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Abstract—This work introduces the one-shot learning
paradigm in the computational bioacoustics domain. Even
though, most of the related literature assumes availability of
data characterizing the entire class dictionary of the problem
at hand, that is rarely true as a habitat’s species composition is
only known up to a certain extent. Thus, the problem needs to be
addressed by methodologies able to cope with non-stationarity.
To this end, we propose a framework able to detect changes in
the class dictionary and incorporate new classes on the fly. We
design an one-shot learning architecture composed of a Siamese
Neural Network operating in the logMel spectrogram space. We
extensively examine the proposed approach on two datasets of
various bird species using suitable figures of merit. Interestingly,
such a learning scheme exhibits state of the art performance,
while taking into account extreme non-stationarity cases.

I. INTRODUCTION

Computational bioacoustics comprises a relatively recent
scientific field placed on the crossroad of several disciplines,
such as biology, computer science, etc. [1], [2], [3]. Ani-
mals use sound vocalizations as a very effective means of
communication since acoustic waves a) can convey relevant
information which cannot be transmitted in any other way,
b) remains practically unaffected by lighting conditions, e.g.
dense forests, night, etc., c) do not necessitate visual contact
between emitted and receiver, d) can move over long distances
without significant alterations, etc.

Interestingly, such vocalizations provide a source of infor-
mation that can be used to explore the composition of this
diversity in particular regions of interest. Acoustic surveying
lends itself to rapid assessment programs which quickly assess
the biodiversity of specific regions [4]. This translates into
not only higher species counts, but also faster estimations of
biodiversity [5]. The work presented in [6] describes how in 7
days the author recorded the vocalizations of 85% of the 287
species of avifauna his team of 7 ornithologists inventoried
after 54 days of intensive field work within a 2 km2 area in
Amazonian Bolivia, which required 36,804 mist-net hours. In
addition, such a research path is strongly motivated by major
environmental challenges including invasive species, infectious
diseases, climate and land-use change, etc. where automated
monitoring of animals’ populations can provide important
information, such as a) monitoring of range shifts of animal
species due to climate change, b) biodiversity assessment and
inventorying of an area, c) estimation of c) species richness

and abundance, and d) assessing the status of threatened
species.

When combined with the present massive availability of
automated recording units (ARUs)1 it becomes evident why
remote, systematic and non-intrusive, acoustic biodiversity
surveys are gaining popularity in the last decade [7]. Such
technology can assist towards complete bio-inventories of the
study site and generate data about biodiversity composition
within groups of taxa at multiple levels [8], [9]. Acoustic
monitoring can provide baseline information about specific
groups of acoustically active biota, and to generate an index
of biodiversity based on the complexity of calls recorded
within a region [10], [11]. In this work the taxonomic group
of interest is birds; nonetheless the proposed methodology
is easily extensible to other groups (e.g. stridulating insects,
anurans, bats and terrestrial animals) as long as the respective
data becomes available.

Unfortunately, there are several obstacles that need tackling
towards efficient acoustic monitoring in the wild such as a
potentially large and a-priori unknown number of species
[12], big acoustic data [13], and operation under adverse
conditions with non-stationary environmental noise [14]. To
the best of our knowledge, there is no solution present in
the literature able to overcome these problems; classification
methods able to consider unknown classes in their dictionary
assume availability of a substantial amount of data in case a
novel class appears [15], [16], while the presence of previously
unknown species, to the best of our knowledge, has not been
considered in the literature. In other words, currently there are
no techniques able to perform acoustic novelty detection and
bird species identification when a very small amount of data
is available. To this end, we propose to explore the one-shot
learning paradigm in the computational bioacoustics domain.

One-shot learning is defined as the classification task strictly
bounded by the condition that we may observe only a single
sample belonging to each class in order to make inference(s)
regarding test samples. In essence, the problem is solved
by training a mechanism able to make predictions on the
similarity of the test samples to those a-priori available. Such
a line of thought has been explored in image recognition (e.g.
handwritten character recognition [17] reaching state of the

1https://www.wildlifeacoustics.com/products/song-meter-sm4
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Fig. 1. The pipeline of the proposed one-shot learning scheme using Siamese neural networks.

art results. In the audio signal processing domain, one-shot
learning is still unexplored.

Given the above mentioned requirements of bird species
identification in the wild, this work proposes to suitably adapt
the one-shot learning paradigm and having it operate on log-
Mel spectrograms representing bird species. We demonstrate
the efficacy of such a solution via exhaustive experiments
on two datasets including the case of non-stationary environ-
ments. The main novel points of this work are:
• removes the need of handcrafted features,
• reaches state of the art accuracy with a very small amount

of training data, and
• designs a reliable mechanism to detect and react to

changes in the environment.
In the following, we a) formalize the problem, b) delineate

the proposed solution, c) describe the experimental protocol
along with a detailed analysis of the obtained results, and
d) draw conclusions and briefly discuss potential extensions.

II. PROBLEM FORMULATION

This work assumes availability of a single channel audio
signal y containing bird vocalizations characterizing various
species. We further assume that at each time instance, there is
one dominating vocalization leaving the problem of simultane-
ous ones to future work [18]. Composition and size of species
dictionary S are known only up to a certain extent, meaning
that new species can appear at any point in time (unknown).
In other words, dictionary S = {S1, . . . , Sm} is not bounded,
while m denotes the number of species known during training.
In addition, we assume that vocalizations associated with a
specific species follow a consistent, yet unknown probability
density function Pi, i ∈ [1,m], as typically done in speech and
generalized audio recognition algorithms [19], [20].

Without loss of generality, we assume availability of an
initial training dataset TD = yt, t ∈ [1, T0] with segmented
labelled pairs (yt, Si), where t is the time instant and i ∈
[1,m]. No assumptions are made as to if/when a new species
might appear. The overall goal is to automatically identify bird
species and properly adjust S to deal with new ones.

III. ONE-SHOT LEARNING FOR CHANGE DETECTION,
DICTIONARY LEARNING AND SPECIES IDENTIFICATION

In the present work, we employ Siamese Neural Network
(SNN) for learning similar and dissimilar relationships trained
on the data available in TD. Even thought this approach fits
very well specifications of the current task, it is directly exten-
sible to other classification tasks, including in non-stationary
environments, with data belonging to the same (e.g. acoustic),
different (e.g. image) or even multiple modalities (e.g. acoustic
and image).

A. Siamese Neural Networks

SNNs originate from the work presented in [21] with
application onto the signature verification problem. SNNs are
composed by a twin network attached to a common end,
albeit elaborating on different inputs as shown in Fig. 1.
The shared end calculates a specific metric using the highest-
level representation as extracted by each network. Since the
networks ’work’ towards the same goal and the optimization
function is shared, their weights are tied, ensuring that similar
inputs will be mapped to nearby locations in the feature space.
At the same time, their topologies are symmetric, thus two
different inputs to the SNN, will result to the same metric
even if the networks’ position (top/bottom) were to change.

Several metric functions between the twin feature vectors
have been used in the literature, e.g. contrastive energy [22],
weighted L1 distance [17]. In this work, we employed binary
cross entropy loss followed by a sigmoid activation, conve-
niently normalizing the output in [0,1].

For the present task, neural networks are composed of con-
volutional layers given their recent success in the field of audio
signal processing [23], [24]. Convolutional neural networks
(CNNs) are receiving increased attention in the recent years
due to their simplicity and efficacy in audio classification tasks
[25]. CNNs include simple alterations in the traditional multi-
layer perceptron model, i.e. a) their topology includes several
stacked layers, while b) each convolutional layer is succeeded
by a max-pooling one. Importantly, stacked convolutional
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Fig. 2. Log-Mel spectrograms extracted from samples belonging to all species present in D1.

1. Input: test vocalization yt, trained SNN N ,
dictionary S = {S1, . . . , Sm}, while each class is
represented by extracted log-Mel spectrograms
〈F i
S〉

i=|S|
i=1 ;

2. Extract log-Mel spectrogram logMel of yt ;
3. Initialize similarity vector V = [];
4. for j=1:m do

5. for i=1:|S| do
6. Query N with the pair {logMel,F i

j} and
get similarity score V (j, i);

end
end
7. Predict the class maximizing the similarity score
S∗ = argmax

S
{V (:, i)} ;

8. Assign S∗ to yt ;

Algorithm 1: The proposed bird species identification
algorithm based on one-shot learning (| • | denotes the
cardinality operator).

layers are able to arrange the neurons so that local structures
of the input are highlighted in the two dimensional plane. To
this end, each hidden unit is not connected to the entire input
but only to a small part of it, the receptive field. The weights
associated to the hidden units (learnable convolutional kernels)
are able to extract a map of features characterizing the input.
Subsequently, max-pooling operations are employed in order
to reduce the dimensionality of the feature maps by keeping
the maximum value of neighboring units and improving the
robustness of the network to translational shifts [24]. The
activation function is f(x) = max(0, x), i.e. the network is
composed by rectified linear units (ReLu).

B. Model structure and learning

We used two different model structures, while Fig. 1
demonstrates the three-layered one. The structure includes N
convolutional layers, where N = {3, 4}, each one followed
by a ReLu and a max-pooling layer, except the last one where
max-pool is substituted by a fully connected one. The SNN
is completed by a distance operation, a fully connected layer
and a sigmoid function responsible to decide on the inputs’
affinity (similar/dissimilar) via thresholding its output.

The convolutional layers encompass filters of varying size
with a constant stride equal to 1. The standard ReLU activation

function is used, while max-pool layers have 2 × 2 kernels
with stride = 2 . Subsequently, a flattening layer collects all
units of the last convolutional twin layers and the distance
calculation follows. In Fig. 1, N = 3.

The binary cross-entropy loss between the network predic-
tion and the true label is used to update the network during
training. At the same time, the standard backpropagation
algorithm was used with the gradient summing the weights
of each twin network. The minibatch size depends on the size
of the training set and the learning rate is 6e−5. Weights and
biases were initialized using narrow normal distributions with
zero-mean and 0.01 standard deviation.

C. Log-Mel spectrogram

Towards minimizing the need of handcrafted features, we
simply extract log-Mel spectrograms of the available vocal-
izations to feed the SNN. In brief, we followed the traditional
pipeline based on the short time Fourier transform. After early
experimentations, we used 128 equal-width log-energies while
their overlapping is dictated by the Mel filter bank.

D. Change detection and species identification

The SNN depicted in Fig. 1 is trained with the objective
of learning to identify similar and dissimilar pairs of input
log-Mel spectrograms. As such, we propose a straightforward
extension of one-shot learning to address change detection
tasks. A change is signaled when a new log-Mel spectrogram
is predicted as dissimilar with respect to all sound classes
in dictionary S . In such a case, a new class is formed and
populated by the new log-Mel spectrogram alone. At the
same time, dictionary S is suitably updated. On the contrary,
the class with the highest similarity log-Mel spectrograms
is assigned to the new sample. Conveniently, SNN has the
possibility to address classification tasks with underpopulated
classes effectively [17].

In case a change is not detected, species identification is
carried out as outlined in Alg. 1. The algorithm needs four
inputs (Alg. 1, line 1)
• a test vocalization yt,
• the trained SNN N ,
• the dictionary S = {S1, . . . , Sm}, while each class is rep-

resented by extracted log-Mel spectrograms 〈F i
S〉

i=|S|
i=1 ,

and
• the available log-Mel spectrograms 〈F i

S〉
i=|S|
i=1 .
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Fig. 3. Log-Mel spectrograms extracted from samples belonging to all species available in D2.

After extracting the log-Mel spectrogram logMel of yt (Alg.
1, line 2) and initializing the similarity vector V (Alg. 1, line
3), we query N with all available pair combinations and store
the obtained similarity scores in V (Alg. 1, line 4-6). Finally,
the class maximizing the similarity score is predicted as the
label of yt (Alg. 1, line 7).

IV. EXPERIMENTAL SET-UP AND RESULTS

This section describes the a) employed datasets, b) suitably
formed figures of merits, c) contrasted methods, and d) ob-
tained results.

A. Datasets

In order assess extensively the performance achieved by the
proposed method we used two datasets:

1) D1: is focused on nocturnal bird species, a task which
is rather new for the computational bioacoustics community.
Despite their significance in terms of migrations trends and
patterns, when considered, nocturnal bird species comprise
a relatively small part of the dataset [26]. Interestingly, the
associated vocalizations tend be to rather clean as less envi-
ronmental and/or man-made noise is typically present during
night, thus the pattern recognition mechanism can operate on
the vocalization structure alone.

TABLE I
k-NN, SVM, 3CONVSNN AND 4CONVSNN AVERAGE RECOGNITION

RATES (IN %) ON DATASET D1. THE HIGHEST RATE FOR EACH
PERCENTAGE SPLIT IS EMBOLDENED.

Method
split 10% 20% 30% 50% 70%

k-NN 89.26 93.23 92.17 93.9 95.83
SVM 81.88 87.22 89.57 92.68 93.75

3ConvSNN
Mean 75.01 84.38 92.01 91.92 96.03
Std 1.39 1.12 1.36 1.05 1.27

4ConvSNN
Mean 75.49 86.63 93.3 92.94 97.44
Std 1.52 1.68 1.28 1.28 1.20

D1 includes nocturne rapacious species. The following
six were chosen covering both European and American au-
tochthonous species: Bubo bubo (Eagle Owl, Europe), Strix
aluco (Tawny Owl, Europe), Glaucidium passerinum (Owl,
Europe), Tyto alba (Barn Owl, Europe), Athene cunicularia
(Burrowing Owl, South America), and Megascops kennicot-
tii (Western Screech-Owl, North America). The data were
obtained from the Xeno-Canto repository2. Log-Mel spectro-
grams extracted from samples belonging to all species in D1
are shown in Fig. 2.

The dataset is composed of 167 files while each species is
represented by 25-30 files maintaining a satisfactory balance.
DC-offset was removed to compensate for potential micro-
phone calibration problems. Each audio file contains 1 to 3
calls, its duration is 5s and is sampled at 44.1kHz. The frame
size is 0.03s and overlap 0.015s.

2) D2: This dataset [27] represents real-world conditions
as it contains field recordings of eleven bird species, with the
total number of bird vocalizations being 2762. Interestingly,
several sources of interference are present, such as non-
stationary noise (wind, rain, etc), sounds related to man-made
activities, etc. The dataset includes recordings from the Xeno-
canto archive as well3.

The following species are present: Blue Jay, Song Spar-
row, Marsh Wren, Common Yellowthroat, Chipping Sparrow,
American Yellow Warbler, Great Blue Heron, American Crow,
Cedar Waxwing, House Finch, Indigo Bunting. The dataset is

2Xeno Canto, https://www.xeno-canto.org/about/xeno-canto
3https://zenodo.org/record/1250690#.XvnsjigzY2w

TABLE II
CONFUSION MATRIX (IN %) OBTAINED BY THE 4 CONVOLUTIONAL

LAYER SNN CONSIDERING 30% OF TRAINING DATA OF DATASET D1.

Presented
Predicted Similar Dissimilar

Similar 90.9 9.1
Dissimilar 4.5 95.5



TABLE III
Ms (IN %) ACHIEVED BY 4CONVSNN WITH EMPLOYING 30% OF

TRAINING DATA OF D1.

Input 1
Input 2 Burr. Eagle Owl Scr. Tawny Barn

Burrowing Owl 86.94 0.33 5.13 3.77 - 21.46
Eagle Owl 0.33 96.46 4.32 8.28 9.04 -

Owl 5.13 4.32 80.46 5.29 5.99 -
Screech Owl 3.77 8.28 5.29 91.38 3.96 -
Tawny Owl - 9.04 5.99 3.96 98.83 -
Barn Owl 21.46 - - - - 91.25

sampled at 32kHz and is well-balanced across species. Here,
the frame size is 0.01s and overlap 0.005s. D2 was formed
in the paper presented in [27] along with an experimental
protocol conveniently allowing reliable comparison among
competing methods. Log-Mel spectrograms extracted from
samples belonging to all species in D2 are shown in Fig. 3.

B. Figures of merit

We employed effective and widely-used figures of merit
assessing the performance of all methods thoroughly. One
interesting detail for the case of one-shot learning is that
we can additionally employ confusion matrices at the entire
dataset level (i.e. for D1 and D2) demonstrating the efficacy
of the method in recognizing similarities and dissimilarities.
To this end, the following matrix was defined:

Ms =

[
s11 s12
s21 s22

]
, (1)

where
• s11 (in %) denotes the number of times that samples fed

in the first input of SNN were identified as similar to
samples coming from the same class,

• s12 (in %) denotes the number of times that samples fed
in the first input of SNN were identified as dissimilar to
samples coming from the same class,

• s22 (in %) denotes the number of times that samples fed
in the second input of SNN were identified as similar to
samples coming from the same class,

• s21 (in %) denotes the number of times that samples fed
in the second input of SNN were identified as dissimilar
to samples coming from the same class.

In this case, the objective it to maximize the values in the
diagonal. A matrix assessing the dissimilarities Md can be
defined in an analogous way with the difference being that
we are aiming at minimizing its diagonal. Interestingly, the
sum of similarity and dissimilarity matrices characterizing the
accuracy of a given method is 100%, i.e. Ms +Md = 100
for all elements.

C. Contrasted methods

Keeping in mind the problem formulation, the proposed
solution has been compared to methods able to cope with
limited amount of data, i.e. the standard version of k-NN
with the Euclidean distance as a metric [28], [29]. We also
employed a support vector machine (SVM) composed of a

TABLE IV
k-NN, SVM, 3CONVSNN AND 4CONVSNN AVERAGE RECOGNITION

RATES (IN %) ON DATASET D2. THE HIGHEST RATE FOR EACH
PERCENTAGE SPLIT IS EMBOLDENED.

Method
split 10% 30% 50% 60% 70%

k-NN 80.21 87.82 90.56 91.72 92.46
handcrafted+SVM [27] - - - 96.7 -

3ConvSNN
Mean 88.61 92.09 93.96 94.92 96.02
Std 0.85 0.37 0.37 0.14 1.27

4ConvSNN
Mean 88.12 92.41 93.60 94 95.74
Std 0.37 0.42 0.41 0.1 0.38

radial basis function (RBF) kernel as explained in [30]. Both
of these methods operated in the MFCC domain, i.e. after the
application of the discrete cosine transform on the log-Mel
spectrograms and retaining the 13 most important coefficients.

In addition, for D2 the literature already includes state
of the art solution [27] using a wide range of handcrafted
features focused on spectral pattern and texture modeled by
an SVM with an RBF kernel. Other deep learning solutions
(Convolutional/Recurrent Neural Networks) were proven to be
unsuitable for the specific tasks due to overfitting.

D. Experimental Protocol and Network configuration under
stationary conditions

Towards understanding the impact of the amount of train-
ing data, we used splits coming from the following set
split = {10%, 20%, 30%, 50%, 60%, 70%}. Each experiment
was iterated 50 times, while data were chosen randomly for
each iteration. Here, we report average and standard deviation
of the achieved recognition rates. Regarding the SNN settings,
the number of epochs was 2000 (early stopping was em-
ployed), MiniBatchSize 50(D1)/100(D2), testBatch 300, and
the number of tests per class assessing similarity/dissimilarity
was 15. During testing, the randomly generated similar and
dissimilar input pairs are balanced.

E. Performance under stationary conditions on D1

Table I shows the recognition rates achieved by k-NN,
SVM and two SNN structures. SNNs evaluation was iterated
50 times to account for the random pair selection during
testing; hence, we report mean and standard deviation values
for different percentage splits. As we can see the SNN, even
though it is not trained specifically for classification, it is
able to provide reliable performance via assessing similarities
and dissimilarities with data coming from known classes

TABLE V
CONFUSION MATRIX (IN %) OBTAINED BY THE 3CONVSNN

CONSIDERING 60% OF TRAINING DATA OF DATASET D2

Presented
Predicted Similar Dissimilar

Similar 97.1 2.9
Dissimilar 7.3 92.7



TABLE VI
Ms (IN %) ACHIEVED BY 3CONVSNN EMPLOYING 60% OF TRAINING DATA OF D2

Input 1
Input 2 A-C A-Y-W B-J C-W C-S C-Y G-B-H H-F I-B M-W S-S

A-C 95.31 - - - - - 7.25 - - - 1
A-Y-W - 95.04 - - - 41.86 - - 5.88 4.71 -

B-J - - 93.24 - 1.14 - 1.72 2.53 - 2.11 1.32
C-W - - - 93.43 11.65 - - - 2.67 - -
C-S - - 1.14 11.65 88.18 4.48 - - - 4.12 -
C-Y - 41.86 - - 4.48 93.85 - - 1.87 16.3 -

G-B-H 7.25 - 1.72 - - - 91.14 - - - -
H-F - - 2.53 - - - - 97.67 30.12 - -
I-B - 5.88 - - - 1.87 - 30.12 85.75 - -

M-W - 4.71 2.11 2.67 4.12 16.3 - - - 86.22 5.26
S-S 1 - 1.32 - - - - - - 5.26 98.41

(S). Importantly, in several percentage splits, SNN is able
to surpass other classification methods. In Table I, we can
see that, with 30% of training data, the 4 convolutional layer
SNN starts to give better performance than SVM and k-NN.
Moreover, we observe that the best performance (97.44%) is
achieved by the 4 convolutional layer SNN trained with 70%
of training data. As expected, higher rates are reached when
more training data become available.

As one-shot learning is typically used in poor data avail-
ability conditions, we show the confusion matrix showing
similarities and dissimilarities w.r.t 30% split in Table II. In
general, the network recognizes better dissimilarities (95,5%)
than similarities (90,9%), while precision is 0.95 and recall
0.91. Finally, matrixMs (explained in IV-B) is given in Table
III, while Md = 100 −Ms. There, we see that Tawny Owl-
Tawny Owl couples are correctly classified as similar with
the highest rate (98.83%). On the contrary, Owl-Owl and
Barn Owl-Burrowing Owl couples are misclassified with rates
19.54% and 21.46% respectively.

F. Performance under stationary conditions on D2

Table IV tabulates the rates obtained under stationary
conditions on D2 for all different methods and percentage
splits. Similarly to D1 we see that SNN achieves significant
rates outperforming k-NN in all percentage splits. Here, the
proposed method is contrasted with the one presented in [27],
where the authors used the 60% split. We see that the SNN
with 3 convolutional layers provides 94.92± 0.14% while the
contrasted method 96.7%. Even though the proposed method
is slightly worse, it should be highlighted that SNN is trained
only on assessing similarities of logMel spectrograms, unlike
the [27] which employs handcrafted features and SVM trained
for classification.

Looking into the raw confusion matrix returned by the 3
convolutional layer SNN trained on 60% of the data (Table
V), we see that the SNN recognizes better similarities (97.1%)
than dissimilarities (92.7%), while precision is 0.97 and recall
0.93.

To conclude this part of the experiments, the corresponding
Ms is given in Table VI. We observe that the best recognized
couples are House finch - House finch (H-F) with a rate of

97.67% and Song sparrow-Song sparrow (S-S) with 98.41%.
The SNN is particularly effective in identifying similarities;
in fact the worst rate is Indigo bunting-Indigo bunting (I-
B, 85.75%). On the contrary, the SNN struggles to identify
dissimilarities between Indigo bunting and House finch (I-B,
H-F); indeed, it wrongly identifies 30.12% of the input couples
as similar. A similar case appeared with Common yellow
throat and American yellow warbler (C-Y, A-Y-W), where
only 58.14% cases are classified correctly. This is caused
by the similarities of the respective logMel spectrograms.
Importantly, thanks to the one-shot learning classification
logic, such misidentifications of dissimilarities do not lead to
misclassifications.

G. Experimental Protocol and Network configuration under
non-stationary conditions

The specific experimental scenario considers an unbounded
dictionary S, i.e. the SNN is tested on data belonging to classes
not available during training. Focusing on dataset D1 we
include a superset of D1 in the Xeno-Canto repository, i.e. the
case where no nocturnal bird species is a-priori known, while
data representing two unrelated species (Crow and Magpie)
are available.

Regarding the SNN configuration, the number of epochs
was 1200 (early stopping was employed), minibatch size
50(D1)/100(D2), test batch 300, and the number of tests per
class assessing similarity/dissimilarity was 15. During testing,
the randomly generated similar and dissimilar input pairs are
balanced.

We evaluated the performance of the proposed one-shot
learning scheme while varying the number of unknown
classes. Each experimental setting was executed 50 times, and
here we present mean and standard deviation of the average
recognition rates. For each iteration, the training classes were
selected in a random way.

The only assumption made here is that there is availability
of data belonging to at least 2 during training so that the SNN
may learn both similar and dissimilar relationships. The overall
number of randomly generated tested input pairs ranges is
90.000.



Fig. 4. Average recognition accuracy (%) in non-stationary conditions
considering dataset D1.

H. Performance under non-stationary conditions on D1

Fig. 4 demonstrates the average recognition accuracy as
a function of the number of unknown classes. In general,
we observe that the rates are lower than having complete
knowledge of S, as expected. It is worth noting that average
recognition rates tend to increase as more classes become
available during training. The highest rate is 70.7 ± 8.09%
reached by 4ConvSNN tested on 5 unknown classes. Overall,
4ConvSNN performs better than the 3ConvSNN. Moreover,
standard deviation is lower while the networks are trained on
a small number of classes. However, this depends significantly
on the composition of the test and train class sets; in case sim-
ilarities/dissimilarities are easily identified, the rates increase
while exhibiting lower standard deviation values. Here, class
selection for both train and test sets is carried out in random
way, hence the high standard deviation values.

Fig. 5. Average recognition accuracy (%) in non-stationary conditions
considering dataset D2.
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Fig. 6. Convolutional layer outputs to 4 different input spectrograms taken
from dataset D1 (4ConvSNN).

I. Performance under non-stationary conditions on D2

Fig. 5 shows how the average recognition accuracy alters
when the number of unknown classes varies. We observe that
the specific experiment reaches higher rates with lower stan-
dard deviation values w.r.t those reached on D1. As expected,
rates are lower than those under stationary conditions while
the maximum rate 72.36±0.67% is reached by the 3ConvSNN
considering 3 unknown classes. It should be noted that 4Con-
vSNN reaches a similar level when 4 classes are assumed to
be unknown. In general, 3ConvSNN is characterized by lower
standard deviation values w.r.t 4ConvSNN.

Overall, we argue that in non-stationary conditions, the
performance exhibited by the one-shot learning paradigm
heavily depends on the composition of the unknown class set
and their similarity/dissimilarity with the classes composing
the known one.

J. Convolutional filters

During the last experimental phase we examined the way the
input spectrograms are processed by the network through its
series of convolutional filters and localize the most significant
part for the task at hand. Figures 6 and 7 demonstrate 4
different samples taken from D1 (Glaucidium passerinum G-
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Fig. 7. Convolutional layer outputs to 4 different input spectrograms taken
from dataset D2 (3ConvSNN).



P, Megascops kennicottii M-K, Strix aluco S-A, Tyto alba
T-A) and D2 (American crow A-C, Cedar waxwing C-W,
Great blue heron G-B-H,Song sparrow S-S) along with their
respective activation maps for each convolutional layer of the
network.

We observe that each layer simplifies the received input and
focuses on the most informative region of the spectrograms.
We can assert that the most distinctive feature is the distri-
bution of the signal’s energy in species-depended frequency
bands. For example, when analyzing the 4th convolutional
filter’s outputs of G-P and T-A in Fig. 6, we see that T-
A’s energy is uniformly distributed in the central part of
the spectrogram across all frequency bands, while G-P’s is
primarily present in the lower bands.

V. CONCLUSION

This paper presented a method addressing the problem of
acoustic bird species identification in non-stationary environ-
ments. The proposed solution, based on the one-shot learning
paradigm, is able to detect changes in stationarity and incorpo-
rate unknown classes in the dictionary on the fly. Experiments
carried out on two datasets showed that the method offers
state of the art performance in stationary conditions and,
at the same time, it operates quite satisfactory in case of
non-stationarities. Furthermore, it employs a standard audio
representation eliminating the need of domain knowledge such
as sophisticated features tailored to the problem at hand.
We argue that a relevant part contributing to the success of
this solution is its ability to consider both similarities and
dissimilarities to known classes at the same time.

In the future, we wish to pursue the following directions
a) apply the present method to other problems of similar
constrains examining the solution from the theoretical point
of view, b) examine the data quantity required by the system
to improve the performance in non-stationary environments,
and c) after verifying that class selection during training
heavily influences the performance, we wish to investigate
strategies enabling optimal selection of the classes composing
the training set.
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