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Abstract—Recently, hashing techniques have gained 

importance in large-scale retrieval tasks because of their retrieval 

speed. Most of the existing cross-view frameworks assume that 

data are well paired. However, the fully-paired multiview situation 

is not universal in real applications. The aim of the method 

proposed in this paper is to learn the hashing function for semi-

paired cross-view retrieval tasks. To utilize the label information 

of partial data, we propose a semi-supervised hashing learning 

framework which jointly performs feature extraction and 

classifier learning. The experimental results on two datasets show 

that our method outperforms several state-of-the-art methods in 

terms of  retrieval accuracy.  

Keywords—hashing; semi-supervised; semi-paired; cross-view; 

retrieval 

I. INTRODUCTION  

The explosive growth of multimedia data creates more 
challenges in information retrieval. Hashing, which is an 
effective feature representation of data, has received increasing 
attention in multimedia data analysis, computer vision and 
related areas due to its low storage and high speed of processing 
[1].  

Among many hashing techniques, locality Sensitive Hashing 
(LSH) [2] is a popular data-independent method of generating 
hash code by means of random projections. It inspired the 
popular Kernelized Locality Sensitive Hashing (KLSH) [3] and 
Shift-invariant Kernels hashing (SIKH) [4] methods. But, these 
algorithms need long hash code to achieve high performance. 
This increases the memory consumption and storage cost. To 
tackle the problem, many data-dependent methods in which hash 
functions are learned from a given training dataset were 
proposed for single view, such as Discrete Graph Hashing (DGH) 
[5], Scalable Graph Hashing (SGH)[6], Anchor Graph-based 

hashing (AGH) [7], Iterative Quantization (ITQ) [8], Semi-
supervised hashing (SSH) [9], Latent factor models for 
supervised hashing (LFH)[10], Supervised discrete hashing 
(SDH)[11], etc. These data-dependent methods achieve 
comparable or even better accuracy with shorter binary codes, 
compared with data-independent methods. However, these 
achievements do not directly apply to multi-view situation. 

In many real application systems, some objects can be 
represented by two or more kinds of features. For example, a 
webpage in Internet can be represented by text, image, video, 
and hyper-link. The kind of data similar to webpage is reffered 

to as multi-view data. In general, multi-view Hashing is an 
important requirement in many practical applications. There are 
two major categories of existing multi-view hashing methods. 
i.e. Multiview Hashing and Cross-view Hashing. By leveraging 
auxiliary views, Multiview Hashing, such as Multiple feature 
hashing (MFH) [12], Composite hashing (CH) [13], etc, 
promises to learn better codes than single-view. But, these 
methods must satisfy the condition that all data views are 
available. Unlike Multiview Hashing, Cross-view Hashing is 
designed to conduct cross-view retrieval. A query from one view 
can retrieve the relevant results from another view. Cross-view 
Hashing can also be divided into Supervised Cross-view 
Hashing and Unsupervised Cross-view Hashing. Most of the 
Unsupervised Cross-view methods depend on canonical 
correlation analysis (CCA). Specifically, they tranform multiple 
feature views into a common latent subspace in which the 
correlation among all views is maximized. Besides, Semi-paired 
hashing (SPH) [14] not only keeps the correlation between two 
views but also preserves structural similarity within a view. 
Semi-paired Discrete Hashing (SPDH) [15] implements the 
mapping by preserving the intrinsic similarities of semi-paired 
data based on the idea of anchor pair. Supervised Cross-view 
Hashing which can use the semantic label  for hashing learning 
has achieved promising results. An example is Semantic 
Correlation Maximization (SCM) [16] which integrates 
semantic labels into hashing learning.  

Supervised Cross-view hashing often needs a lot of label 
information to train a robust hashing function. However, it is 
time-consuming and labor-intensive to collect labeled samples. 
On the contrary, massive unlabeled data is obtained easily in 
many applications. In order to leverage substantial unlabeled 
samples and limited labeled samples,and take the universality of 
semi-paired data in real-world into account, we propose a Semi-
supervised hashing learning framework for the semi-paired 
cross-view retrieval problem. The learning process of our model 
consists of two stages: Firstly, the mapping from the original 
space to a commom subspace is learned  by means of relaxing 
an optimization problem. Secondly, we minimize the 
quantization error to refine the hashing function. Compared with 
[17], our model is unique in terms of the objective function 
design for a multi-class problem in the multi-views scenario. 
The main contributions of our framework are given as follows: 

(1) In multi-view scenarios, our method integrates feature 

extraction and classifier learning into a joint framework to  
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learn the hashing function mapping the original data to the 

Hamming space. 

(2) With the help of anchor graph, we construct cross-view 

graph for label propagation. 

The paper includes four sections. Related research status is 

described in Section I. In Section II, we formulate the research 

problem and develop our model and optimization process. The 

experimental results and analysis are depicted in Section III.  

The conclusions are presented in Section IV. 

II. METHODOLOGY 

A. Problem statement 

For simplicity, we formulate the problem with two views, i.e. 
Image-view and Text-view. As shown in Figure.1, let 

𝑋(1) denote Text-view and 𝑋(2)  signify Image-view. 

Specifically, 𝑋(1) =  [𝑥1
(1)

, … , 𝑥𝑛1−𝑛0

(1)
, 𝑥𝑛1−𝑛0+1

(1)
… , 𝑥𝑛1

(1)
]𝑇, 

 𝑋(2) = [𝑥1
(2)

, … , 𝑥𝑛0

(2)
, 𝑥𝑛0+1

(2)
… , 𝑥𝑛2

(2)
]𝑇 , where 𝑥(1) ∈ 𝑅𝑑1 , 

𝑥(2) ∈ 𝑅𝑑2  ( 𝑑1 ≠𝑑2 ), 𝑛𝑖  and 𝑑𝑖  ( 𝑖 =1,2) are the number of 
samples and dimensionality in the 𝑖th view respectively. Here we 

consider {𝑋𝑛1−𝑛0+𝑖
(1)

, 𝑋𝑖
(2)

}𝑖=1
𝑛0 are paired data points, that is, the 

last 𝑛0 samples in the text view and the first 𝑛0 samples in the 
image view come from the same 𝑛0  objects, where 𝑛0  is the 
total number of pairs. Suppose that m samples selected randomly 
from the training set are labeled and the rest are unlabeled data. 
We define a label matrix Y= [𝑦1, … 𝑦𝑚, 𝑦𝑚+1, … 𝑦𝑛]𝑇 , where 
𝑦𝑖|𝑖=1

𝑛 ∈ {0,1}𝑐and c is the total number of classes;  𝑦𝑖𝑗  is the jth 

element of 𝑦𝑖 , 𝑦𝑖𝑗 = 1 if the 𝑖th sample belongs to the jth class 

and 𝑦𝑖𝑗 =0 otherwise. We assume 𝑦𝑖  is zero vetor if the label 

information is not available. Samples are zero-centered for each 

view feature, i.e. ∑ 𝑋𝑖
(1)𝑛1

𝑖=1 = 0, ∑ 𝑋𝑖
(2)𝑛2

𝑖=1 = 0. The aim of the 

paper is to obtain a mapping function from the original data 
space to Hamming space for two different views, that is, 

𝑓: 𝑅𝑑1 → {1,0}𝑟  and 𝑔: 𝑅𝑑2 → {1,0}𝑟  where r is the length of 
hash code. Here, the hash function is set into the following form: 

𝑓(𝑋(1)) = 𝑠𝑖𝑔𝑛(𝑋(1)𝑄(1))  

𝑔(𝑋(2)) = 𝑠𝑖𝑔𝑛(𝑋(2)𝑄(2))                       (1) 

where sign(.) signifies sign function, and 𝑄(𝑖) ∈ 𝑅𝑑𝑖×𝑟(𝑖 = 1,2) 
are the projection matrices for the  𝑖th view. 

B. Model 

The basic idea of our method is to try to learn the hash 
function  mapping different views into a common Hanming 
space. The objective function is formulated as a multi-class 
classification problem. i.e. 

min
𝑊,𝑄(𝑖)

∑ 𝜃(𝑖)2
𝑖=1 ||𝑌(𝑖) − 𝑠𝑔𝑛(𝑋(𝑖)𝑄(𝑖))𝑊||𝐹

2 + 𝛽||𝑊||𝐹
2    (2) 

where 𝜃(𝑖)(𝑖 = 1,2)  is a variable that indicates the relative 

importance of the 𝑖 th view in the learning process and 𝑌(𝑖) ∈
𝑅𝑛𝑖×𝑐 is the semi-supervised label matrix for the 𝑖th

 view. Owing 
to the data being semi-supervised data, we introduce a label 
prediction matrix F=[𝐹1, … , 𝐹𝑛]𝑇 , where 𝐹𝑖 ∈ 𝑅𝑐 , to make the 
best use of  available label information. F should be consistent 
with the ground truth label for the labeled data and graph G over 
all data for label propagation [18][19]. This can be obtained by 
optimizing the cost function in (3). 

 

Fig. 1.Illustration of  our framework (better viewed in color). Training dataset consists of  n samples which are divided into three parts: (i) Unpaired Text 
Samples framed by orange in ① are represented only by text feature; (ii) Text-Image Pairs framed by red in ①  are represented by both text feature and Image 

feature; (iii) Unpaired Image Samples framed by green in ①   are represented only by image feature. Step 1: Prediction label should be consistent with both the 

ground true label of labeled data (framed by gray in ①) and the whole graph G over all data for label propagation. Step2:Text feature data framed by blue in ①  

and Image feature data framed by purple in ①  are projected a common subspace respectively. Step 3: data points in common latent subspace are classified. 



min
𝐹

∑ [
1

2
∑ (𝐹𝑖𝑝 − 𝐹𝑗𝑝)2𝑆𝑖𝑗 + ∑ 𝑈𝑖𝑖(𝐹𝑖𝑝 − 𝑌𝑖𝑝)2𝑛

𝑖=1
𝑛
𝑖,𝑗=1 ]𝑐

𝑝=1   (3) 

where 𝐹𝑖𝑝  denotes the pth element of 𝐹𝑖  (i=1,…n). 𝑈𝑖𝑖 = ∞ if  

the label of the ith
 sample is available and 𝑈𝑖𝑖 = 0 otherwise, 𝑆𝑖𝑗  

is the ith row and the jth colum of similarity matrix S ∈ 𝑅𝑛×𝑛 and 
denotes the similarity between sample i and sample j. It is hard 
to directly compute the similarity among data points represented 
by different views. In this paper, we adopt an effective anchor 
graph construction approach [20] to analyze the similarity 
among semi-paired data. We randomly select 𝑚0 pairs potential 
as anchor pairs from the paired samples. The similarity matrix 
Z∈ 𝑅𝑛×𝑚 between samples and anchors can be defined as: 

𝑍𝑖𝑗 = {

exp (Φ(𝑥𝑖,𝜇𝑗))

∑ exp (Φ(𝑥𝑖,𝜇𝑗))𝑗∈[𝑖]
, ∀𝑗 ∈ [𝑖]

0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                         (4) 

where [ 𝑖 ] are the k-nearest anchors of the ith
 sample 𝑥𝑖 , 

Φ(𝑥𝑖 , 𝜇𝑗)=−||𝑥𝑖 − 𝜇𝑗||2/𝜎2,and 𝜇𝑗 is an anchor which is from 

the set of k-nearest anchors. To normalize each row, Λ = 

diag(ZT1) ∈  𝑅𝑚×𝑚 is used in (5). Then, the similarity matrix S 
can be calculated as    

S= ZΛ−1𝑍𝑇                                             (5) 

As seen in [17], the function in (3) can be converted into  

min
𝐹

𝑇𝑟(𝐹𝑇𝐿𝐹) + 𝑇𝑟[(𝐹 − 𝑌)𝑇𝑈(𝐹 − 𝑌)]                   (6) 

where Tr(.) denotes the trace of matrix, L=I-S is the Laplacian 
matrix. As paired view data  from the same object should be 
close to each other in the Hamming space, we acquire 

min
𝑓,𝑔

∑ ||𝑓 (𝑋𝑛1−𝑛0+𝑗
(1)

𝑄(1)) − 𝑔(𝑋𝑗
(2)

𝑄(2))||
𝑛0
𝑗=1

2 
                (7) 

Integrating (2), (6) and (7) into a joint framework, we can 
optimize classifier learning and feature representation 
simultaneously. The joint optimization problem is given as 
follows: 

min
𝐹,𝑄(𝑖),𝑊,𝜃(𝑖)

𝑇𝑟(𝐹𝑇𝐿𝐹) + 𝑇𝑟[(𝐹 − 𝑌)𝑇𝑈(𝐹 − 𝑌)] 

              + ∑ 𝜃(𝑖)2
𝑖=1 ||𝐹(𝑖) − 𝑠𝑔𝑛(𝑋(𝑖)𝑄(𝑖))𝑊||𝐹

2 + 𝛽||𝑊||𝐹
2  

+γ ∑ ||𝑠𝑔𝑛 (𝑋𝑛1−𝑛0+𝑗
(1)

𝑄(1)) − 𝑠𝑔𝑛(𝑋𝑗
(2)

𝑄(2))||
𝑛0
𝑗=1

2                

s.t. ∑ 𝜃(𝑖)2
𝑖=1 = 1, 𝜃(𝑖) > 0, 𝑖 = 1,2                             (8) 

where 𝛾 and 𝛽 are non-negative adjustable parameters. 

C. Relaxation and optimization 

It is difficult directly to optimize the problem with a binary 

function  in (8). We relax the objective function to make it 

tractable computationally. We define four view-specific element 

selection matrices 𝑇(1) = [1𝑛1×𝑛1
, 0𝑛1×(𝑛−𝑛1)] , 𝑇(2) =

[0𝑛2×(𝑛1−𝑛0), 1𝑛2×𝑛2
] , 𝑀(1) = [0𝑛0×(𝑛1−𝑛0), 1𝑛0×𝑛0

] , 𝑀(2) =

[1𝑛0×𝑛0
, 0𝑛0×(𝑛2−𝑛0)] . The relaxed objective function can be 

formulated as: 

min
𝐹,𝑄(𝑖),𝑊,𝜃(𝑖)

𝑇𝑟(𝐹𝑇𝐿𝐹) + 𝑇𝑟[(𝐹 − 𝑌)𝑇𝑈(𝐹 − 𝑌)] 

+ ∑ 𝜃(𝑖)2
𝑖 ||𝑇(𝑖)𝐹 − 𝑋(𝑖)𝑄(𝑖)𝑊||𝐹

2 +  𝛽||𝑊||𝐹
2

  

+𝛾||𝑀(1)𝑋(1)𝑄(1) − 𝑀(2)𝑋(2)𝑄(2)||𝐹
2                

s.t. ∑ 𝜃(𝑖)2
𝑖=1 = 1, 𝜃(𝑖) > 0, 𝑖 = 1,2           (9)  

We use ADMM algorithm to solve the relaxed problem in 
(9) through  alternating optimization. 

(1) Optimization of F: keeping terms relating to F 

min
𝐹

𝑇𝑟(𝐹𝑇𝐿𝐹) + 𝑇𝑟[(𝐹 − 𝑌)𝑇𝑈(𝐹 − 𝑌)]               

      + ∑ 𝜃(𝑖)2
𝑖 ||𝑇(𝑖)𝐹 − 𝑋(𝑖)𝑄(𝑖)𝑊||𝐹

2                (10) 

Setting the derivative of (10) with respect to F to zero, we 
obtain the optimal F  as 

(L + U)F − UY + ∑ 𝜃(𝑖)[𝑇(𝑖)𝑇
𝑇(𝑖)𝐹 − 𝑇(𝑖)𝑇

𝑋(𝑖)𝑄(𝑖)𝑊]2
𝑖=1 = 0      

(11) 

⟹ F = (L + U +

∑ 𝜃(𝑖)𝑇(𝑖)𝑇
𝑇(𝑖)2

𝑖=1  )+[∑ 𝜃(𝑖)2
𝑖=1 𝑇(𝑖)𝑇

𝑋(𝑖)𝑄(𝑖)𝑊 + 𝑈𝑌]         (12) 

where the superscript + denotes pseudoinverse of a matrix. 

 

(2) Optimization of W: keeping terms relating to W 

min
𝑊

∑ 𝜃(𝑖)||𝑇(𝑖)𝐹 − 𝑋(𝑖)𝑄(𝑖)𝑊||𝐹
2 + 𝛽||𝑊||𝐹

22
𝑖=1      (13) 

Letting the derivative of (13) with respect to W equal to 

zero,we can obtain the following closed form solution as (15): 

∑ 𝜃(𝑖)[𝑄(𝑖)𝑇
𝑋(𝑖)𝑇

𝑋(𝑖)𝑄(𝑖)𝑊 − 𝑄(𝑖)𝑇
𝑋(𝑖)𝑇

𝑇(𝑖)𝐹]
2

𝑖=1
 

+𝛽𝑊 = 0                                                     (14) 

                ⇒ W = (∑ 𝜃(𝑖)𝑄(𝑖)𝑇
𝑋(𝑖)𝑇

𝑋(𝑖)𝑄(𝑖)
2

𝑖=1
+ βI)

−1

 

                              (∑ 𝜃(𝑖)𝑄(𝑖)𝑇
𝑋(𝑖)𝑇

𝑇(𝑖)2
𝑖=1 𝐹)                       (15) 

(3) Optimization of 𝑄(𝑖): keeping terms relating to 𝑄(𝑖) 

min
𝑄(𝑖)

∑ 𝜃(𝑖)||𝑇(𝑖)𝐹 − 𝑋(𝑖)𝑄(𝑖)𝑊||𝐹
2

2

𝑖=1
 

+𝛾||𝑀(1)𝑋(1)𝑄(1) − 𝑀(2)𝑋(2)𝑄(2)||𝐹
2           (16) 

Taking the derivate of (16) with respect to 𝑄(1)  and 𝑄(2) 

equal to zero, results in  



𝛾(𝑋(1)𝑇
𝑋(1))+𝑋(1)𝑇

𝑀(1)𝑇
𝑀(1)𝑋(1)𝑄(1) + 𝑄(1)𝜃(1)W𝑊𝑇 =

(𝑋(1)𝑇
𝑋(1))

+
(𝜃(1)𝑋(1)𝑇

𝑇(1)𝐹𝑊𝑇 +

𝛾𝑋(1)𝑇
𝑀(1)𝑇

𝑀(2)𝑋(2)𝑄(2))                                                (17) 

𝛾(𝑋(2)𝑇
𝑋(2))

+
𝑋(2)𝑇

𝑀(2)𝑇
𝑀(2)𝑋(2)𝑄(2) + 𝑄(2)𝜃(2)W𝑊𝑇 =

(𝑋(2)𝑇
𝑋(2))

+
(𝜃(2)𝑋(2)𝑇

𝑇(2)𝐹𝑊𝑇 +

𝛾𝑋(2)𝑇
𝑀(2)𝑇

𝑀(1)𝑋(1)𝑄(1))                                                 (18) 

which is consistent with the Sylvester equation. 

 

(4) Optimization of 𝜃(𝑖):  keeping terms relating to 𝜃(𝑖) 

min
𝜃(𝑖)

∑ 𝜃(𝑖)𝜋(𝑖)
2

𝑖=1
+ 𝜆||Θ||2

2 

s. t. ∑ 𝜃(𝑖)2
𝑖=1 = 1, 𝜃(𝑖) > 0, 𝑖 = 1,2         (19) 

where 𝜋(𝑖) = ||𝑇(𝑖)𝐹 − 𝑋(𝑖)𝑄(𝑖)𝑊||𝐹
2 , Θ = [𝜃(1), 𝜃(2)]𝑇 . The 

second part of Eq.19 is a regularization term to exploit the 
complementary information of the two views. Equation (19) 
is a quadratic optimization problem which can be solved 
easily by any existing algorithm. 𝜆  is non-negative 
coefficient for controlling the smoothness of Θ. 

The iterative method to solve the relaxed objective function 

in (9) is described in Algorithm 1. The iteration process is 

repeated until the algorithm converges. After acquiring the 

projection matrix 𝑄(𝑖), we can  quantize the projected data into 

binary codes. To improve the hashing performance, we 

introduce the ITQ algorithm [8] to reduce quantization error. 

For different two views, quantization is achieved in the same 

way by optimizing E.q. 20. 

 min
𝐵(𝑖),𝑅(𝑖)

||𝐵(𝑖) − 𝑋(𝑖)𝑄(𝑖)𝑅(𝑖)||𝐹
2                      (20) 

s.t 𝐵(𝑖) ∈ {1,0}𝑛𝑖×𝑟 , 𝑅𝑇𝑅 = 𝐼                          

where  𝐵(𝑖) denotes the hash code matrix of the 𝑖th view, 𝑅(𝑖) ∈
𝑅𝑟×𝑟  is a transformation matrix with the property of 

orthogonality, employed to align with the hypercube {0,1}𝑛𝑖×𝑟  

by means of rotating the data. There are two steps to optimize 

E.q.20 by the alternating algorithm: 

Step 1: Fix 𝑅(𝑖)  and update 𝐵(𝑖) . The objective function 

generates a closed form solution as : 

𝐵(𝑖) = sgn(𝑋(𝑖)𝑄(𝑖)𝑅(𝑖))                           (21) 

Step 2: Fixed 𝐵(𝑖)  and update 𝑅(𝑖) . The solution can be 

obtained efficiently with the singular value decomposition.  

 𝑅(𝑖) = 𝑉(𝑖)𝑈(𝑖)𝑇
                                   (22) 

The framework proposed in the paper consist of a two-stage 

mechanism: (1)  Projected matrices 𝑄(𝑖) are learned from the 

relaxed objective function via algorithm 1; (2) The orthogonal 

transformation matrix R is obtained through minimizing the 

quantization error in E.q.20. Thus, the hash function H(𝑖) of the 

𝑖th view (𝑖=1,2) can be defined as:  

H(𝑖)(𝑥(𝑖)) = 𝑠𝑔𝑛(𝑥(𝑖)𝑄(𝑖)𝑅(𝑖))                 (23) 

where 𝑥(𝑖) ∈ 𝑅1×𝑑𝑖  is a randomly selected sample in the 𝑖 th 

view. 

III. EXPERIMENTAL RESULTS 

In this section, we present extensive experiments to evaluate 
the proposed method. We compare different methods on two 
publicly available datasets: MIRFlickr, and Wiki.  

A. Datasets 

MIRFlickr  consists of 25000 original images collected from 
Flickr website. Each image is classified into 24 classes. We 
randomly select 7000 samples whose textual tags are not empty 
for our experiments. The image view is quantized into 150-
dimensional edge histogram feature vector and the text view is 
represented as 500-dimensional vector derived from the bag-of 

–words vector by adopting PCA. 70% of the data points are used 

as the training set and, the rest of the database as query set. 

Wiki contains 2866 multimedia documents crawled from 
Wikipedia. A 128-dimensional SIFT histogram vector and a 10-
dimensional feature vector generated by latent Dirichlet 
allocation are used to represent each image and text respectively. 
We take 75% of the dataset to form the training set and the 
remaining 25% as a test set.  

B. Experimental Setting 

The performance of the proposed method is evaluated on two 
kinds of retrieval task, i.e. image to texts and text to image. They 
are represented by I → T and T → I respectively. The number of 
anchors 𝑚0 is equal to 10% of  pairs if the number exceeds fifty, 
fifty otherwsie. The value of k for the nearest anchor is directly 
set to 𝑚0 . Samples with label cover all categories in our 
experiments. Our method is compared with most the popular 
methods including SCM-orth, CCA, and SPDH. Since the soure 
code of SPDH is not publicly available, we implemented it 
ourselves. CCA and SCM-orth are kindly provided by their 

Algorithm 1: Algorithm for solving the relaxed objective 
function in (9) 

Input: trainning set 𝑋(𝑖) ∈ 𝑅𝑛𝑖×𝑑𝑖(𝑖 = 1,2) , semi-supervised 

label matrix Y ∈ {0,1}𝑛×𝑐 and parameters  𝛽, γ 

Output: prediction matrix F ∈ 𝑅𝑛×𝑐 ,weighted matrix W ∈
𝑅𝑟×𝑐 and projection matrix Q ∈ 𝑅𝑑𝑖×𝑟. 

1: Initialize F, W, 𝑄(𝑖), 𝜃(𝑖) 

2: Calculate S according to (5) 

3: Calculate Laplacian matrix L and diagonal matrixU. 
4:   Repeat 

5:           Update F according to (12); 

6:           Update W according to (15); 

7:           Update 𝑄(1) according to (17); 

8:           Update 𝑄(2) according to (18); 

9:           Update 𝜃(𝑖) by solving (19); 
10: Until convergence 

11: Return F, W,  𝑄(1), 𝑄(2). 

 



authors. Note that SPDH and CCA are unsupervised methods 
and SCM-orth is a supervised method for semi-paired cross view 
retrieval. We use the Mean Average Precision (MAP) as the 
indicator of the retrieval performance. The Average Precision 
for a query q is formulated as E.q.24 

AP(q) =
1

𝑙𝑞
∑ 𝑃𝑞(𝑚)𝛿𝑞(𝑚)𝑅

𝑚=1               （24） 

where 𝑙𝑞 denotes the correct statistics of  top R retrieval results; 

𝑃𝑞(𝑚) is the accuracy of top m retrieval results; and if the result 

of position m is right, 𝛿𝑞(𝑚) is equal to one or zero otherwise. 

We set R=50 in our experiment. 

We set the possible values of β and γ in the range of {0.01, 
0.1, 1, 10, 100,1000} empirically, and the best results are 
recorded in this paper. The MAP performance variation of our 
method with respect to β , γ in Fig.5, when using 64-bit hash 
code on wiki and MIRFlickr. we can see that choosing β , γ have 
influence on the Map performance. 

One advantage of our method is that it fully utilizes the semi-
supervised semantic information to process multi-view data in 
the semi-paired scenario. The convergence curves of the 
algorithm on the two datasets are plotted  in Fig.4, which show 
the aglorithm can converge in about 15 iterations. SPDH is also 
a state-of-art method to deal with semi-paired samples. But it is 
an unsupervised method which exploits a common latent space 
by constructing a similarity graph between views according to  

C. Performance Evaluation 

the idea of anchor pairs. We compare our method with SPDH 
under two different pair settings, i.e., 100% and 50%. As shown 
in Table 1 and Table 2 , the map results of our methods are better 
than SPDH on MIRFlickr and Wiki by approximately 2% when 
the percentage of labeled data is fixed at 50%. CCA is also an 
unsupervised method in which the correlation among views is 
maximized. Moreover, SCM-orth is a supervised method which 
constructs the semantic similarity using the label vectors. 
However, the two methods are designed to deal with the data 
paired in their entirety. In Table 1 and Table 2, we can find that 
our method outperforms CCA and SCM-orth even when the 
percentage of pairs is 100%. 

  To exploit the impact of the number of labeled data on accuracy, 
we adjust the proportion of labeled data when we fixed the  

 

(a)                                             (b) 

Fig. 2. The performance variation of our method with respect to the 
percentage of labeled data in the training set for two datasets when the 
length of hash code and the precentage of pairs are fixed to 32 and 50% 
respectively. (a) I → T, (b)  T → I. 

 

                     (a)                                                (b)   

Fig. 3. The performance variation of our method with respect to the 
percentage of pairs in the training data obtained on two datasets when the 
length of hash code and the precentage of labeled data are 32 and 50% fixed 

respectively. (a) I → T, (b)  T → I. 

TABLE 1. Comparative map results on MIRFlickr 

Task Method Code Length 

16 32 64 

 

Image 
query 

Text 

(I → T) 

Ours(100%) 0.5897 0.5991 0.6079 

Ours(50%) 0.5798 0.5828 0.5871 

SPDH(100%) 0.5698 0.5719 0.5745 

SPDH(50%) 0.5422 0.5499 0.5486 

SCM-orth 0.5552 0.5570 0.5546 

CCA 0.5559 0.5583 0.5590 

 

Text 

query 
Image 

(T → I) 

Ours(100%) 0.5881 0.5997 0.6047 

Ours(50%) 0.5638 0.5833 0.5962 

SPDH(100%) 0.5706 0.5736 0.5762 

SPDH(50%) 0.5382 0.5413 0.5486 

SCM-orth 0.5460 0.5473 0.5521 

CCA 0.5377 0.5456 0.5476 

 
TABLE 2. Comparative map results on Wiki 

Task Method Code Length 

16 32 64 

 
Image 

query 

Text 

(I → T) 

Ours(100%) 0.2429 0.2633 0.2529 

Ours(50%) 0.2219 0.2442 0.2328 

SPDH(100%) 0.2179 0.2264 0.2319 

SPDH(50%) 0.2077 0.2127 0.2246 

SCM-orth 0.2023 0.2289 0.2068 

CCA 0.2136 0.2583 0.2396 

 

Text 
query 

Image 

(T → I) 

Ours(100%) 0.2979 0.3306 0.3186 

Ours(50%) 0.2663 0.3053 0.2963 

SPDH(100%) 0.2701 0.3019 0.3294 

SPDH(50%) 0.2501 0.2961 0.3037 

SCM-orth 0.2973 0.2641 0.2157 

CCA 0.3228 0.2610 0.2230 

 



the length of hash code and the precentage of pairs is either 32 
or 50% respectively. Figure 2 shows the map value is improved 
only about 1% when the propotion of labeled data range from 
50% to 100%.  This indicates that our method is more suitable 
for real application because it is is difficult to collect labeled data.  

Our method can be used in semi-paired scenarios. The map 
results have been obtained when we change the percentage of 
paired data from 10% to 100% in Figure 3. The performance 
degrades only slowly when the percentage of paired data reduces. 

IV. CONCLUSIONS 

In this paper, we presensted a novel framework to learn 

hashing for cross-view data. The new algorithm jointly 

optimizes feature representation and the classifier parameters to 

learn high quality binary code. In the learning process, the 

framework exploits any label information provided by the 

training data set, even if partial to better adapt to real application. 

The experimental results demonstrate that our method is 

superior to other several popular methods in accuracy. In the 

future, we plan to add into our framework structure preservation 

and manifold embedding in the projection stage of our method. 
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Fig. 4. Convergence curves of Algorithm 1 on MIRFlickr and Wiki. 

 

 

Fig. 5. The influence for results with respect to α and β using 64-bit hash 
code onWiki and MIRFlickr. 

 


