x− t) + t · σ(α(x− t))+
− ReLU(−x− t)− t · σ(α(−x− t)),

(1)

where α and t are positive real numbers, σ is the sigmoidal
function σ(x) := (1 + e-x)

-1, and ReLU(x) := max(0, x) is
the Rectified Linear Unit function (see Figure 1).
Note that, the purpose of the pruning function is to force
toward zero all the elements of the domain within (−t −
∆,+t + ∆) (for a suitable R 3 ∆ ≥ 0); the variable t acts
then as a threshold variable. On the other hand, the parameter
α determines the speed how quickly the pruning takes place
within such interval.

We are now showing that ϑα is learnable with respect to the
variables x and t. The (weak) partial derivatives of ϑα with

(a) The solid line represents the function
ϑ10(x; 2). The dashed line represents its deriva-
tive with respect to x.

(b) The solid line represents the function
ϑ10(2; t). The dashed line represents its deriva-
tive with respect to t.

Fig. 1: Representation of the function ϑα of Equation (1).
respect of x and t are given by:

∂ϑα

∂x
=H(x− t) +H(−x− t)+

+ αt · σ(α(x− t))[1− σ(α(x− t))]+
+ αt · σ(α(−x− t))[1− σ(α(−x− t))], (2)

∂ϑα

∂t
=−H(x− t) +H(−x− t)+

+ σ(α(x− t))− σ(α(−x− t))+
− αt · σ(α(x− t))[1− σ(α(x− t))]+
+ αt · σ(α(−x− t))[1− σ(α(−x− t))], (3)

where H(x) is the Heaviside step function: H(x) = 1 if
x ≥ 0, H(x) = 0 otherwise. Equations (2) and (3) show that
the (weak) partial derivatives of ϑα(x; t) are different than
zero almost everywhere, thus allowing the parameter t to be
learnable by means of gradient descent (see also Figure 1).

It is interesting to notice that, ϑα( · ; t) is a smoothed version
of the thresholded linear function ϑ̄(·; t).

Definition 2 (Thresholded linear function): The thresholded
linear function ϑ̄(·; t) is defined as follow [23], [24]:

ϑ̄(x; t) := ReLU(x− t) + t ·H(x− t) +

− ReLU(−x− t)− t ·H(−x− t). (4)



(a) The function ϑ̄(x; 2).

(b) The function ϑ̄(2; t).

Fig. 2: The graph of the function ϑ̄(x; t) of Equation (4). Note
how the derivative with respect of t is zero almost everywhere.

Note that, ϑα(x; t) converges weakly to ϑ̄(x; t) when α→∞.
Moreover, the weak partial derivatives of ϑ̄(x; t) with respect
to x and t are:

∂ϑ̄

∂x
= H(x− t) + t · δ(x− t) +H(−x− t) + t · δ(x+ t),

∂ϑ̄

∂t
= −t · δ(x− t) + t · δ(x+ t),

where δ is the Dirac’s delta, thus forbidding any sort of
learning procedure on the variable t (see Figure 2)1.

B. Sibling networks

1) Building: Given a network N = L[Wd] ◦ . . . ◦ L[W1],
the sibling network Ns is defined as follows:

Ns := L[ϑα(Wd; td)] ◦ . . . ◦ L[ϑα(W1; t1)]. (5)

Note that, in the equations for the networks N and Ns we did
not specify the type of each layer so to reduce the clutter in
the notation. Moreover, in the previous equation α is an hyper-
parameter, while all the ti are learnable weights. For the sake
of the clarity, we are assuming one threshold variable per layer,
as well as that there is one α hyper-parameter shared by all the
layers. These simplifying assumptions can be easily relaxed.

2) Training: The learning of all the Wj and tj of the sibling
network Ns is performed by means of gradient descent. The
loss function to be minimized is given by L := L0+Lwd +Lt,

1∂ϑ̄/∂t is almost everywhere equal to zero.

with L0 the basic loss function for the problem under analysis
(e.g. cross-entropy), where:

Lwd := λwd

∑
i

∑
Wj∈Wi

‖Wj‖22 ,

Lt := λt
∑
i

∑
j|Wj∈Wi

‖ϑα(Wj ; tj)‖1 , (6)

with ‖X‖p the entry-wise p-norm of the matrix X . Namely,
(i) Lwd is the usual weight decay regularizer on all the Wj

variables, with λwd the corresponding hyper-parameter;
(ii) Lt is a regularizer used to speed-up pruning, where λt is

its hyper-parameter.
The optimization of the training function is performed using
one variant of stochastic gradient descent, with the following
caveats:

(i) the regularizer Lt is optimized only with respect to all
the variables tj , i.e. the contribution to the gradient given
by Lt with respect to all the Wj is zero;

(ii) the learning rate of all the variables tj is slowed by a
factor ρ so to reduce the effective learning rate of the
thresholds with respect to the other parameters;

(iii) the learning of all tj is performed by enforcing non-
negativity;

(iv) weights are initialized randomly as in a customary neural
network (e.g. Glorot initialization [25]), while initial
values of the thresholds are set such that a small amount
p (e.g. 0% ÷ 10%) of weights are effectively below the
threshold at the beginning of the training.

The purpose of the regularizer Lt is to enforce sparsity of the
weights under the mapping of the pruning function ϑα. Since
it affects only the learning of all the thresholds tj (i.e. it is
not involved in the partial derivative of the loss with respect
to any W j), it effectively moves the pruning thresholds so to
increase the after-mapping sparsity. Instead, the weight decay
regularizer Lwd is used to enforce the weights to gather around
all the threshold values tj (see Figure 3 in Section IV-A1 for
a comparison between the distribution of the learned weights
of the first layer of a LeNet-300-100 on MNIST with and
without the Lwd regularizer).

3) Pruning: The sibling networks Ns learned accordingly
to Section III-B2 has few zero weights, due to the smooth
behavior of the function ϑα that we used to enforce weights
shrinking. However, thanks to the ϑα itself, many of the
weights of the network Ns are near zero. For this reason,
we get an actual pruned network Np from Ns by setting to
zero all the learned weights of Ns that under the mapping of
θα are below a certain (small) cutoff value γ, which has to
be considered as a hyper-parameter. We found out empirically
that γ ∼ 10-3 is a good starting choice in almost all the cases.

Precisely, denoting with W̃j the weights learned during the
training phase of the sibling network and with t̃j the learned
threshold parameters, the pruned network Np is given by:

Np :=L[ϑαinv(ϑ̄(ϑα(W̃d; t̃d); γ); t̃d)]◦ (7)

. . . ◦ L[ϑαinv(ϑ̄(ϑα(W̃1; t̃1); γ); t̃1)],



where ϑαinv(x; t) is the inverse function of ϑα(x; t) with respect
to x when t is given. Note that ϑαinv exists, since ϑα is bijective.
Moreover, since ϑα(0; t) = 0 we have that ϑαinv(0; t) = 0.

IV. RESULTS

The experiments we performed can be split in two groups:
(i) we pruned LeNet-300-100 and LeNet-5 on MNIST

dataset, as well as AlexNet on ILSVRC-2012 dataset;
for these networks we assessed the compression ratio due
to pruning as well as the drop in accuracy against their
non-pruned counterparts (see Section IV-A);

(ii) for the pruned AlexNet on ILSVRC-2012 we studied
the generalization performance in the transfer learning
scenario considering different recognition tasks, such
as object image classification, scene recognition, fine
grained recognition, attribute detection, and image re-
trieval (see Section IV-B).

A. Pruning

We pruned LeNet-300-100 and LeNet-5 on MNIST
dataset, and AlexNet on ILSVRC-2012 dataset.

MNIST is a large database of gray-scale handwritten digits,
made of 60K training images and 10K testing images [26].
On the other hand, the ILSVRC-2012 dataset is a 1000
classes classification task with 1.2M training examples and
50k validation examples.

All our networks were built and trained using the Keras
framework [27] on top of TensorFlow [28]. The size of the
networks and their accuracy before and after pruning are
shown in Table I, together with the performance achieved by
Han et al. in [2], the paper of Deep Compression focusing on
the pruning stage of the compression pipeline. The technique
presented in this paper keeps the error rate of the pruned
networks comparable to the non-pruned counterparts as in the
current state-of-the-art, while achieving better pruning rate. In
the experiments we performed, our pruning technique saved
network storage by 12× to 19× across different networks, thus
increasing Han et al. compression rate by a factor ≈1.3× to
≈1.6× and reducing by 14% to 33% the number of weights
retained by Deep Compression.

1) LeNet-300-100 and LeNet-5 on MNIST: We first
experimented on MNIST dataset with LeNet-300-100 and
LeNet-5 networks [7]. LeNet-300-100 is a fully con-
nected network made of two hidden layers, with 300 and 100
neurons respectively, achieving 1%÷2% error rate on MNIST.
LeNet-5 is a convolutional network that has two con-

volutional layers and two fully connected layers, achieving
< 1% error rate on MNIST. All the convolutional layers of
LeNet-5 have been pruned by learning a different thresh-
old weight per filter, thus partially relaxing the simplifying
assumption we used to write Equation (5).

All the networks were trained using Adam optimizer
[29] with learning rate 10-3. In addition, pruned networks
were learned with the following configuration of the hyper-
parameters: α = 102, p = 10-1, ρ = λt = 10-2, γ = 10-3,
λwd = 10-4.

Fig. 3: The figure shows the distribution of the trained weights
of the first layer of two pruned LeNet-300-100 on MNIST,
with α = 100 and a cutoff γ = 10-3. The vertical solid lines
represent the learned thresholds. The top plot was trained with
weight decay regularizer, while the bottom one without it. Note
how in the first case the weights group around the threshold
values.

Table I shows that these networks on MNIST can be pruned
with basically no drop in accuracy with the respect of their
non-compressed counterparts. The pruning procedure achieves
a storage saving of 15× and 19×, reducing by 33% (7K) and
14% (14K) the number of weights retained by Deep Compres-
sion, for LeNet-300-100 and LeNet-5 respectively.

Table II shows the per-layer statistics of the pruning proce-
dure. It is interesting to notice that, our approach converged to
a network configuration where the pruning ratio is significantly
higher for the biggest layers.

Figure 3 shows the comparison between the distribution
of the first layer weights of a LeNet-300-100 with and
without weight-decay. It is possible to notice that, the weights
are much more gathered around the learned threshold when the
weight-decay parameter is used during the learning process.
We speculate such a grouping might make weights quantiza-
tion in Deep Compression [1] more efficient.

2) AlexNet on ILSVRC-2012: We implemented the origi-
nal AlexNet model [30] from scratch using the Keras frame-
work. The training of the non-pruned and pruned AlexNet
were performed using stochastic gradient descent with starting
learning rate 10-2, step-wise learning rate decay, learning rate
multiplier equal to 2 for all the bias weights, weight-decay
hyper-parameter λwd = 5 ·10-4, and momentum 0.9, exactly as
in the original paper [30]. On the other hand, the compression
procedure was carried out with the hyper-parameters α = 102,
p = 0, ρ = 10-11, λt = 10-2, γ = 10-3.

Table I shows that our procedure can achieve a memory
saving of about 12×, with a small drop in the accuracy
compared to the non-compressed counterpart (i.e. ≈1.1% top-
1 and ≈ 1.0% top-5). Such a pruning performance translates
into a reduction of 2M (29%) weights compared to the number
of weights retained by Deep Compression.

Table II shows the per-layer statistics of the pruning proce-
dure. Again, our approach converged to a network compression
where the pruning ratio is significantly higher for the biggest



Network ∆1 Err. ∆5 Err. Weights Pruning
LeNet-300-100 reference — — 266K —
LeNet-300-100 pruned (Han et al.) ≈−0.1% — 21K 12×
LeNet-300-100 pruned (this paper) ≈+0.1% — 14K 19×
LeNet-5 reference — — 431K —
LeNet-5 pruned (Han et al.) ≈−0.1% — 34K 12×
LeNet-5 pruned (this paper) ≈−0.0% — 29K 15×
AlexNet reference — — 61M —
AlexNet pruned (Han et al.) ≈−0.0% ≈−0.0% 7M 9×
AlexNet pruned (this paper) ≈+1.1% ≈+1.0% 5M 12×

TABLE I: The table shows the difference in Top-1 (∆1) and
Top-5 (∆5) errors between the networks pruned in this paper
and their reference non-pruned implementation. It also shows
the pruning performance. Similarly, it is also shown ∆1/∆5

and pruning rate achieved by Han et al. in [2].

LeNet-300-100
fc1 fc2 fc3 total

Weights 235K 30K 1K 431K
Pruning 94.7% 83.8% 11.9% 94.7%

19× 6× 1× 19×
LeNet-5

conv1 conv2 fc3 fc4 total
Weights 0.5K 25K 400K 1K 431K
Pruning 31.1% 82.2% 96.6% 41.7% 93.3%

1× 6× 29× 2× 15×
AlexNet

conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8 tot
Weights 35K 307K 885K 663K 442K 38M 17M 4M 61M
Pruning 3.8% 34.9% 24.3% 36.7% 33.5% 96.8% 91.5% 78.5% 91.5%

1× 2× 1× 2× 2× 31× 12× 5× 12×

TABLE II: The table shows how the pruning rate behaves for
each layer of LeNet-300-100 and LeNet-5 trained on
MNIST, and AlexNet trained on ILSVRC-2012.

layers of the networks, with a staggering 31× for the biggest
layer of the network, i.e. fc6.

B. Transfer Learning

In the previous section we showed that we are able to
heavily compress a deep neural network keeping the same
recognition performance on the training dataset. Since CNN
are very often used for transfer learning as feature extractors
due to the the effectiveness and generality of the learned
representations [3], in this section we investigate how the
compressed features perform on various recognition tasks
and different datasets. We used features extracted from the
AlexNet network trained and compressed on ILSVRC-2012
dataset as a generic image representation to tackle the diverse
range of recognition tasks tested in [3], i.e.: object image clas-
sification, scene recognition, fine grained recognition, attribute
detection and image retrieval applied to many datasets.

For all the experiments we resized the input image to
227×227 and we used the last fully connected layer (i.e. layer
fc7) of the network as our feature vector. This gives a vector
of 4096 dimension that is further L2 normalized to unit length
for all the experiments. For all the different classification and
recognition tasks considered we used the 4096 dimensional
feature vector in combination with a linear Support Vector
Machine [42], [43]. For visual instance retrieval task we
adopted the Euclidean distance to compute the visual similarity
between a query and the images from target dataset.

1) Image Classification: The first problem faced was image
classification of objects and scenes. The task is to assign (po-
tentially multiple) semantic labels to an image. Two datasets
were considered for two different recognition tasks: the Pascal
VOC 2007 for object image classification [31] and the MIT-
67 indoor scenes [32] for scene recognition. The results are
reported in Table III, where it can be seen that the compressed
features have almost the same transfer learning performance
of the non-compressed ones, with a drop in mean Average
Precision (mAP) on Pascal VOC 2007 of ≈1.0% and a drop
in accuracy on MIT-67 of ≈0.2%.

2) Fine Grained Recognition: The second problem faced
was fine grained recognition that involves recognizing sub-
classes of the same object class such as different bird species,
dog breeds, flower types, etc. The task is different from the
one faced in Sec. IV-B1 since the differences across different
subordinate classes are very subtle and they require a fine-
detailed representation. We evaluated the compressed CNN
features on two fine-grained recognition datasets: Caltech-
UCSD Birds (CUB) 200-2011 [33] and Oxford 102 flowers
[34]. The results are reported in Table III, where it can be
seen that the compressed features have slightly better transfer
learning performance of the non-compressed ones, with an
increase in accuracy of ≈1.3% and ≈0.7% on Caltech-UCSD
Birds and Oxford 102 flowers respectively.

3) Attribute Detection: The third problem faced was at-
tribute detection, which in the context of computer vision is
defined as the detection of some semantic or abstract quality
shared by different instances/categories. We used two datasets
for attribute detection: the UIUC 64 object attributes dataset
[35] and the H3D dataset [36] which defines 9 attributes for
a subset of the person images from Pascal VOC 2007. The
results are reported in Table III, where it can be seen that the
compressed features have almost the same transfer learning
performance of the non-compressed ones, with a drop in mean
Area Under Curve (mAUC) on UIUC 64 of ≈0.5% and a drop
in mAP on H3D of ≈0.2%.

4) Visual Instance Retrieval: The fourth problem faced was
visual instance retrieval, which consists in retrieving from a
given target dataset the most similar images to a given query
image. The similarity between images was obtained as the
Euclidean distance between the corresponding feature vectors.
The ground truth was defined as the set of the target database
images that were relevant or not relevant to a given query.

We considered five datasets from the state-of-the-art:
(i) Oxford5k buildings [37]: this is a collection of images

depicting buildings from the city of Oxford with 55
query and 5063 target images. This retrieval task is quite
challenging because the visual appearance of Oxford
buildings is very similar;

(ii) Paris6k buildings [38]: this is a collection of images
depicting buildings and monuments from the city of Paris
with 55 query and 6412 target images. This task is less
challenging then the previous one because the images of
the dataset are more diverse than those in Oxford5k;



Task Dataset Performance Measure Uncompressed Compressed Difference
Image classification Pascal VOC 2007 [31] mean Average Precision (mAP) 0.6235 0.6132 -0.0103

MIT-67 indoor scenes [32] Accuracy 0.5440 0.5425 -0.0015
Fine grained recognition Birds (CUB) 200-2011 [33] Accuracy 0.5043 0.5173 0.0130

Oxford 102 flowers [34] Accuracy 0.8477 0.8542 0.0065
Attribute detection UIUC 64 objects attributes [35] mean Area Under Curve (mAUC) 0.7999 0.7953 -0.0046

H3D person attributes [36] mean Average Precision (mAP) 0.5664 0.5646 -0.0018
Visual instance retrieval Oxford5k buildings [37] mean Average Precision (mAP) 0.3471 0.3901 0.0430

Paris6k buildings [38] mean Average Precision (mAP) 0.5958 0.6007 0.0049
Sculptures6k [39] mean Average Precision (mAP) 0.3093 0.2982 -0.0111
Holidays dataset [40] mean Average Precision (mAP) 0.7302 0.7187 -0.0115
UKbench [41] Recall@4 0.8770 0.8904 0.0134

TABLE III: Transfer learning performance of the features extracted from the AlexNet network trained and compressed on
ImageNet ILSVRC-2012 compared to those extracted from the same uncompressed network. The comparison is performed
on different recognition tasks: object image classification, scene recognition, fine grained recognition, attribute detection and
image retrieval applied to a diverse set of datasets.

(iii) Sculptures6k [39]: This collection contains 6340 images
of sculptures by Moore and Rodin, divided in train and
test (with 70 query images);

(iv) Holidays dataset [40]: this collection contains 1491 im-
ages (with 500 query images) of different scenes, items
and monuments. The images are quite diverse, so this
dataset is less challenging than the previous ones. The
performance for all the above datasets was assessed by
calculating the mAP;

(v) UKbench [41] this collection contains 2250 items, each
from four different viewpoints with a total of 10200
images. Each image of the collection is used as a query
and we assessed the performance using the Recall at top
four (Recall@4).

The results for the visual instance retrieval problem are
reported in Table III. It can be seen that, also in this case, the
compressed features have almost the same transfer learning
performance of the non-compressed ones, with a drop in
mAP on Sculptures6k and Holidays of ≈0.1%. On the other
three datasets instead we can observe a slight improvement in
performance with an increase of ≈4.3% and ≈0.5% in mAP
on Oxford5k buildings and Paris6k buildings respectively, and
of ≈1.3% in Recall@4 on UKbench.

From all the recognition experiments considered, we note
that, on average, there is no loss in transfer learning per-
formance of the compressed features compared to the non-
compressed ones. This phenomenon might be explained by
[44]. In their work, the authors Shwartz-Ziv and Tishby
showed that the training process of deep neural networks is
characterized by two distinct phases: the first one consists into
fast drift, in which the training error is reduced; the second
one involves stochastic relaxation (i.e. random diffusion) con-
strained by the training error value. This second phase leads to
a decrease of the mutual information between the probability
distributions of each layer weights and inputs, i.e. an implicit
compression of the representations.

V. CONCLUSION

We presented a method to improve the pruning step of
the current state-of-the-art methodology to compress neural
networks: Deep Compression [1]. The proposed approach is
general purpose, and it can be easily applied to all network
architectures.

The novelty of our technique lies in differentiability of the
pruning phase with respect to the thresholds, thus allowing
pruning during the backward phase of the learning procedure
and exploiting regular gradient descent techniques for the
whole pruning phase. Moreover, since the thresholds are
learnable, the backpropagation can jointly optimize on both
the network weights and the pruning thresholds. Furthermore,
since there is a threshold per layer (or per filter), every layer
(filter) can be optimized independently of all the other ones.
As far as we know, this is the first approach able to jointly
prune and learn network weights.

We showed that the proposed compression pipeline im-
proves the current state-of-the-art regarding pruning rate (up
to 19× compression due to pruning for small networks on
MNIST, and 12× compression for a big network on ILSVRC-
2012), with no or negligible drop in network accuracy and
strongly reducing the training time. This leads to smaller
memory capacity and bandwidth requirements for real-time
image processing, making it easier to be deployed on mobile
systems.

Moreover, we showed in a transfer learning scenario that
the compression phase does not alter the effectiveness and
generality of the learned representations, obtaining in the worst
case a negligible drop in performance of ≈ 1.2% and in the
best case an improvement of ≈ 4.3%. This was verified on
the wide range of recognition tasks identified in [3] on a
diverse set of datasets: object image classification (Pascal VOC
2007), scene recognition (MIT-67 indoor scenes), fine grained
recognition (Birds CUB 200-2011 and Oxford 102 flowers),
attribute detection (UIUC 64 objects attributes and H3D person
attributes) and image retrieval (Oxford5k buildings, Paris6k
buildings, Sculptures6k, Holidays dataset and UKbench). We
believe that, this is the first work where the generalization
properties of compressed networks have been analyzed.

In our opinion, interesting extensions of this work are:
(i) further testing the pruning technique proposed in this
paper by considering e.g. other big networks (VGG) or small
more recent networks (ResNet); (ii) quantizing and Huffman
coding the pruned network, so to mimic the full compres-
sion pipeline proposed by Deep Compression; (iii) comparing
the generalization capabilities of the networks pruned with
our technique with ones compressed by Deep Compression;
(iv) devising a differentiable quantization technique, so to



achieve a pruning+quantization step learnable by stochastic
gradient descent methods.
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