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Variational Capsule Encoder
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Abstract—We propose a novel capsule network based varia-
tional encoder architecture, called Bayesian capsules (B-Caps),
to modulate the mean and standard deviation of the sampling
distribution in the latent space. We hypothesized that this ap-
proach can learn a better representation of features in the latent
space than traditional approaches. Our hypothesis was tested
by using the learned latent variables for image reconstruction
task, where for MNIST and Fashion-MNIST datasets, different
classes were separated successfully in the latent space using our
proposed model. Our experimental results have shown improved
reconstruction and classification performances for both datasets
adding credence to our hypothesis. We also showed that by
increasing the latent space dimension, the proposed B-Caps was
able to learn a better representation when compared to the
traditional variational auto-encoders (VAE). Hence our results
indicate the strength of capsule networks in representation
learning which has never been examined under the VAE settings
before.

Index Terms—VAE, capsule network, data-driven sampling,
deep learning

I. INTRODUCTION

Autoencoders (AEs) have been around since the 1980s [[1]]
and are used for encoding the input into a latent space that opti-
mally represents high dimensional data with lower dimensions
by introducing a bottleneck layer in the encoding-decoding
process. Due to this representation ability, AEs can naturally
be used to extract features for various classification/detection
tasks [2] [3]. In a typical AE, the input data is passed
through a few or several neural network layers to obtain a
reduced and more compact dimensional representation. This
manageable delineation, the encoding vector, encodes the
different learned attributes. Thus, the learned latent space
encodes descriptive attributes of the data and can be used for
several purposes including classification and reconstruction.
To understand and model the variations associated with these
attributes, a probabilistic distribution estimate of the latent
variables can be used. In this regard, variational inference is a
general way to capture variations in the data by approximating
the probability densities and converting the inference problem
into an optimization problem, which is ideally suited for
machine learning/deep learning settings. Variational inference
methods approximate the posterior distribution of the data
and latent variables and use Kullback-Leibler (KL) divergence
to measure the difference between the approximate and true
posteriors [4]. Hence, minimizing the KL divergence becomes
an optimization problem.
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Variational Autoencoder (VAE): Variational autoencoder is
the simplest model for applying variational inference to deep
learning based methods [5]. A VAE can help in establishing a
meaningful relationship between the raw input data () and the
feature representation in latent space (z). A VAE represents a
parametric generative model p,(z|z), with a posterior proba-
bility of the inference model ¢, (z|z). Ideally, these generative
and inference models should be equal, which is not the case
in actual practice. Usually, ¢, (z|z) is often taken to be a
Gaussian distribution. This in turn could help in understanding
different variations within each class of the data. For instance,
for a hand written character written by different people,
instead of learning a separate representation for each instance,
a VAE learns the variations and approximately reconstructs
(recognize) the digit. This is usually achieved by generating
a continuous latent space as opposed to a conventional AE.
Despite having these advantages, both AE and VAE are not
viewpoint invariant; hence, they either require a large amount
of data for precise modeling or certain bounds on the learning
process for a fair representation [6]. In our proposed study
based on capsule networks, we develop a new algorithm which
could address viewpoint invariant representation and learning
part-whole relationships in a variational encoder setting. In the
following, after a brief background on capsule networks and
related works, we present the details of the proposed B-Caps
algorithm.

Capsule Networks: Although convolutional neural networks
(CNNSs) have been successful in a wide spectrum of classifica-
tion and detection applications, their performance could suffer
when data representations have varying or novel viewpoints.
These variations in the appearance manifold could likely be
learned by carefully designed data augmentation methods,
albeit adding to the computational cost. A traditional VAE
would also fail to model these relationships in the latent
space which thereby reduces the invariance of such models
under various image transformations. Learning models that are
transformation invariant to such manifolds has been a chal-
lenging task. Capsule networks, by replacing scalar neurons
with vectors, assist in learning a relationship between objects
and its parts [7]. Capsules make the underlying assumption
of objects or entities being composed of parts and ideally,
learning the part-whole relationship for these entities benefits
the learning process by making it invariant to transformations
and novel viewpoints. Towards this end, the proposed B-Caps



uses advantages of capsule networks under a Bayesian setting

as described in Section [[-Cl
A. Related Work

Since the introduction in 2013, several variations of VAEs
have been proposed to cater for different tasks and domains
in representation learning. A deep CNN based encoder and
a deep generative deconvolutional network (decoder) was
proposed for modeling images and their captions [8]. The
learned model was able to run in a semi-supervised setting
in test cases where the labels were not available. In natural
language processing, Kusner et. al. [9] proposed a grammar
VAE to incorporate knowledge about the structure of data
and applied this model to parse trees. In [10], a variational
lossy AE was proposed to learn more global representations
while dropping local ones. The authors combined the VAE
with recurrent neural networks to achieve this goal. Along
similar lines, Habibie et. al. proposed to learn the manifold of
human motion from motion capture dataset using a recurrent
VAE [11]]. It was observed for deep stochastic models, that
starting with the reconstruction loss before introducing the KL
loss was important for convergence [12]. It was also noted
that batch normalization played an important role in these
networks. A shape VAE was proposed, which modeled the
distribution of object parts, locations of surface points, and
the normal associated with these points [13]]. The modeling
of the distribution of object parts and locations attempted to
model the part-part relationships. On the contrary, capsule
networks took this a level up by modeling an object-part
relationship and transforming the AE into a classification
network [7]]. Following this, the capsule networks were applied
to a range of applications from text classification [14]] and
action detection [15] to brain tumor classification [16] and
explainable medical diagnoses [17].

In certain domains, where the availability of labeled data is
scarce, VAEs worked well to support semi-supervised learning
[18]: the proposed architecture combined the latent space
and reinforcement learning to enable learning for data with
limited labels. For an effective inference from latent variables
in generative modeling, a Bayesian approach towards learning
the latent representation could play a significant role. In a
recent study, a routing algorithm was proposed for capsules
inspired by variational Bayes [[19]. The network consisted of
a convolution layer, a primary capsule layer, 2 convolutional
capsule layers, and a fully connected capsule layer which
was used for classification task. However, there is still little
evidence of work which transforms a VAE such that the latent
space representation makes use of the part-whole relationship
probabilities. We argue that such arepresentation could be
inferred by learning a latent embedding using capsules during
the encoding process. Towards this overreaching goal, we used
a shallow network with fully connected capsules for the image
reconstruction task.

B. Summary of Our Contributions

We argue whether a more powerful structured representation
in the inference model is possible with capsule networks. To

this end, we design a new VAE with the following contribu-
tions:

« We propose a novel VAE architecture, called Bayesian
Capsules (or B-Caps), which combines VAE and capsule
networks by utilizing the variational Bayes approach.

o The proposed B-Caps helps modulate the mean and
standard deviation of the latent space distribution, which
in turn generates improved reconstructed images when
compared with a traditional baseline VAE. The results
were evaluated using both the MNIST and Fashion-
MNIST datasets.

o The representative power of the learnt latent distribution
was evaluated by learning a classifier, with a significant
classification performance compared to baseline models.

o There are also some incremental novelties in our study
such as the use of batch normalization in capsule layers
to make the learning faster and helping the network to
generalize better.

II. METHODS

Herein, we briefly outline the VAE architecture and capsule
network layers before presenting our proposed fusion of these
two concepts.

A. Variational Autoencoder

Unlike the vanilla AE, a VAE generates two outputs in the
encoder: a vector of means and a vector of standard deviations.
These outputs form the parameters of a vector of random
variables from which latent samples are generated. This helps
the encoder in learning a (potentially) different mean for each
class while the standard deviation controls its spread and
reduces the overlap with other classes. VAEs are typically
trained using two losses - a generative loss, which measures
the accuracy of the reconstructed image, and a latent loss
which measures how closely the latent variables are distributed
to a unit Gaussian. The latent distribution loss is controlled
using the Kullback-Leibler (KL) divergence:

Q(2)
P(z)’
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where x = probability space,
P& = probability distributions.

In the VAE, P is the latent variable and () is a unit Gaussian.
To enable random sampling and support backpropagation for
optimizing the KL loss, a reparameterization trick is usually
employed. The variable z, using the samples from the encoder
outputs - including mean (u) and standard deviation (o), can
be sampled from the standard deviations such that the mean
is added afterwards:

Z=ptoe )

where € € M (0,1). A more comprehensive summary of the
VAE:s can be found in [20].



B. Capsule network layers

Unlike a fully connected layer, every capsule layer (in
capsule networks) is either 2-dimensional or N+1 dimensional
(convolutional capsules), where IV is the convolution dimen-
sion [21]]. The additional dimension converts the scalar filter
into a vector representation, thereby enabling the encoding
of pose and orientation information. The vector length along
this dimension gives the probability (that an object/object-part
exists) and the orientation with respect to its parent layer (i.e.
input image or previous capsule layer). Dynamic routing is
utilized to enable grouping of capsules such that similar lower
level capsules are grouped together to a higher level capsule.
Considering a lower level child capsule (c;) and a higher level
parent capsule (c;), the description vector u; of c; is related to
c¢; via transformation matrix weights W;;, which are trained
via backpropagation. Hence, the child capsule predicts the
output of the parent capsule as:

'Lbj‘i = qul

The output u; of ¢; is computed as,
uj =Y kijujy,

where £;; is a coupling coefficient. The output description u;
is normalized to [0, 1] via a squashing function [[7]. In this way,
the description vector can be seen as the probability of detect-
ing a feature with a given orientation. This builds the basic
object (input capsule) and object-parts (child capsules/group
of capsules) relationship. Different routing algorithms such
as expectation maximization (EM) routing [22], self rout-
ing [23]], dynamic routing with min-max normalization [24],
and variational Bayes [19] have been proposed to reduce
the computational burden and improve the coupling between
capsules. It should be noted that exploring different routing
algorithms are kept outside the scope of the current work.

C. Variational Capsule Encoder

In this study, we investigate the ability of capsules for
learning feature variations in latent space. For this, we aim
to build strong relationships between the image and the object
parts even in a shallow VAE network where the encoder part
includes capsule layers. Traditionally in capsule networks, a
convolutional layer is employed to generate features which are
then converted into a primary capsule layer. In this way, the
channels serve as the description vector of the single capsule.
Herein, we propose to skip this step for small images like
those in the MNIST and Fashion-MNIST datasets. Instead, we
treat the flattened image as a description, thereby converting
the whole image into a capsule. We posit that individual pixels
are descriptive of the image and thus can be treated as a vector
description for a single image capsule.

The proposed variational capsule encoder architecture is
shown in Fig. [I(a)] The output consists of two groups (mean
and standard deviation) of capsule layers, each with L cap-
sules. The length (L) of these layers defines a vector of
random variables of length L in the latent space. The network

architecture is represented by three different parameters: the
number of capsules (C), the size of description vector (D), and
the latent dimension (L). The flattened input image is routed
to C capsules of vector length D. These are then routed to
the mean and standard deviation capsules having L capsules,
whose vector norm defines the latent attribute vector.

Traditionally, in capsule based networks designed for clas-
sification or segmentation tasks [[17] [21], an additional re-
construction loss can be included to encourage the capsules
to encode inputs’ instantiation parameters (such as the pose
information). On the contrary, we used the reconstruction loss
as our primary loss (with no additional task such as classifi-
cation), and a fully connected decoder network (illustrated in
Fig.[I(b)) was implemented to reconstruct the flattened image.
The B-Caps network is trained to minimize the mean squared
error (MSE) loss and the KL loss, thereby simultaneously
optimizing the latent space as well as the image reconstruction.
To enable sampling and use of KL in backpropagation, a
resampling trick is used to approximate the random normal
posterior. The input to the latent sampling layer is a vector
Euclidean norm of the mean and standard deviation capsules.
The norm of the description vector w is computed as:

ui = \Juif +ui+ - +udp,

where i = 1---L and D is the size of the description vector.
The latent vector z is sampled as in Eq. 2] and the KL loss is
computed as:

Dy r(N (i, o)[|N(0,1)) = 0.5 x Z(efﬂp(a) +u?—1-0).
" 3)
III. EXPERIMENTS

A. Baseline VAE architecture

We devised the baseline VAE architecture with two fully
connected layers in the encoder and a fully connected layer
in the decoder prior to the reconstruction layer. The mean
(p) and the standard deviation (o) is represented by the L
fully connected layers in the encoder preceding the bottleneck
layer. The decoder network (Fig. takes as input the
latent attributes and outputs the reconstructed image. In our
experiments, we fixed the dimension of the fully connected
layer in the encoder and decoder to 512. Batch normalization
was included after the first fully connected layer, in both the
encoder and decoder. Although, the baseline VAE encoder
architecture is simplistic but is kept similar (in terms of layers)
to the B-Caps encoder architecture (Section III-B) for a fair
comparison. Moreover, the decoder used in both architectures

is the same (Fig. [I(b)).
B. B-Caps Architecture

Our proposed B-Caps architecture follows the VAE formu-
lation and has a depth of just 2 layers in the encoder and a fully
connected layer in the decoder prior to the reconstruction layer.
Each of these capsule layers is a fully connected capsule, also
known as DigitCaps [[7]. The primary capsule layer comprises
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(b) Decoder architecture

Fig. 1. B-Caps architecture: Represented by three parameters; the number of capsules (C), the size of description vector (D), and the latent dimension (L).
The latent attribute vector is generated from the euclidean norm of the preceding layer.
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(c) Data-driven Sampling

Fig. 2. Reconstruction results with different training strategies.

of C' capsule types of vector length D. The last layer comprises
of the two outputs, the mean (u.) and the standard deviation
(o.) capsules, having L capsule types of description length
D;. The complete variational capsule encoder is represented
as {{C, D},{L, Dy }}. In our experiments we fixed D; = 64,
and varied the number of capsule types in the layer prior to the
output layer in the encoder part by varying C, hence evaluating
the effect of the description length D. Since capsules encode
part-whole relationships, the effect of increasing C' can change
with varying L. This is because both the mean and standard
deviation capsules would have L capsule types and hence
the part-whole relationship between C' and L would change.
Therefore, we set L = 2 for a set of initial experiments which
allowed visualizing class separation in the latent space.

C. Effect of latent dimension on performance

The quality of the reconstructed images can improve by
increasing the length of the latent attributes vector [5]]. In our
proposed B-Caps, the length of the latent attributes vector L
translates to the number of capsule types. By increasing this
value, we tested the number of part-whole relations that can
be learnt in a shallow network. This also enabled us to test

whether learning more part-whole relationships improves the
performance.

IV. RESULTS

A. Summary of Main Results

We trained the proposed B-Caps on MNIST and Fashion-
MNIST data and observed that the model does not converge
when the variance was sampled from a standard normal
distribution. We hypothesized that the feature distribution in
capsule layers does not follow simple Gaussian distribution;
therefore, we trained B-Caps using a data driven approach
to observe the distribution of data along capsule layers. We
call this approach pseudo-MCMC due to its similarities with
the Markov Chain Monte Carlo (MCMC) approach. We also
showed that with increasing dimension of the latent variables,
the proposed B-Caps outperformed the baseline VAE, indicat-
ing that the learned attributes have a stronger relation to their
preceding layers in B-Caps. In the following, we present our
experimental results in detail.



B. How to train B-Caps?

We first trained our proposed B-Caps in a similar way as
used for training a regular VAE using the standard normal
distribution with the reparameterization trick. However, we
noticed that backpropagation may fail and the loss function
may not converge. A possible reason for this is that the
mean and standard deviation vectors in B-Caps are driven
by the length of the vectors u. and o, respectively, which
are always non-negative. Based on this observation, to better
initialize the latent space sampling, we replaced the standard
normal distribution with a normal distribution N with the
following parameters: (u = 0.5,0 = 0.5) so as to start with
and learn a non-negative distribution. As seen in Fig. [Zp,
the trained model converged albeit to a poor reconstruction.
The random normal sampling comes marginally closer to
approximating the true distribution of the data. This also
indicates that the variance cannot be sampled directly from
a standard normal distribution. Based on these observations,
we modified the random normal distribution to be data-driven
by allowing the distribution to be modulated by u. and o.
Although this modulation may break the backpropagation with
the absence of the independent random sampling (which the
reparameterization trick entails), we can alleviate the potential
of exploding gradients by using batch normalization along the
description vector dimension in the capsule layers. Since batch
normalization adds a form of regularization to the network and
helps accelerate the training [25]. However, it should also be
noted that since the description length varies from [0,1], there
is a very low chance of a “bad” variance in sampling that
could break the backpropagation. In the data-driven approach,
we propose to use, the samples are drawn as,

Z = lbe + Oc - €, 4

where € = N (uc,o.). This modified strategy translates to
creating samples similar to each data point and repeating the
process several times, like in the MCMC process. Hence,
with the u. and 0. changing with every update, the latent
space is learnt in an MCMC manner with the reconstruction
loss being learnt via optimization. As mentioned earlier, we
call this training as pseudo-MCMC. Our experimental results
have shown the data-driven approach converges with a lower
network loss as compared to the random normal distribution.

C. MNIST Reconstruction

The MNIST dataset consists of images representing hand-
written digits (0 — 9) with dimension 28 x 28 [26]. The data
comprises of 60,000 training and 10,000 test images. We
normalized all images within the [0, 1] range and flattened
them before feeding into the B-Caps network.

In all our experiments, the networks were trained with a
batch size of 128 for 100 epochs. Adam optimizer was used
with an initial learning rate of le~3 [27]]. During the testing
phase, image reconstruction quality was evaluated using the
mean squared error and the structural similarity index metric
(SSIM). MSE is the mean difference between the squared

pixel-wise errors between the original image and the model
estimate (reconstruction). It is computed as:

N
MSE(A,B) = S (4~ B, 5)

i=1

where A, B = actual image, reconstructed image,
N = number of pixels.

SSIM on the other hand, is a perceptual image quality metric
assessing the effect of luminance, contrast, and image struc-
ture. SSIM is computed as a product of the aforementioned
variables as:

(2papp + C1)(2048 + C2)

SSIM(A, B) = ,
A B) = a2 1 C)(e% 1 o2 + C)

(6)

where A, B = actual image, reconstructed image,
1A, g = means of A & B,
oa,0p = standard deviations of A & B,
oap = cross-variance of A & B,
C1,C5 = constants to avoid instability.

TABLE I
COMPARISON OF RECONSTRUCTION QUALITY ON MNIST WHILE
VARYING THE CAPSULE TYPES (C') AND DESCRIPTION LENGTH (D). STD -
STANDARD DEVIATION.

Model ‘ Capsule Description SSIM MSE
types (C) | length (D) mean-tstd mean-tstd

Baseline VAE — - 0.555 +0.154 | 0.041 +0.019

B-Caps 8 64 0.541 +0.144 | 0.043 +0.020

B-Caps 16 64 0.580 + 0.133 0.040 + 0.017

B-Caps 32 64 0.573 £0.147 | 0.041 +£0.019

B-Caps 8 128 0.529 +£0.152 | 0.046 4+ 0.020

B-Caps 16 128 0.577 +£0.129 | 0.040 +0.018

We compared the baseline VAE at a latent dimension of
L = 2 against various configurations of the B-Caps architec-
ture. For B-Caps, we first fixed the value of description length
(D) and varied capsule types (C). Later, we increased the
value of D and repeated the experiments by varying C. We
observed that too many capsule types in the intermediate layers
and a larger description length (D) do not help in improving
the reconstruction (see Table [[). Compared to the baseline
VAE, at latent dimension L = 2, B-Caps {{16, 64},{2, 64}}
performs better. We visualized the latent space in Fig. [3} as
illustrated, while the baseline VAE gets close to the standard
normal distribution with different classes radiating outwards
in the 2D space, the latent space for B-Caps shows a clear
separation for most of the classes.

As mentioned earlier, increasing the number of latent vari-
ables improves performance when using the baseline VAE
architecture. We tested how this fact can be translated into
B-Caps. First, we chose B-Caps {{8, 64},{L, 64}} as our
base model and varied L from 2 — 10. The effect of varying
latent dimension is seen in Fig. f] where we observed a poor
initial guess, which started to improve at higher dimensions
with performance superior to that of baseline VAE. We also
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(a) baseline VAE Latent Space

(b) B-Caps Latent Space

Fig. 3. The distribution of digits in the latent space for baseline VAE and B-Caps (C=16, D=64) on MNIST dataset. Although none of these distributions are

optimal, B-Caps latent space has visibly better allocations of certain classes.

Fig. 4. Improvement in reconstruction of MNIST digits as a function of the
latent variable length (L).

compared the effect of latent dimension on image reconstruc-
tion quality for our proposed B-Caps and baseline VAE (Fig.
[7). We observed that the B-Caps network outperformed the
baseline with increasing L and that the improvement was
more discernible beyond a latent dimension of L = 4. This
adds credence to our hypothesis that the latent representation
(in higher dimensions) of B-Caps is more powerful than
conventional VAEs.

D. Fashion-MNIST Reconstruction

Fashion-MNIST dataset is similar to MNIST, having images
of dimension 28 x 28 split into 10 classes related to fashion
products [28]]. There are 60,000 training images and 10,000
test images. Similar to our experiments for MNIST, we nor-
malized the data to range between [0, 1] and flattened images
to a vector of length 784. We evalauted different B-Caps
architectures as well as the baseline VAE at a latent dimension
L = 2 (similar to MNIST experiments). The baseline VAE
performed marginally better than the B-Caps architectures at
lower latent dimension, indicating that the number of capsule
types is more important than the description length.

The performance of our proposed B-Caps models was
evaluated with varying dimension of the latent space. We
obtained an improvement in the performance with an increase
in the latent space dimension (see Fig. [3).

Fig. 5. Improvement in reconstruction of Fashion-MNIST ‘bag’ class as a
function of the latent variable length (L).
VAE

Original B-Caps

Fig. 6. A comparison between reconstruction of Fashion-MNIST images
using baseline VAE and B-Caps. Left to Right: Original image, Baseline VAE
reconstruction and B-Caps reconstruction for L = 10.

We compared the reconstruction of the model {{8, 64},{2,
64}} against the baseline VAE for latent dimension L = 10.
Fig. [6] shows this comparison for two different clothing cat-
egories. While both approaches capture the overall shape of
the objects, B-Caps appears to capture more of the texture
information within these images. For Fashion-MNIST, in our
qualitative evaluations, B-Caps showed better reconstruction
quality when the latent variables dimension was higher and this
trend is similar to what we obtained for MNIST (Fig. [7). We
observed that while the baseline VAE plateaus around L = 5,
the performance of B-Caps (in terms of SSIM) continues to
improve.
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Fig. 7. Variation in image reconstruction quality measured using SSIM for
different latent variable dimensions.
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Fig. 8. Variation of classification performance measured using F1 score for
different latent variable dimensions.

E. Classification Performance

We evaluated the performance of B-Caps in a classification
setting using the reconstructed images. F1-score, the measure
of a test’s accuracy was used to assess the classification
performance. Fl-score is conventionally computed as:

Fl_o. precision X recall

precision + recall” )
We trained a support vector machines (SVM) based classifier
on the MNIST and Fashion-MNIST datasets. A grid search
was performed to identify the best settings for the SVM for
each of these datasets. For both datasets, the radial basis
function (RBF) was used with a kernel coefficient of v = 0.01.
The regularization parameter K was set to 100 and 10 for
MNIST and Fashion-MNIST, respectively. Once trained, the
reconstructed images were evaluated in a classification setting.
The proposed B-Caps model {{8, 64},{L, 64}} and baseline
VAE, with L from 2 — 10 were evaluated comparatively.
Fig. [§] shows the variation of Fl-scores with respect to the
latent dimension. For both MNIST and Fashion-MNIST clas-
sification, B-Caps outperformed the baseline VAEs for L > 3.
Further, we can see that in Fashion-MNIST, the performance
improvement is greater, indicating that B-Caps was able to
capture more variations than the VAE.
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Fig. 9. Variation of classification performance with latent variable dimensions
where the baselineVAE has intermediate layer of dimension 512 and 1024.

One needs to note that, an increase in the length of the
latent dimension resulted in an increase in parameters for B-
Caps encoder by ~ 60,000 (per latent variable). Whereas,
for baseline VAE the parameters increase by ~ 1,000 per
latent variable. To account for the difference in parameter
space, we replaced the intermediate layer in the baseline VAE
with a 1024 dimension fully connected layer. The resulting
comparison of the trainable encoder parameters is shown in
Table[lll With a more comparable number of trainable network
parameters, we repeated the comparison of the classification
performance to check whether this increase in parameters for
the baseline VAE would help change the plateauing effect.
Based on the results from this new experimental setting,
we conclude the overall performance was not significantly
effected by increasing parameters for the baseline VAE model
(see Fig. 0). These results revealed that the total number of
parameters was not the reason for B-Caps performing better
than baseline VAE. Instead, it is because B-Caps learns richer
attributes (in latent space) owing to capsule layers used in
the encoding process. The data driven sampling from the
latent space also augmented this learning process with a better
inference during the reconstruction process.

TABLE II
TRAINABLE ENCODER PARAMETERS IN THE BASELINE VAE WITH
INTERMEDIATE LAYERS OF 512 AND 1024 AND B-CAPS. FC- FULLY
CONNECTED LAYER.

Latent baseline VAE | baseline VAE | B-Caps
Dimension | FC-512 FC-1024 C=8, D=64
2 405K 810K 532K
4 407K 814K 663K
6 409K 818K 794K
8 411K 822K 925K
10 413K 826K 1.05M

V. DISCUSSION AND CONCLUSION

We have presented a capsule based variational autoencoder
architecture, called B-Caps, for an effective representation
learning in the latent space and compared its performance in
the image reconstruction and classification tasks. We observed
the following:



o B-Caps outperformed the baseline VAE with increasing
dimension of the latent space in both reconstruction
quality and classification tasks.

o B-Caps has superiority in learning latent attributes in
more complex datasets such as Fashion-MNIST com-
pared to the baseline VAE based on the greater improve-
ment in performance.

o The number of capsule types is more important than the
description length.

o B-Caps outperformed the baseline VAE with increasing
dimension of the latent space.

« Data-driven sampling of the latent space works better than
the standard normal distribution approach in a shallow
capsule encoder network.

The reparameterization trick using an independent normal
distribution enabled backpropagation and attempts to address
the problem of a “bad” variance estimate. However, in cap-
sules, the variance is always between [0,1] as the length
of the vector represents the probability of coupling between
capsules. This helps in handling the “bad” variance estimate
problem but suffers from an initialization problem. The data-
driven modulation of the latent space helped in handling
this issue and stabilized the training. The shallowness of the
proposed networks also enabled the data-driven approach. For
a successful translation of the proposed approach towards
deeper networks with limited data, identification of the right
distribution for capsule features is significant. We have shown
that this distribution cannot be a unit normal distribution.
Towards this, Ribeiro et. al. recently identified that the capsule
layers have a Gaussian-Wishart distribution [[19]] and used this
to propose a novel routing algorithm. We hypothesize that in
deeper networks, the data-driven approach will not be needed
and a standard reparameterization trick can be used with the
distribution being sampled from a Normal Wishart distribution.

It is interesting to note that the systematic selection of
latent dimension is also supported by the winning lottery
ticket theory, a recent study where it is shown that with the
right initialization a highly pruned network could perform
similar to a very dense network [29]. Our proposed B-Caps
architecture, although not learning a sparse network, is aimed
towards learning a powerful representation in the latent space.
This learning is conditioned in a manner to account for the
part-whole relationship (using Capsules) and embed Bayesian
inference (data driven sampling from the latent space).

In future work, we will expand upon this proof-of-concept
capsule encoder by incorporating the Gaussian-Wishart dis-
tribution and further build convolutional capsule encoders to
handle images with higher dimensions and deeper networks.
We will also explore the robustness of the B-Caps under
varying settings including adversarial attacks.
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