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Abstract—In this paper, we propose a novel temporal hierar-
chical dictionary with hidden Markov model (HMM) for gesture
recognition task. Dictionaries with spatio-temporal elements have
been commonly used for gesture recognition. However, the exist-
ing spatio-temporal dictionary based methods need the whole pre-
segmented gestures for inference, thus are hard to deal with non-
stationary sequences. The proposed method combines HMM with
Deep Belief Networks (DBN) to tackle both gesture segmentation
and recognition by the inference at the frame level. Besides,
we investigate the redundancy in dictionaries and introduce
the relative entropy to measure the information richness of a
dictionary. Furthermore, when inferring an element, a temporal
hierarchy-flat dictionary will be searched entirely every time in
which the temporal structure of gestures isn’t utilized sufficiently.
The proposed temporal hierarchical dictionary is organized in
HMM states and can limit the search range to distinct states. Our
framework includes three key novel properties: (1) a temporal
hierarchical structure with HMM, which makes both the HMM
transition and Viterbi decoding more efficient; (2) a relative
entropy model to compress the dictionary with less redundancy;
(3) an unsupervised hierarchical clustering algorithm to build a
hierarchical dictionary automatically. Our method is evaluated
on two gesture datasets and consistently achieves state-of-the-art
performance. The results indicate that the dictionary redundancy
has a significant impact on the performance which can be tackled
by a temporal hierarchy and an entropy model.

Index Terms—Hidden Markov Model; hierarchical structure;
Deep Neural Network; Relative Entropy.

I. INTRODUCTION

Human gestures are ubiquitous in visual cognition, per-
vading body language in all ages and cultures and tightly
integrated with verbal communication [1]. Gesture recogni-
tion is actively used in applications spanning sign-language
recognition, virtual manipulation to daily assistance [2]. Over
the past several years, with the 3D skeletal joint coordinates
of human-beings obtained from Kinects, renewed interests
have been arisen in studying methods to recognize human
body gestures [3]. However, there are still many challenges
that deserve careful attention. First, the dimensionality of
the input skeleton joint features is huge and the process is
computation consuming. Secondly, the accurate segmentation
of gestures from skeleton joint sequences is tough and often
ignored with the assumption that pre-segmented sequences are
available. At last, the variability of poses and movements in
gestures is staggering, which needs a proper model for robust
representation.
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Many dictionary [4] or dictionary-like [5] based methods
are utilized to represent the gestures all along, as it can
offer clearer and stronger cues compared to the representation
of entire gesture sequences. Those proposed dictionaries can
be mainly divided into two categories: spatial dictionaries
and spatio-temporal dictionaries. A spatial dictionary usually
extracts its elements only with spatial features of gestures,
while the element extraction of a spatio-temporal dictionary
will consider both temporal and spatial information. For dy-
namic time sequence recognition, spatio-temporal dictionaries
are proved to have better performance for temporal-counting
attributes. A well-known spatial dictionary method is from [6].
Bourdev and Malik introduced Poselets (a configuration of
body parts in 3D space) to gesture recognition. They set a
large dictionary of frequently occurring poses and realize the
recognition by comparing the poselet histogram. Ivan and
Juan [7] extended this approach by a spatial hierarchical
dictionary. They map k body parts to higher-level poselets
with k-means, and several poselets will represent for the
highest activity level. But these kinds of dictionaries don’t
contain temporal structures of gestures. For spatio-temporal
dictionaries, the temporal information is well considered and
the methods have good performances with classifiers such as
support vector machine (SVM) and k-NN [8] [9] [10]. How-
ever, among most of these spatio-temporal dictionaries, there
is little work on investigating the redundancy of dictionary.
Besides, organization of the elements in those dictionaries
are flat, which means the temporal structures of gestures
are not embodied sufficiently and the search range is the
entire dictionary. The method in [9] develops a temporal
hierarchical dictionary by specifying the dictionary elements at
each temporal segment. However, this method is limited with
stationary settings: the whole pre-segmented gesture must be
provided to obtain temporal elements and the total number
of temporal segments is fixed. So it’s hard to be adapted for
recognizing a non-stationary sequence with several gestures,
thus severely limiting its applications.

To handle the above disadvantages, we propose a novel
temporal hierarchical dictionary with HMM and DBN. First,
from the perspective of information encoding [11], we regard
each element in the dictionary as a random independent
system. The relative entropy is then utilized to evaluate and
compress the elements. Then, we build the temporal hierarchy
dictionary based on the HMM states. In this way, instead
of traversing the entire dictionary with redundant elements,



Fig. 1. The HMM model for processing a gesture. We use Dynamic Time
Warping (DTW) to divide a given gesture into HMM states with T temporal
segments. Note that the DTW processing is only done at training stage and
the inference of testing sequence is conducted at frame level.

the search range is narrowed in the current state. For gesture
recognition, we first use DBN to give an initial classification
frame by frame. Due to the SoftMax output of neural networks,
the elements in the dictionary can be inferred more accurately
and robustly. The temporal hierarchical dictionary is then used
to align elements with HMM and gives a final prediction.
The major work of this paper is a temporal hierarchical
dictionary with HMM including three contributions: a relative
entropy model to describe and compress redundancy in the
dictionary; a temporal hierarchical structure for the HMM
transition; an unsupervised hierarchical clustering method to
extract elements in the dictionary.

II. METHODOLOGY

Our proposed methodology is composed of four stages:
HMM modeling for gesture motion, calculating relative en-
tropies, building the temporal hierarchical dictionary with
poselets and the DBN-HMM inference.

A. HMM modeling for gesture motion

We first define a related term poselet according to [10] as:
A configuration of body parts arranged in 3D space in an

interval of time.
Since the 3D skeleton joint data captured by Kinect is

superb, we can directly parameterize the configuration space of
an articulated body by the 3D joint coordinates obtained from
Kinect. Here an interval of time is set as one frame. Thus a
poselet is the skeleton joint configuration of one frame.

Inspired by the HMM modeling techniques in [12], we
model the gestures with HMM by first separating a gesture
sequence into T segments. Then each segment will be assigned
to a corresponding HMM state as shown in Figure 1. Since one
segment may contain several frames and each frame carries
one poselet, we regard all the poselets in this segment as the
same in practice.

For the visible layer in HMM, we denote input features from
a poselet as the observed variables xt to an observed state Xt.
One observed state Xt for t = 1, · · · , T will be connected to a

corresponding hidden state variable as Ht in the hidden layer
of HMM. The hidden variables are the types of the poselets
and denoted as ht. Based on the fundamental HMM, the full
probability of HMM for training step is specified as:

p(x1, x2, ..., xT , h1, h2, ..., hT ) =

p(h1)p(x1|h1)
T∏

t=2

p(xt|ht)p(ht|ht−1)
(1)

where p(h1) is the prior probability, p(xt|ht) is the observation
probability, namely, the emission probability and p(ht|ht−1)
is the transition matrix. By pre-training DBN, the observation
probability p(xt|ht) can be obtained as:

p(xt|ht) = p(ht|xt)p(xt)/p(ht) (2)

where p(ht|xt) is the HMM state posterior probability esti-
mated by the DBN model and p(ht) is the prior probability of
each HMM state. For (xt), as it does not vary with the gesture
sequence and thus is always ignored.

B. Calculation of Relative Entropy

We introduce entropy to represent the information richness
of poselets using a statistical probability model. As it is often
used in data compression and encoding information, entropy
can also reveal the ultimate compression of the poselets.
Here we regard each poselet as a chaotic system [11], and
the information it carries can be measured by its entropy.
Obviously, one poselet by itself is isolated and unmeasurable
from the perspective of statistical probability. Thus, to measure
the entropy of a specific poselet, we introduce relative entropy
to compare one poselet with all the rest poselets as [11]:

D(p||q) =
∑
x

p(x)log
p(x)

q(x)
(3)

where D(p||q) is called relative entropy measured by bits,
a measure of the distance between two probability mass
functions p and q.

To apply relative entropy for gesture case, we use the
statistical probability of the difference degree between poselets
to represent the uncertainty of information or the value of
entropy. Fixing one poselet as baseline chaotic system, all the
rest poselets will be compared to it. Thus, at each temporal
segment, if there are 20 gesture categories to be classified,
then 20 different kinds of poselets from the 20 gestures will
be compared. We assign each joint of the baseline poselet as a
discrete random variable qj and each joint of the comparison
poselet as a variable pj . Here j is the joint index and the
total joint number is J . Then, we alter the original relative
entropy for two chaotic poselet systems at temporal segment
t as below:

D(Pt||Qt) = log

∑N
i=1

∑J
j=1

1

1+ep
j
i
−qj
i
+δ

N × J
(4)

where Pt and Qt are the whole chaotic systems at temporal
state t for t = 1, · · · , T , i stands for the training sample
index for i = 1, · · · , N . We conduct probability statistics of



Fig. 2. The ten entropy maps of the Chalearn2014 database (corresponding to
ten temporal states). Since Chalearn2014 database has 20 gesture categories,
each entropy map has 20 columns and 20 rows. The cross point at column
m and row n in the maps stands for the relative entropy of poselets from
gesture m and gesture n.

two poselets based on a large number of training samples to
obtain relative entropies. The threshold δ is used to adjust the
bias of the sigmoid function when comparing two joints. For
each state t, an entropy map is generated by comparing each
poselet to the rest as shown in Figure 2. We can see that, at
the beginning states, the overall entropies are much less than
that of the following states and can be largely compressed.
Taking the entropy information calculated above into account,
we conclude the below criteria for constructing a temporal
hierarchical dictionary in the next section:

1. Gesture configuration registered at hidden layers are
mostly unique, meaning each gesture category are non-
repetitive movements.

2. The uncertainty degree of one gesture at a temporal
segment measured by entropy, reveals how much infor-
mation it contains at that stage.

3. The information captured from the gesture will accumu-
late with time going, and the confidence of recognizing
a gesture is based on the overall information captured.

C. Building a temporal hierarchical dictionary with poselets

In the light of the criteria above, we propose a new temporal
hierarchical dictionary (THD), with which the candidate pose-
lets can be compressed and organized by HMM time states.
Following the ideas of original HMM structure, we separate
a gesture motion into T temporal segments. Whereas in a
temporal-flat dictionary, if there are 20 gesture categories, it
will contain all 20 or even more kinds of poselets at every
time states. But in our temporal hierarchical dictionary, the
relative entropy is used to cluster those poselets into fewer
representative poselets. In this way, not only the total number
of poselets in the dictionary is reduced, but also the search
ranges in each HMM state are narrowed.

For example, in THD, only two poselets might be used
at the beginning state due to its low relative entropy. When
it comes to the next stage, with the cues accumulating and
entropy increasing, more poselets are assigned at that stage.
The diagram of one temporal hierarchical dictionary structure
is shown in Figure 3.

The structure has several advantages over the previous work:
(1) it can largely reduce the number of HMM states in the

Fig. 3. One possible temporal hierarchical dictionary structure with T HMM
states. The hierarchy of the structure is formed by HMM state. For each time
state, all poselets in that state will be clustered based on the relative entropy.

transition phase; (2) instead of traversing all the poselets
in the dictionary, it narrows down the search range at the
current state; (3) it utilizes the relative entropy to capture the
information change of a temporal sequence, which produces
poselets with less redundancy.

However, another difficulty of setting a dictionary with
temporal assembled poselets is labeling. When a gesture is
divided into several temporal poselets, it is tricky to label
the poselets in the training stage. For instance, in the time
dimension, a gesture ‘waving’ can be assembled by poselets
‘raise hand’, ‘waving’ and ‘put down hand’, and another
gesture ‘hitting’ can be assembled by poselets ‘raise hand’,
‘hitting’ and ‘put down hand’. Thus in the beginning temporal
segment, only one poselet ‘raise hand’ is needed. But how to
disassemble a gesture into poselets and label those poselets
with less redundancy are still problems.

With relative entropy, the problems mentioned above can be
addressed with a hierarchical clustering algorithm proposed
by us. It can build the temporal hierarchical dictionary and
extract poselets automatically with gradually clustering. First,
we choose one gesture from each category as Dynamic Time
Warping (DTW) templates and interpolate them into fixed
frame number (60 frames empirically). Then these templates
are automatically divided into T even temporal segments.
Then, based on these DTW templates, all the training gestures
are divided into T segments with dynamic alignments. For
each temporal segment, the poselets selected from all the ges-
tures are regarded as candidate poselets. Then, a hierarchical
clustering algorithm is used to cluster those candidate poselets
based on relative entropies. The clustering details can be seen
in Algorithm 1.

Here are several practical principles to implement the auto-
matic clustering. First, the clustering is designed unidirectional
and irreversible. Second, the maximum relative entropy always
reaches at mid states instead of ending states, as shown
in Figure 2. Thus the gesture clustering is always done at
mid states and after that, the rest poselets are all kept and
uncompressed.



Algorithm 1 Hierarchical clustering for THD
Input: σ: the threshold for relative entropies
T : the total number of temporal states
N : the total number of gesture categories
poseAll: A dictionary of poselets with T temporal states,
containing N poselets at each state

Output: THD: The temporal hierarchical dictionary
for t in T do

calculate entropymap using Eq.3
if t < 2 then
cluster ← poseAll(1)

else
cluster ← clusters(t− 1)

end if
for c in cluster do

while not(allposeletsgetclustered) do
baseline = poselet with min relative entropy
for poselet in c do

if entropymap(poselet, baseline) < σ then
cluster poselet to baseline as clusters(t)

end if
end for
record clusters(t) in THD

end while
end for

end for

D. DBN-HMM inference

In our case, a neural network is used to give a basic
estimation of poselets at the frame level. This classification
will be enhanced by HMM in inference phase.

DBN classification. Here we implement the Deep Belief
Network with the Gaussian Restricted Boltzmann Machine
(GRBM) to train the labeled poselets in THD. The architecture
is shown in Figure 4. We introduce the GRBM for initialing
weights for layers and generating a large number of features.
The label in relation to the input is the poselet index. The final
emission probability is given by:

p(xi|h) = N (x|
∑
j

σ2
iwi,j + bi, σ

2
i ) (5)

where N (µ, σ2
i ) is a Gaussian probability function with mean

µ and variance σ2
i . Here wi,j and bi are the joint weights

and biases of Restricted Boltzmann Machine. In the practical
training, the variance σ2

i is set to be 1 in (5).
After the DBN-GRBM structure is trained with training

samples, we can obtain a SoftMax probability of the poselets
frame by frame according to p(ht|x1, x2, · · · , xt), where t
stands for the current time state. To extract segment gestures
from a skeleton stream, we attempt two methods. First one is to
label those non-gesture frames as an extra poselet. Transitions
are set between this extra poselet and other poselets [13]. The
second method is to use a two-layer fully connected network
to label each frame as ‘motion’ or ‘no motion’ [14]. The
gesture extraction is to collect all ‘motion’ segments and the

Fig. 4. The DBN-GRBM structure used for recognizing poselets.

recognition is conducted on those segments. Both these two
methods can achieve accuracies above 95% for segmentation.

Inference with HMM. Viterbi algorithm is a max-sum al-
gorithm that will search the most probable path of HMM
states among all the possible paths efficiently [15]. Initially,
the decoded sequence ĝ is determined as:

ĝ = arg max
p

p(x1, x2 . . . xT |g)p(g)/p(x1, x2 . . . xT ) (6)

where p(g) is the prior probability of each gesture, and we are
going to derivate p(x1, x2, . . . , xT |g) to obtain the max value
for this emission probability, then we get:

p(x1, x2, . . . , xT |g) =
∑
h

p(x1, x2 . . . xT , h|g)p(h|g)

∼= maxπ(h0)

T∏
t=2

p(ht|ht−1)

T∏
t=1

p(xt|ht)
(7)

With (7), we can break down the problem of solving best
probability of main gesture class into solving HMM states
probability with poselets x1, x2, . . . , xT . After determining the
poselets alignment, the test sequence can be inferred.

III. EXPERIMENTS

In this section, details of experiments are illustrated.
Features. For the skeleton joint feature processing, we

follow the work of [16] to extract skeleton joint properties
as Eigenjoints. Eigenjoints are features that utilizing 3D po-
sition difference characters of joints to generate more spatio-
temporal information. Before feature extraction, the coordi-
nates are normalized by transforming them to a person-centric
coordinate system. For time-consuming issue and gesture-
orientated goal, we extract Eigenjoint features from 11 skele-
ton joints of upper body. The poselets are labeled according
to the encoding paths in THD.

DBN-GRBM. We set our five-layer DBN-GRBM model
architecture as [NX , Nh, Nh1, Nh2, Noutput]. Here NX is



TABLE I
COMPARISON OF A THD-HMM AND A FLAT DICTIONARY WITH HMM ON

CHALEARN 2014 DATASET.

Methods HMM state number Poselet number Jacc.

Flat dictionary-HMM 5 100 0.787
10 200 0.779
15 300 0.716

THD-HMM 5 57 0.772
10 88 0.813
15 133 0.789

THD-HMM with DTW 10 81 0.820

the dimension of input feature observation layer, Nh is the
number of hidden units in GRBM structure, the DBN inner
hidden layers between Nh and Noutput are Nh1, Nh2. Noutput

is the total poselet number. This feed-forward network are pre-
trained with a batch size of 100. The fine-tuning stage is set
with a 0.1 learning rate and 500 epochs.

A. Datasets

We validate the proposed approach on two heterogeneous
gesture datasets and compare it with two most common
evaluation methods.

First is ChaLearn dataset [17] from a challenge of “multiple
instances, user independent learning”. There are 20 gesture
categories in the dataset. It contains 470 labeled sequences
for training, 230 sequences for validating and the rest 240
sequences for testing.

The second is MSRC-12 gesture dataset [18]. It includes
594 sequences and 719,359 frames from 30 people performing
12 gestures with 20 joints estimated by Kinect. We conduct our
experiments following the same leave-subjects-out protocol
as [18]. For each time, we leave the sequences of selected
three subjects by order of subject number for testing and use
the rest sequences for training. To train the network, we encode
a window of 90 frames centered on the action point from the
ground truth, with the beginning 20 frames of each sequence
encoded as ‘no-motion’ poselets.

B. Results and discussion

We follow the standard validation protocols for each dataset
to evaluate the proposed method.

For ChaLearn dataset, we strictly follow the evaluation
protocol in [14] and report Jaccard index (Jacc.) as the mea-
sure. The Jaccard index measures similarity between samples,
and is defined as the size of the intersection divided by the
size of the union of the sample sets. First, we realize two
THD-HMM structures with different HMM state numbers.
Besides, as a sanity check of THD-HMM, we implemented
flat-dictionaries with HMM. We compare our THD-HMM
structures with the flat dictionary-HMM on ChaLearn dataset
and the experimental results are shown in Table I.

In the previous temporal flat dictionaries, the search ranges
are the entire dictionaries with possible redundant elements.
When taking the time consumption into account, this structural

TABLE II
THE VITERBI DECODING PERFORMANCES WITH 10 HMM STATES ON

CHALEARN DATASET WITH A SINGLE GPU: NVIDIA TESLA K80 (RAM:
12 GB)

Viterbi decoding Flat dictionary THD-HMM

Decoding time/second 14-20s 2-3s
Decoding speed/frame per second 85-90/fps 400-600/fps

TABLE III
COMPARISON OF THE THD-HMM METHOD WITH THE STATE-OF-THE-ART

METHODS ON CHALEARN DATASET.

Method Results (Jacc.)

THD-HMM (our method) 0.820
ModDrop [14] 0.808
HOG, MRF [19] 0.792
HOG, Boosted classifier [20] 0.789
DNN-HMM [13] 0.787
Fisher Vector [21] 0.747

redundancy becomes a serious limitation. Instead, switching to
our THD-HMM structure is helpful for the HMM-distributed
temporal structure. For each temporal state of HMM, we filter
redundant poselets with relative entropy. The results in Table I
show the THD-HMM generally yields better performance and
leads to a substantial decrease in the number of poselets. This
is apparent in the last row of Table I: better performance
(0.820) is obtained with two times fewer poselets (81 vs. 200).
A large redundancy will cause a significant loss of accuracy
which can be seen in the 15-state flat dictionary (0.716). In
the case of five HMM states, the performance of THD-HMM
is not better than that of the flat dictionary. The accuracy
decrease of THD-HMM with five states might be caused by
the information loss in data compression. At its root, THD-
HMM is a kind of sparse coding which encodes the gesture
with poselets along the time states. In this way, a good THD-
HMM structure should make a balance between data loss and
statistical redundancy.

Besides, we compare the Viterbi decoding speeds of these
two kind of dictionary structures and the THD-HMM is proved
to be more computationally efficient as shown in Table II.
Note that the decoding time is measured with a whole test
sequence in Chalearn dataset. One test sequence contains
several gestures and has 1200-2400 frames. It can be seen that
the THD-HMM method can considerably reduce the Viterbi
decoding time compared to the flat one. Performances of other
state-of-the-art techniques on ChaLearn are given in Table III.
Our THD-HMM shows the best result using single skeletal
modality.

In the MSRC-12 gesture dataset, F-score is always used for
testing. It is the harmonic mean of recall and precision in a
tolerated latency. On this dataset, the latency is set as 333ms,
the same as [18] and the same testing protocol and set as [22]
are used. The results of means and standard deviations is given
by leave-subjects-out with ten runs and compared with the
state-of-the-art methods in Table IV. The proposed method



TABLE IV
COMPARISON OF THE THD-HMM METHOD WITH THE STATE-OF-THE-ART

METHODS ON MSRC-12 GESTURE DATASET.

Methods Results (F-score)

THD-HMM (our method) 0.762±0.053
DBN-ES-HMM [22] 0.7243
Structured Streaming Skeletons [23] 0.718±0.159
Randomized Forestg [18] 0.62±0.04

attributes to less redundant poselets with the best result.

C. Computational complexity

The training time of the DBN structures is around 12 hours
for over 500,000 samples (poselets) in Chalearn dataset and
10 hours 400,000 samples (poselets) in MSRC dataset. The
training platform is Theano with a single GPU: NVidia Tesla
K80 (RAM: 12 GB). Theoretically, the single feed-forward
neural network incurs linear computational time O(T ∗ |S|)
for both our approach and a flat dictionary method, where
T is the number of frames and S is the number of poselets.
But the computational complexity of the Viterbi algorithm is
O(T ∗ |S|) in our approach, which is apparently less than that
of a flat dictionary method O(T ∗ |S|2).

IV. CONCLUSION

In this paper, for 3D gesture recognition, we introduce
the relative entropy to investigate the redundancy in gesture
dictionaries and compress them efficiently. We propose a tem-
poral hierarchical dictionary with HMM (THD-HMM), which
has strong capability in narrowing down the search range in
the poselet dictionary. An unsupervised hierarchical clustering
algorithm is further proposed for the THD-HMM structure
construction. The experimental results on two gesture datasets
show the effectiveness of proposed method with state-of-the-
art performances. Future research is to improve supervised
poselet path encoding to unsupervised learning and explore
more complementary representations from heterogeneous in-
puts such as RGB and audio data.
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