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Abstract—We present a simple but yet effective method for
learning distinctive 3D local deep descriptors (DIPs) that can
be used to register point clouds without requiring an initial
alignment. Point cloud patches are extracted, canonicalised with
respect to their estimated local reference frame and encoded into
rotation-invariant compact descriptors by a PointNet-based deep
neural network. DIPs can effectively generalise across different
sensor modalities because they are learnt end-to-end from locally
and randomly sampled points. Because DIPs encode only local
geometric information, they are robust to clutter, occlusions and
missing regions. We evaluate and compare DIPs against alter-
native hand-crafted and deep descriptors on several indoor and
outdoor datasets consisting of point clouds reconstructed using
different sensors. Results show that DIPs (i) achieve comparable
results to the state-of-the-art on RGB-D indoor scenes (3DMatch
dataset), (ii) outperform state-of-the-art by a large margin on
laser-scanner outdoor scenes (ETH dataset), and (iii) generalise
to indoor scenes reconstructed with the Visual-SLAM system of
Android ARCore. Source code: https://github.com/fabiopoiesi/dip.

I. INTRODUCTION

Encoding local 3D geometric information (e.g. coordinates,
normals) into compact descriptors is key for shape retrieval
[1], face recognition [2], object recognition [3] and rigid (six
degrees-of-freedom) registration [4]. Learning such encoding
from examples using deep neural networks has outperformed
hand-crafted methods [4]–[12]. These approaches have been
designed to encode geometric information either from meshes
[13], [14] or from point clouds [10]–[12]. Our method belongs
to the latter category and can be used to rigidly register point
clouds without requiring an initial alignment (Fig. 1).

Existing solutions to compute compact 3D descriptors can
be categorised into one-stage [4], [6], [11], [12], [16] and
two-stage [3], [10], [17] methods. Although both categories
share the objective of making descriptors invariant to point-
cloud rigid transformations, one-stage methods encode the local
geometric information of a patch (collection of locally sampled
points) using the points of the patch directly. Differently, two-
stage methods firstly estimate a local reference frame (LRF)
from the points within the patch to rigidly transform the patch
to a canonical frame, then they encode the information of
the canonicalised points into a compact descriptor. Given
two corresponding patches of two non-aligned point clouds,
if we canonicalise them through their respective LRFs we
should obtain two identical overlapping patches. Hence, the
encoding method should be simpler to design than that of one-
stage methods. However, noise, occlusions and point clouds
reconstructed with different sensors make the LRF estimation
challenging [18], [19]. Modelling descriptors to be robust to

RGB-D reconstruction - indoors

Laser scanner reconstruction - outdoors

Mobile Visual-SLAM (ARCore) reconstruction - indoors

descriptor extraction descriptor matching rigid transformation

Fig. 1. Point cloud registration typically involves three steps: description
extraction, descriptor matching and rigid transformation. We focus on the first
step. DIPs can be used to register point clouds reconstructed with different
sensor modalities in different environments. DIPs are local, rotation-invariant
and compact descriptors that are learnt from examples using a PointNet-
based deep neural network [15]. The correspondences between points of
corresponding patches (magenta and green) are implicitly learnt by the network.
The key aspect of DIPs is their generalisation ability.

different sensors (e.g. RGB-D, laser scanner) and to different
environments (e.g. indoor, outdoor) is also a challenge [10],
[12]. One-stage learning-based methods can achieve rotation
invariance by encoding the local geometric information with
a set of geometric relationships, such as points, normals and
point pair features [6], and then by learning descriptors via a
PointNet-based deep network in order to achieve permutation
invariance with respect to the set of the input points [15].
Alternatively, 3D convolutional neural networks (ConvNets)
can be used locally, to process patches around interest points
[4], or globally, to process whole point clouds [11]. In two-
step methods, LRFs can be computed with hand-crafted [20]
or learning-based [18] methods. After LRF canonicalisation,
points can be transformed into a voxel grid, where each voxel
encodes the density of the points within [10]. Then, descriptors
can be encoded from this voxel representations using a 3D
ConvNet learnt with a Siamese approach [21].

In this paper we present a novel two-stage method where
compact descriptors are learnt end-to-end from canonicalised
patches. To mitigate the problem of incorrectly estimated LRFs,
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we learn an affine transformation that refines the canonicalisa-
tion operation by minimising the Euclidean distance between
points through the Chamfer loss [9]. Similarly to [6], we
learn descriptors with a PointNet-based deep neural network
through a Siamese approach, but differently from [6] (i) we
use LRFs to canonicalise patches, (ii) our descriptors encode
local information only, thus promoting robustness to clutter,
occlusions, and missing regions, and (iii) we use a hardest
contrastive loss to mine for quadruplets [11], thus improving
metric learning. Differently from [6] and [10], points are
consumed directly by our network without adding augmented
hand-crafted features or performing prior voxelisations. We
train our network using the 3DMatch dataset that consists
of indoor scenes reconstructed with RGB-D sensors [4]. We
achieve state-of-the-art results on the 3DMatch test set and
on its augmented version, namely 3DMatchRotated [7], em-
ployed to assess descriptor rotation invariance. We significantly
outperform existing approaches in terms of generalisation
ability to different sensor modalities (RGB-D→ laser scanner)
and to different environments (indoor bedrooms→ outdoor
forest) using the ETH dataset [22]. Moreover, we validate
DIP generalisation ability to another sensor modality (RGB-D
→ smartphone) by capturing three overlapping indoor point
clouds with the Visual-SLAM system [23] of an ARCore-based
App [24] we have developed to reconstruct the environment.
Notably, DIPs can successfully and robustly be used also to
align these point clouds. The source code and the reconstruction
App are publicly available.

II. OUR APPROACH

Given a point cloud P ⊂ R3, we define a local patch
X = {x} ⊂ P as an unordered set of 3D points x with
cardinality |X | = n. We design a deep neural network ΦΘ

that generates DIPs such that f = ΦΘ(X ), where f ⊂ Rd
and Θ is the set of learnable parameters. Without loss of
generality we use the 3D coordinates of the points as input to
ΦΘ, i.e. x = (x, y, z).

A. Network architecture

Fig. 2 shows our PointNet-based architecture [15], where
the three main modifications that allow us to produce DIPs are
in the Transformation Network, the Bottleneck and the Local
Response Normalisation layer.
Transformation Network The patch X is firstly passed
through the Transformation Network (TNet) that predicts the
affine transformation A ∈ R3×3 and that is applied to each
x ∈ X . In our experiments we explored the possibility of con-
straining TNet to be close to an orthogonal matrix, hence a rigid
transformation, via the regularisation term `reg = ‖I−AA>‖2F
[15], [25]. We observed that while det(A)→ 1, which is
a necessary condition for A to be a rigid transformation,
A→I as well, thus making the contribution of A negligible.
We empirically observed performance improvements without
constraining TNet to be orthogonal. There also exists the
possibility of using an Iterative Transformer Network, to
perform patch canonicalisation iteratively through a series of
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Fig. 2. PointNet-based architecture to encode an input patch X into a unitary-
length d-dimensional descriptor f . TNet learns the affine transformation A.
The first Multilayer Perceptron (MLP1) block consists of three shared MLP
layers of size (256,512,1024). The Bottleneck is a max-pooling layer that
produces a 1024-dimension global signature, which is then processed by three
MLPs of size (512,256,d) (MLP2). ρ is the norm of the global signature. The
Local Response Normalisation (LRN) layer performs a L2 normalisation of
the output. Except for the last MLP, Batchnorm is used for all layers together
with ReLU. Dropout is used for the last MLP. Colour key: grey = input/output
tensors, blue = parametric layer, white = non-parametric layer.

3D rigid transformations [26]. This could be an interesting
extension of our architecture, but it is out of the scope of our
paper. TNet has a similar architecture to the rest of the network,
except for the last MLP layer that outputs nine values that are
opportunely reshaped to form A. Although TNet is also used
in the original version of PointNet [15], we have to train it
carefully to achieve the desired behaviour for DIPs. We explain
how we train TNet in Sec. II-B and III-B. Applying A to x
results in x̂ = Ax. X̂ = {x̂} is then processed through the
MLP layers with shared weights before reaching the bottleneck.
Bottleneck The bottleneck is modelled as a symmetric function
that produces permutation-invariant outputs [15]. Although
modelling this function with an average pooling operation
has shown to be effective for 6DoF registration applications
[27], we empirically found that max pooling provides superior
performance [15]. Let m be the number of channels in output
from the layer before the bottleneck, the max pooling operation
is defined as max: Rn×m→Rm such that

γ = max
X

(
ΦΘj

(X )
)
, (1)

where γ = (g1, g2, . . . , gm) is a global signature of the input
patch, gi is the ith element of γ and ΦΘj is an intermediate
output of the network at the jth layer. We observed that
γ can be used to predict how informative DIP is. Let us
define the function that returns the indices of the γ values as
argmax: Rn×m→ [1, n]m such that

α = argmax
X

(
ΦΘj

(X )
)
. (2)

Next, let us take two corresponding patches X and X ′ extracted
from two overlapping point clouds P and P ′, and then
compute γ,α, and γ′,α′, respectively. α (α′) will be the
same regardless of the permutations of the points in X (X ′).
We observed that the corresponding values of α and α′ can
be interpreted as the correspondences between points in X
and X ′. Accordingly, their corresponding max values γ and
γ′ quantify how reliable these correspondences are. Then, we
found that the norm of γ can be effectively used to quantify
the reliability of γ, e.g. to lower the importance of, or discard,
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Fig. 3. Point correspondences computed from the global signatures of two
pairs of corresponding patches (green) that are extracted from two overlapping
point clouds (blue and grey) from the 3DMatch dataset [4]. (top) Patches
extracted from flat surfaces. (bottom) Patches extracted from structured surfaces.
256 points are randomly sampled from each patch, which are given to our
deep neural network as input to produce the global signature. Only the
correspondences that satisfy the condition gi > τρ = 0.15 are drawn. The
percentage of these correspondences is reported. Points are colour-coded based
on their respective gi value. Minimum, maximum and average g′is values are
reported for each case.

patches extracted from flat surfaces. It turns out that good
descriptors can be selected imposing the condition

ρ = ‖γ‖2 > τρ, (3)

where τρ is a threshold.
Fig. 3 shows an example of global signatures computed from

two pairs of corresponding patches (green) that are extracted
from two overlapping point clouds (blue and grey) from the
3DMatch dataset [4]. The first case shows two patches extracted
from a flat surface (wall), whereas the patches in the second
case are extracted from more structured surfaces (bed). From
each patch we randomly sample 256 points and pass them
through the network to obtain their respective global signatures
(Eq. 1). This figure shows the correspondences between the
points of the corresponding patches such that gi > τρ ∀ i =
1, . . . ,m, where τρ = 0.15. There are a few things we can
observe in this example. First, values of γ are on average
higher when the patches are extracted on structured surfaces.
Second, the percentage of correspondences above the threshold
is larger when the patches are extracted on structured surfaces
(28% vs. 18%). Lastly, we can see that the patches extracted
on flat surfaces have lower ρ. Fig. 4 shows the distribution of
the ρ values for 20K patches randomly sampled from three
point clouds. We can see that low values of ρ are distributed on
flat surfaces (poor information) and along borders (incomplete

Fig. 4. Heatmaps of the ρ values for 20K patches randomly sampled from
three point clouds of the 3DMatch dataset [4]. Each point is the centre of a
patch with a radius of 0.3

√
3m [10]. The more structured the surface enclosed

in a patch is, the higher the value of ρ is.

information). Differently, ρ has higher value near corners and
on objects.

It may be impractical to find a single τρ that generalises
across different input data or different network architecture.
We thereby propose to infer it from the distribution of the
ρ values. Let R be the set of ρ values computed from the
patches extracted from P , and let f(ρ) be the probability
density function of the ρ values. We determine τρ as the pth

ρ

percentile through the cumulative density function, such that

pρ = 100 ·
∫ τρ

−∞
f(ρ)dρ, (4)

i.e. the area under the probability density function f(ρ) to the
left of τρ is pρ/100.
Metric layers and Local Response Normalisation After max
pooling, γ is processed by a series of MLP layers acting as
metric layers to learn distinctive embeddings for our descriptors.
We use a Local Response Normalisation (LRN) layer to produce
unitary-length descriptors as we found it works well in practice
[10], [11], [21]. LRN consists of a L2 normalisation of the
last MLP layer’s d-dimensional output.

B. Loss functions
The objective of our training is to produce descriptors

whose reciprocal distance in the embedding space is minimised
for corresponding patches of different point clouds. To this
end, we train our network following a Siamese approach
that processes pairs of corresponding descriptors using two
branches with shared weights [6], [10], [11]. Each branch
independently calculates a descriptor for a given patch. We
learn the parameters of the network by minimising the linear
combination of two losses, aiming at two different goals. The
first goal is to geometrically align two patches under the learnt
affine transformation. The second goal is to produce compact
and distinctive descriptors via metric learning.
Chamfer loss Given two patches X ,X ′, we want to minimise
the distance between each point x ∈ X and its nearest
neighbour x′ ∈ X ′. Therefore we use the Chamfer loss [9],
[29] on the output of TNet as

`c(X ) =
1

2n

(∑
x∈X

min
x′∈X ′

‖Ax−A′x′‖2 (5)

+
∑

x′∈X ′

min
x∈X
‖Ax−A′x′‖2

)
.
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Fig. 5. DIP’s training pipeline. Two overlapping point clouds are aligned using the ground-truth transformation. A set of b points (red) belonging to the overlap
region (cyan) is sampled using the Farthest Point Sampling method [28]. We use a Siamese approach to train two deep neural networks with shared parameters
concurrently. For each branch, we perform the following operations: (i) for each point a patch (orange) with radius τr is extracted and the corresponding Local
Reference Frame (LRF) [10] is computed using the points of the patch; (ii) this patch is rigidly transformed using the LRF and n points are randomly sampled
from the patch (yellow points); (iii) the coordinates of these n points are expressed relative to the patch centre and normalised in order to have a unitary
radius; (iv) these n points are given to the deep network as input to learn the descriptor. We compute the final loss as the linear combination of the Chamfer
loss [9] applied to the TNet’s output and of the hardest-contrastive loss [11] applied to the network’s output.

Hardest-contrastive loss Our metric learning is performed
through negative mining using the hardest-contrastive loss [11].
Given a pair of anchors (f , f ′), we mine the hardest-negatives
(f-, f ′- ) and define the loss as

`h =
1

b

∑
(f ,f ′)∈C+

(
1

|C+|
[d(f , f ′)−m+]

2
+ (6)

+
1

2|C-|
[m- −min

f̃∈C-

d(f , f̃)︸ ︷︷ ︸
d(f ,f-)

]2+

+
1

2|C-|
[m- −min

f̃∈C-

d(f ′, f̃)︸ ︷︷ ︸
d(f ′,f ′- )

]2+

)
,

where C+ is the set of the anchor pairs and C- is the set of
descriptors (opportunely sampled) used for the hardest-negative
mining extracted from a minibatch. m+ and m- are the margins
for positive and negative pairs, respectively. [·]+ takes the
positive part of its argument.

III. EXPERIMENTAL VALIDATION

We evaluate the distinctiveness of DIPs using the indoor
3DMatch dataset [4], and assess DIP generalisation on the
outdoor ETH dataset [22] and on a new indoor dataset we
collected with a smartphone. We explain how patches are
extracted and given as input to our deep network. The training
pipeline is shown in Fig. 5. Our method is developed in Pytorch
1.3.1 [30]. We compare our method with 14 state-of-the-art
methods and carry out a thorough ablation study.

A. Patch extraction

DIPs are learnt from patches that are extracted from point
cloud pairs (P,P ′) whose overlap region is greater than a
threshold τo. Let O⊂P and O′⊂P ′ be the overlap regions.
During training we know the ground-truth transformation T∈
SE(3) that register P ′ to P . Point correspondences between O
and O′ can be determined either by using the 3DMatch toolbox

[4], or by using a nearest neighbourhood search after applying
T to P ′ [10]. We use the latter approach by seeking nearest
points from O to O′ within a radius of 10cm. Corresponding
points in O and O′ are the candidate anchors used by the
hardest-contrastive loss (Eq. 6).

Farthest Point Sampling Anchor sampling is key to allow
for an effective minimisation of Eq. 6, and typically this is
carried out with random sampling [10], [11]. Such random
sampling may lead to cases where anchors and negatives
are sampled spatially close to each other. A solution can be
disregarding negatives within a certain radius from an anchor
by computing the Euclidean distances amongst all the anchors
within a minibatch in order to determine whether to penalise for
the distance between descriptors in the embedding space (Eq. 5
in [11]). Including points within the radius would force the
network to learn distinctive descriptors of region with similar
geometric structures, thus making training unstable. Therefore
to avoid computing the Euclidean distances amongst all the
anchors within the minibatch [10], [11], we efficiently sample
anchors having the largest distance amongst themselves using
Farthest Point Sampling (FPS) [28]. Specifically, we sample
b points within O using FPS and then search for the nearest
neighbour counterparts in O′. These points are the anchors that
construct the minibatch on which the hardest-negative mining
is performed. In our experiments we use b = 256.

Local patch Given a point c ∈ O sampled with FPS, and
its nearest neighbour c′ ∈ O′, we build the set Y = {y ∈
X : ‖y − c‖2 ≤ τr}, and similarly the set Y ′ for c′. τr is
the radius of our patch. We use the points in Y and Y ′ to
compute their own Local Reference Frame (LRF) [10], [20].
Each LRF is constructed independently by computing the three
orthogonal axes: the z-axis is computed as the normal of the
local surface defined by the points of Y (Y ′); the x-axis is
computed as a weighted sum of the vectors constructed as the
projection of vectors between c and the points in Y\c on the
plane orthogonal to the z-axis; the y-axis is computed as the
cross-product between the z-axis and the x-axis. We implement
the LRF following [10]. Let L,L′ ∈ R3×3 be the LRFs of Y
and Y ′, respectively. Y and Y ′ may contain a large number



of points, typically a few thousands, thus it is impractical to
process them all with a deep network. Similarly to [15], we
randomly sample n=256 points. This also helps regularisation
during training and generalisation. Next, we recalculate the
coordinate of each of the n points relative to their patch centre
and normalise the radius of the sphere that contains them.
Formally, let Q(Y) = {ŷ : ŷ = (y − c)/τr,y ∈ Y} be the
set of randomly-sampled and normalised points from Y where
|Q(Y)| = n. Lastly, we apply L to Q(Y) to rotate the points
with respect to their LRFs, such that

X = L⊗Q(Y), (7)

where the operation ⊗ defines the application of L to each
element of Q(Y) such that x = Lŷ. Analogously, the same
operations are performed for Q(Y ′).

B. Datasets, training and testing setup

3DMatch dataset We learn DIPs from the point clouds of the
3DMatch dataset [4]. 3DMatch is composed of 62 real-world
indoor scenes collected from Analysis-by-Synthesis [31], 7-
Scenes [32], SUN3D [33], RGB-D Scenes v.2 [34], and Halber
and Funkhouser [35]. The official split consists of 54 scenes
for training and 8 for testing. Each scene is split into partially
overlapping and registered point cloud pairs. As in [10], we
train our deep network with the pairs whose overlap is more
than τo=30%. The b = 256 points are sampled from each of
these overlap regions and we centre the patches on these points
to construct each minibatch. As in [11], we set m+ = 0.1 and
m- = 1.4 (Eq. 6). Each epoch consists of 16602 iterations.
Each iteration is for a point cloud pair. We train for 40 epochs.
We use Dropout with probability 0.3 at the last MLP layer.
We subsample point clouds using a voxel size of 0.01m. As
[10], we set τr = 0.3

√
3m. Our training aims to minimise the

linear combination of `h (Eq. 6) and `c (Eq. 5) as

` = `h +
1

b

∑
X∈P

`c(X ). (8)

We use Stochastic Gradient Descent with an initial learning
rate of 10−3 that decreases by a factor 0.1 every 15 epochs. The
eight test scenes consists of 1117 point cloud pairs. As in [10]–
[12], testing is performed by randomly sampling 5K points from
each point cloud. To evaluate DIP’s rotation invariance ability,
we follow the evaluation of [10] and create an augmented
version of 3DMatch, namely 3DMatchRotated: each point
cloud is rotated by an angle sampled uniformly between [0, 2π]
around all the three axes independently. Unless otherwise stated
we use pρ = 5.
ETH dataset We use the ETH dataset to assess the ability
of DIPs to generalise across sensor modalities (RGB-D →
laser scanner) and on different scenes (indoor→ outdoor) [22].
To this end we use the same model trained on the 3DMatch
dataset (no fine tuning). The ETH dataset consists of four
outdoor scenes, namely Gazebo-Summer, Gazebo-Winter, Wood-
Summer and Wood-Autumn, containing partially overlapping,
sparse and dense vegetation point clouds. Differently from the
3DMatch dataset we subsample point clouds using a voxel

size of 0.06m. We set the patch kernel size τr = 0.6
√

3m. For
a fair comparison, the evaluation procedure follows verbatim
[10], i.e. random sampling of 5K points.
VigoHome dataset To evaluate DIPs on another sensor
modality (RGB-D → smartphone RGB), we have created
a new dataset, namely VigoHome, by reconstructing the
inside of a house using a Visual-SLAM smartphone App we
developed with ARCore (Android) [24]. We captured three
zones, namely livingroom-downstairs (94K points), bedroom-
upstairs (43K points), and bathroom-upstairs (83K points). The
stairs between the three zones is the overlapping region of the
point clouds. We calculated their transformations to a common
reference frame and determined the point correspondences to
evaluate the registration: two points of a point cloud pair are
corresponding if they are nearest neighbours within a 0.1m-
radius. We subsample point clouds using voxels of 0.01m and
set τr = 0.6

√
3m.

C. Comparison and ablation study setup

We compare DIPs against 14 alternative descriptors: Spin [3],
SHOT [17], FPFH [16], USC [36], CGF [37], 3DMatch [4],
Folding [5], PPFNet [6], PPF-FoldNet [7], DirectReg [8], Cap-
suleNet [9], PerfectMatch [10], FCGF [11], and D3Feat [12].
In our ablation study we train the model for five epochs on a
subset of 3DMatch’s scenes, i.e. Chess and Fire, and test on
Home2 and Hotel3. We chose these test scenes because we
found them to be sufficiently challenging.

D. Evaluation metrics

Feature-matching recall We use the feature-matching recall
(FMR) to quantify the descriptor quality [6]. FMR does not
require RANSAC [38] as it directly averages the number of
correctly matched point clouds across datasets. Only recall
is measured, as the precision can be improved by pruning
correspondences [6], [39]. FMR is defined as

Ξ =
1

|F|

|F|∑
s=1

1
([ 1

|Ωs|
∑

(x,x′)∈Ωs

1(‖x−Tsx
′‖2<τ1)

]
︸ ︷︷ ︸

ξΩs

>τ2

)
,

(9)
where |F| is the number of matching point cloud pairs having
τo ≥ 30% (overlap between each other). (x,x′) is a pair of
corresponding points found in the descriptor (embedding) space
via a mutual nearest-neighbour search [10]. Ωs is the set that
contains all the found pairs (x,x′) in the overlap regions O⊂P
and O′⊂P ′, respectively. Ts is the ground-truth transformation
alignment between P ′ and P . 1(·) is the indicator function.
τ1 = 10cm and τ2 = 0.05 are set based on the theoretical
analysis that RANSAC will find at least three corresponding
points that can provide the correct Ts with probability 99.9%
using no more than ≈ 55K iterations [6], [10]. In addition to
Ξ, we also report mean (µξ) and standard deviation (σξ) of
ξΩs before applying τ2.
Registration recall We measure the registration recall for the
transformation estimated with RANSAC [11]. The registration



TABLE I
FEATURE-MATCHING RECALL ON THE 3DMATCH DATASET [4].

Method 3DMatch 3DMatchRotated Feat. Time
Ξ std Ξ std dim. [ms]

Spin [3] .227 .114 .227 .121 153 .133
SHOT [17] .238 .109 .234 .095 352 .279
FPFH [16] .359 .134 .364 .136 33 .032
USC [36] .400 .125 - - 1980 3.712
CGF [37] .582 .142 .585 .140 32 1.463
3DMatch [4] .596 .088 .011 .012 512 3.210
Folding [5] .613 .087 .023 .010 512 .352
PPFNet [6] .623 .108 .003 .005 64 2.257
PPF-FoldNet [7] .718 .105 .731 .104 512 .794
DirectReg [8] .746 .094 - - 512 .794
CapsuleNet [9] .807 .062 .807 .062 512 1.208
PerfectMatch [10] .947 .027 .949 .024 32 5.515
FCGF [11] .952 .029 .953 .033 32 .009
D3Feat [12] .958 .029 .955 .035 32 -

DIP .948 .046 .946 .046 32 4.870

recall quantifies the miss-rate by measuring the distance
between corresponding points for each point cloud pair using
the estimated transformation based on ground-truth point
correspondence information. The registration recall is defined
as

Υ =
1

|F|

|F|∑
s=1

1

(√√√√ 1

|Ωs|
∑

(x,x′)∈Ωs

‖x− T̃x′‖22<0.2m

)
, (10)

where T̃ is the estimated transformation. Only point clouds
pairs with at least 30% overlap are evaluated. 0.2m is set as
in [4], [11], [12]. We configure RANSAC based on the FMR
formulation and use its Open3D implementation [40].

E. Quantitative analysis and comparison

Tab. I reports DIP results in comparison with alternative
descriptors on 3DMatch and 3DMatchRotated datasets. Results
show that DIPs achieve state-of-the art results and that are
rotation invariant as FMR is almost the same for both datasets.
When FMR is measured at different values of τ2, DIPs are more
distinctive than the alternatives (Fig. 6). Interestingly, DIPs
largely outperform PPFNet descriptors that are also computed
with a PointNet-based backbone. We believe that this occurs
on the one hand as a result of DIP’s LRF canonicalisation,
in fact PPFNet’s FMR drops in 3DMatchRotated as no
canonicalisation is performed, and on the other hand because
DIPs encode only the local geometric information, which makes
them more generic and distinctive across different scenes as
opposed to PPFNet descriptors that instead encode contextual
information too. Amongst the eight tested scenes, the worst
performing one is Lab that will analyse in detail later. Our
Python implementation takes 4.87ms to process a DIP using
an i7-8700 CPU at 3.20GHz with a NVIDIA GTX 1070 Ti
GPU and 16GB RAM. 93% of the execution time is for
the LRF estimation. Once a patch is canonicalised the deep
network processes the descriptor in 0.37ms. Note that the LRF
estimation can be parallelised and implemented in C++ to
reduce the execution time.

Fig. 6. Feature-matching recall as a function of (left) τ2 and (right) τ1.

TABLE II
REGISTRATION RECALL ON THE 3DMATCH DATASET [4].

Method Kitchen Home1 Home2 Hotel1 Hotel2 Hotel3 Study Lab Average

FPFH [16] .36 .56 .43 .29 .36 .61 .31 .31 .40
USC [36] .52 .35 .47 .53 .20 .38 .46 .49 .43
CGF [37] .72 .69 .46 .55 .49 .65 .48 .42 .56
3DMatch [4] .85 .78 .61 .79 .59 .58 .63 .51 .67
PPFNet [6] .90 .58 .57 .75 .68 .88 .68 .62 .71
FCGF [11] .93 .91 .71 .91 .87 .69 .75 .80 .82

DIP .98 .94 .85 .98 .92 .89 .80 .75 .89

Tab. II reports the registration recall results, where the
descriptor distinctiveness we have observed in Fig. 6 is
reflected on the estimated transformations. On average, DIPs
outperform all the other descriptors. We can see that the Lab
scene mentioned before is the worst performing one. This
occurs because Lab contains several point clouds of partially
reconstructed objects and flat surfaces. Two examples are shown
in Fig. 7. The first one is a failed registration due to the lack
of informative geometries in the scene. The second one is a
successful registration, where the kitchen appliances produced
more distinctive descriptors than the first case.

We further evaluate the registration recall and assess DIP
robustness following the comparative ablation study proposed
in [12], where the registration recall is measured as a function
of a decreasing number of sampled points used by RANSAC
to estimate the transformation. Tab. III shows that DIPs on
average have a superior robustness than the alternatives.

F. Ablation study

Tab. IV reports the results of our ablation study on the
implementation choices. Here we can see how the three
modules, i.e. TNet, LRF and LRN, affect FMR. TNet learns to
compensate for incorrectly estimated LRFs. But we can see that
without LRF, TNet cannot learn the complete transformation
to canonicalise the patches (FMR drops on 3DMatchRotated).
LRF is key to make DIPs rotation invariant. Following [10]
and [11], we can notice how learning unitary-length descriptors
improve FMR. Lastly, as expected, the more the capacity to
encode the information in descriptors of larger dimension,



TABLE III
ABLATION STUDY USING THE REGISTRATION RECALL AS A FUNCTION OF

THE NUMBER OF SAMPLED POINTS ON THE 3DMATCH DATASET [4].

Method # sampled points Average5000 2500 1000 500 250

PerfectMatch [10] .803 .775 .734 .648 .509 .694
FCGF [11] .873 .858 .858 .810 .730 .826
D3Feat [12] .822 .844 .849 .825 .793 .827

DIP .889 .890 .878 .866 .774 .859

Fig. 7. Estimated rigid transformations of two point cloud pairs from the
3DMatch dataset [4]. (top) Incorrectly estimated transformation due to the
lack of structured surfaces. (bottom) Correctly estimated transformation thanks
to the structured elements given by the kitchen appliances.

the better the performance. However, we used 32-dimensional
descriptors throughout all the experiments in order to compare
results with existing descriptors.

G. Generalisation ability: comparison and analysis

Tab. V reports the results obtained on the ETH dataset
[22]. We can see that DIPs on average largely outperform the
alternative descriptors. Second to DIPs are PerfectMatch’s
descriptors [10] that, as DIPs, use LRF canonicalisation.
However, differently from DIPs, PerfectMatch’s descriptors
are learnt from hand-crafted representations, namely voxelised
smoothed density value [10]. We argue that letting the network
learn the encoding from the points directly (end-to-end), leads
to a much greater robustness and generalisation ability. We
can also observe that the application of pρ improves the
performance. Fig. 8 shows an example of result from Gazebo-
Summer. Although the sensor modality and the structure of
the environment is very different from that of 3DMatch, DIPs
maintain their distinctiveness and can be successfully used to
register two point clouds reconstructed with a laser scanner.

Fig. 9 shows results on our dataset, i.e. VigoHome. In each
point cloud we included the corresponding reference frame,
which is where each mapping session started. The result of a
successful registration estimated using DIPs is shown in the
bottom-right corner. We can notice that the structure of the
environment largely differs from that of 3DMatch and ETH
datasets, and that the distribution of the points on the surfaces is
much noisier that that in the 3DMatch dataset. To quantify the
registration results, we used a similar evaluation of that used in
Sec. III-F. For each number of sampled points we run RANSAC
100 times and compute the registration recall. Tab. VI shows

TABLE IV
ABLATION STUDY ON DIP’S IMPLEMENTATION CHOICES.

d TNet LRF LRN 3DMatch 3DMatchRotated
Ξ µξ σξ Ξ µξ σξ

32 3 3 .886 .272 .207 .877 .271 .207
32 3 3 .831 .215 .175 .834 .214 .174
32 3 3 .824 .237 .195 .215 .039 .054

16 3 3 3 .903 .264 .193 .906 .264 .193
32 3 3 3 .919 .318 .218 .926 .317 .217
64 3 3 3 .916 .327 .221 .928 .325 .220
128 3 3 3 .933 .335 .222 .924 .334 .222

TABLE V
FEATURE-MATCHING RECALL ON THE ETH DATASET [22].

Method Gazebo Wood AverageSummer Winter Autumn Summer

FPFH [16] .386 .142 .148 .208 .221
SHOT [17] .739 .457 .609 .640 .611
3DMatch [4] .228 .083 .139 .224 .169
CGF [37] .375 .138 .104 .192 .202
PerfectMatch [10] .913 .841 .678 .728 .790
FCGF [11] .228 .100 .148 .168 .161
D3Feat [12] .859 .630 .496 .480 .563

DIP (pρ = 0) .897 .869 .957 .944 .916
DIP (pρ = 5) .908 .886 .965 .952 .928

that with only 5K points sampled from each point cloud, 85%
of the times the three point clouds are correctly registered. A
correct registration takes about 54s to be processed. We deem
this a great result because it is achieved with DIPs learnt on
the 3DMatch dataset. As additional comparison, we have also
quantified the registration recall using FPFH descriptors [16].
However, we found that the registration fails regardless the
parameters used. So we have intentionally not included the
results obtained with FPFH in the table.

IV. CONCLUSIONS

We presented a novel approach to learn local, compact and
rotation invariant descriptors end-to-end through a PointNet-
based deep neural network using canonicalised patches. The
affine transformation embedded in our network is learnt with the
specific goal of improving patch canonicalisation. We showed
the importance of this step through our ablation study. Results
showed that DIPs achieve comparable performance to the state-
of-the-art on the 3DMatch dataset, but that outperform the
state-of-the-art by a large margin in terms of generalisation
to different sensors and scenes. We further confirmed this by
capturing a new indoor dataset using the Visual-SLAM system
of ARCore (Android) running on an off-the-shelf smartphone.
We observed that we can achieve good generalisation because
DIPs are learnt end-to-end from the points without any hand-
crafted preprocessing after canonicalisation. Our future research
direction is to improve the canonicalisation operation [18].
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Fig. 8. Estimated rigid transformation of a point cloud pair from the ETH
dataset [22]. This example shows that DIPs learnt on the 3DMatch dataset
(RGB-D reconstructions) can be successfully used to register point clouds
reconstructed with a laser scanner in outdoor scenes.

livingroom-downstairs

bedrooms-upstairs

bathroom-upstairs

rigid registration result

Fig. 9. Estimated rigid transformations of three point clouds from our
VigoHome dataset. DIPs can also generalise to point clouds reconstructed with
the Visual-SLAM system of ARCore (Android) running on an off-the-shelf
smartphone (Xiaomi Mi8). Three different overlapping zones of the inside of
a house have been reconstructed. The reference frame of each point cloud,
that is where the reconstruction session has started, is shown for each zone.
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