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Abstract—Weakly-supervised object localization is a challeng-
ing task in which the object of interest should be localized
while learning its appearance. State-of-the-art methods recycle
the architecture of a standard CNN by using the activation maps
of the last layer for localizing the object. While this approach is
simple and works relatively well, object localization relies on dif-
ferent features than classification, thus, a specialized localization
mechanism is required during training to improve performance.
In this paper, we propose a convolutional, multi-scale spatial
localization network that provides accurate localization for the
object of interest. Experimental results on CUB-200-2011 and
ImageNet datasets show that our proposed approach provides
competitive performance for weakly supervised localization.

I. INTRODUCTION

Object localization is a key task in many computer vision
applications such as autonomous driving [1]], pedestrian de-
tection [2f], and earth vision [3]]. In a standard learning setup,
object localization requires full supervision, i.e, the class label
and bounding box annotation for each object instance present
in the image [4]-[11]. However, obtaining bounding box an-
notations is time consuming, in particular for large real-world
image datasets. Moreover, human annotation can be subjective.
Recently, several weakly supervised learning (WSL) tech-
niques have been proposed for object localization, to alleviate
the need for such expensive fine-grained annotations [[12[|-[14].
These techniques are applied in scenarios where supervision
is either incomplete, inexact or ambiguous [15]]. The inexact
supervision scenario is often considered for object localization
tasks, where training datasets only require global image-level
annotations, i.e, the class label for each object in an image.
For this reason, weakly supervised object localization (WSOL)
techniques based on image-level annotations have gained much
popularity in the computer vision community [|16[]—[20].

Deep convolutional neural networks (CNNs) with Class
Activation Maps (CAM) [20] are a prominent solution in the
literature for WSOL problems [[13], [[14]], [20]]. They use spatial
class-specific localization maps where high activations indicate
the location of the corresponding object of the class. CAMs
are obtained through standard convolution, and as such, are
limited in their ability to accommodate large and unknown
transformations, and variations in object scale, orientation, and
pose. Learning a transformation-invariant operation that can
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Fig. 1. An illustration of the difference between the standard convolution
and Convolutional STN. P and P’ are the depth of the feature maps

simultaneously handle different transformations is desirable
for visual recognition systems. Spatial Transformer Networks
(STNs) [21] have been proposed recently as a differentiable
module that allows for spatial transformation of data within
a CNN without manual intervention. This provides the net-
work with flexibility in term of adaption to the input image
variations. Since the location of the activation in CAMs are
intrinsically dependent to the convolution operation, flexible
convolution operation that adapts to scale, orientation, and
other possible variations are preferable. In this work, we
investigate the use of STNs [21]] as an adaptive convolution
operation to replace the standard convolution. We refer to
this operation as Convolutional STN (CSTN). This adaptation
is achieved through the application of an STN convolution
over each location. STN model learns affine transformations
that can cover different variations including translation, scale,
and rotation, allowing to better attend different object varia-
tions. This provides additional flexibility compared to standard
convolution. Figure [I] illustrates the difference between both
types of convolution. In standard convolution, the sampling
grid of the convolution is fixed (hence, it has fixed receptive
field), while our CSTN transforms the sampling grid using
spatial transformers and samples the input feature map from



Fig. 2. Samples of bounding boxes localized using our proposed Convolu-
tional STN. The images illustrate how our transform can adapt the receptive
field box to improve localization. The receptive field box is shown in blue,
transformed box in red, and the ground-truth in green.

the resulting locations, allowing it to have a varying receptive
field.

While the CSTN is able to adapt to relatively small local
variations, it still faces the issue of adapting to large variations
in term of the receptive field. To alleviate this issue, we
consider localizing objects of different scales at different levels
(i.e, layers), using the Feature Pyramid Networks (FPN) .
The CSTN is applied at different levels of the feature pyramid.
As the receptive field from the low layers can process only
small regions of big objects, local convolution at that layer
tend to localize small discriminative regions while missing
the entire object. However, such layers are more adequate to
localize small objects while high layers can miss them due
to their large receptive field. To deal with this, an additional
regularization term is introduced to drive specific layers to
compete for the right scale. A joint probability over scale,
location, and class is formulated based on the class scores
through an aggregation process. We evaluate our approach on
popular weakly supervised benchmark datasets and observe
competitive performance on the localization task. Figure 2]
illustrates how the CSTN is able to adapt to improve the
localization. To summarize, our main contributions are: (1)
a novel approach for WSOL with convolutional spatial trans-
forms that explicitly learns to localize during classification;
(2) an adaptation of the FPN model to weakly supervised
settings for localizing objects of different scale, where the
STN need to learn a small transform for the right scale;
(3) regularization techniques to prevent the localization from
selecting discriminative object regions.

II. RELATED WORK

Weakly supervised object localization. The Class Activation
Map (CAM) is a pioneering technique in WSOL that was
proposed by Zhou et al. [20]. It uses a simple and straight-
forward method to locate the strongly activated region using a
fully convolutional classification network. Since it is primarily
focused on achieving a high level of classification accuracy, its
localization tends to correspond with the most discriminative

object region. Most of the recent WSOL techniques propose
updated versions of the CAM that can avoid the bias towards
the discriminative region [12]—[14]. They typically seek to
erase or hide the most discriminative region during training so
that the classifier will focus on other relevant object regions. To
achieve this, they leverage different strategies, like using multi-
ple classifiers to localize complementary regions(ACoL) [13]],
self-produced guidance(SPG) [12], randomly hiding patches
from the input image(HaS) [14].

Deformable convolution. The CSTN is in principle similar
to deformable convolution proposed in [22]. To break the
fixed geometry of a standard convolution, it learns a set
of offsets for each position in the regular sampling grid.
Deformable convolution has demonstrated improvements in
object localization for the fully supervised object detectors
[22], [23]). However the deformation learned in this way is
not a centralized one as each location in the sampling grid
can move independently, resulting in irregular shape for the
convolution. Thus it cannot be directly utilized for localization.
Active convolution unit proposed in [24] attempts to learn the
shape of the convolution. All these deformable convolution
methods are studied in the fully supervised algorithms, we are
the first to study it in a weakly supervised settings.

Spatial transformers The Spatial Transformer Networks
(STN) has been proposed by Jaderberg et al. to learn
a global affine transform of its input feature map. Driven
by the classification objective, this global transform allows
locating relevant object regions. This can be interpreted as
a soft attention mechanism. Since it is a generic learnable
module that can transform its input with respect to the net-
work objective, it has found many application in, e.g, image
captioning [25]], disentangled representation learning and
image composting [27]. Our proposed method is applying
it in a convolutional way to address the weakly supervised
localization problem. As in , the network objective of our
CSTN is also to obtain accurate classification. However, the
STN localization of objects on natural images (with a global
transform) cannot easily cope with large object variations. As
described in the next section, by learning local transforms
from the appropriate level, our CSTN is able to provide better
localization than the global transform.

III. OVERALL ARCHITECTURE

To explain our architecture for WSOL, we start from the
last convolutional layer of a CNN and show how it is used for
object localization (see Fig. [B(a)). Similar to one-stage object
detection methods (e.g: SSD [8], YOLO [11]}), we consider
the location of a filter as the rough center of the object. In
one-stage detectors, this location is then associated with a set
of class probabilities that defines which object is more likely
to appear at that location and the coordinates of the object’s
bounding box, estimated as a regression. In our case, we do
not have information about the bounding box of the object as
our problem is weakly supervised (we only have image-level
label). Thus, to go from object labels to image labels we need
an aggregation mechanism as detailed in the next subsection.
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Fig. 3. Basic components of our system. (a) One of the last convolutional layers of a CNN can already provide some information about the center of the
object. (b) Our joint probability in location and classes is used to learn localization in a Weakly supervised manner (see text). (¢) Using a multi-scale approach
we can find not only the position of the object but also the scale (d) Adding our CSTN, we obtain a more refined localization of the object of interest.

A. Joint class and location distribution:

In our model, the last convolutional layer is a feature map
f with H x W = L locations and C channels equivalent
to the number of classes to classify. As shown in Fig. [3[(b),
we can consider this feature map as a voting for the most
likely position and class in an image. We can thus convert
this feature map into a multinomial probability distribution
over classes and position by applying a softmax on the two
spatial dimensions and on the channels too. As we want each
class and location to compete, we need to compute a single
softmax on the three dimensions. Thus, instead of the common
distribution over classes p(c) as for classification, here we
model the output of the CNN as a joint probability over classes
and image locations:

eXp(fc,l)
C,L :
Ec’:l,l’:l exp(fer,1)

With this joint probability distribution we can obtain the class
labels by marginalizing over locations: p(c) = >, p(c, ). This
can be used to train our model for classification with standard
cross-entropy loss. However, with the joint probability, we
can also obtain the maximum a posteriori (MAP) of the
best location [* and class c¢* for a given image: c*,[*
arg max, ;p(c, ). This is the information required to estimate
the location and class of the object of interest. This approach
is simple and works well to find the center of the object.
However, we are interested in yielding the bounding box of the
object in the image. We can consider the bounding box of the
object as proportional to the receptive field of the used feature
map. However, this would lead to square bounding boxes at
the same scale. To overcome the scale problem, in the next
section we extend our approach to a multi-scale representation.

p(c, l) =

6]

B. Multiscale search:

For searching at multiple scales we use feature pyramids
[7], because it does not add much computational cost to the
method and it works quite well on several problems. With the

feature pyramid, instead of considering a single feature map
fe, 1, we use a representation composed by S feature maps,
each representing the image at a different scale. Thus, we
can extend our joint distribution to also scales: p(c,l, s) (see
Fig. [B[c)). Again, by marginalizing over locations and scales
we can obtain p(c) used for training, and by selecting the MAP,
we can find the location [* and s* of the object of interest.
Now, we can find objects at different scales and different
locations. However, still, all objects will have the same aspect
ratio. A possible solution would be to use convolutional filters
of different sizes that will generate different receptive fields
and therefore different bounding box shapes. However, this
approach will increase the computational cost and will be
able to provide only discrete object sizes (defined by the
convolutional filters aspect ratio). In the next subsection we
show how to learn a weakly supervised model that can adapt
to any object size and aspect ratio.

C. Convolutional STN:

While in fully supervised object detection most of the
approaches regress a bounding box with the right object
size, for weakly supervised models it is not possible because
there is no ground truth to regress. In the original spatial
transformer network (STN), a localization network is trained
to find global image transformations that can better represent
the data and therefore minimize the training loss. The authors
of the original paper [21] show that this is an approach for
improving the classification performance by focusing on the
object of interest and at the same time, being able to localize
the object of interest without annotations, thus in a weakly
supervised manner. However, we note that STN works well
when the data is quite clean (e.g:, extended MNIST) and the
sought transformations are relatively small. This is because the
localization network of STN is trained with gradient descent,
which is a local optimization. This means that when the
transformation is too large or there is too much noise in the
image, the local optimization will not be able to regress the
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Fig. 4. Overall System. This figure illustrates how all the components of the system are used in order to train the model in a weakly supervised manner as

well as to perform inference.

correct transformation to localize the object and the training
will fail. To overcome this problem, we propose to apply STN
in a convolutional fashion. As shown in FigEkd), for each
feature map location we apply a localization network that reads
the local features and generates a transformation based on
those. As the STN is applied locally to each part of the image,
the required transformation is smaller and it is more likely that
the simple gradient based optimization used will work. Thus,
in this work, the last layer is now composed of two stages: 1)
estimation of the local transformations 6 = loc(f), in which
loc is a convolutional localization network that for each feature
map location f; returns a corresponding transformation 6;. ii)
the final representation f’ is the results of a convolution in
which the convolutional filters are now applied with the feature
map transformations 0: f' = conv(f,0). The new layer is
not much more expensive than a normal convolution because
the additional computation is due only to the localization
network. In contrast, being able to adapt the receptive field
of the network to the local content of the image improves
not only object localization but also the image classification.
Even though powerful, in the experimental evaluation we note
that the convolutional spatial transformer tends quite easily to
overfit the training data. To avoid that in the next subsection
we present two regularization techniques.

D. Regularization:

Our multi-scale convolutional STN tends to focus on small
regions. This is because during training, the selected bounding
boxes shrink to the most discriminative part of an object while
the classification performance improves. To address this, we
added a regularization/penalty term to the classification loss
which prevents the affine transformation 6; from having large
deviations from its reference location 6,..s. This regularization
term is,
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Here we choose 0.y = {(1) (1) 8} corresponding to the
identity transform.

The multi-scale search has also a bias towards localizing
large objects from the lower levels of a feature pyramid. It
is due to the fact that, in many cases, object parts are more
discriminative than the entire object; lower level layers will get
strong activation for object parts of the large objects. In order
to make the higher levels compete for localizing large objects,
we enforce the difference between the maximum activation
of the two levels to be zero or negative, such that the higher
feature map will be more likely to be selected. This can be

applied on any two scale-adjacent feature maps s; and so,
Lscale(x) = max (07 mlaxp(s = 81, la c= C*‘.’b)—

rnlax(p(s = s9,l,c= c*|x)) 3)

Notice that for small objects which gets localized from the
lower level, this does not induce any penalty. Though the
competitiveness among the levels can be ensured in many
ways, this simple regularization term has given satisfactory
results in our experiments.

With these regularization terms, the final loss function
optimized by our model is:

L(Ia y) = Lcls(za y) + ALG + aLscale(z) (4)

where L.s(x,y) is the multi-class cross-entropy loss, « and
A are hyper-parameters to specify the strength of the STL and
multi-scale regularizations.

E. Complete System

Fig[] summarizes our complete system. Given an image, a
feature pyramid network builds semantic representations of the
image at different scales. On all the scales, a CSTN is applied
so that for each location and scale a localization bounding box
is estimated. Finally the scores of the STN are converted in
a joint probability p(c,l, s) over classes, locations and scales.



This can be converted to p(c) by marginalizing over scales
and locations to obtain the class probabilities needed to train
the model in a weakly supervised manner. During training the
proposed regularizations are also used. The joint probability
is used at test time to localize the object by a MAP inference.

IV. EXPERIMENTS
A. Experimental setup:

Datasets and evaluation metric. We evaluated our multiscale
convolutional STN model on CUB-200-2011 dataset [28]] and
ILSVRC 2012 [29] localization dataset. CUB-200-2011 con-
tains 11,788 images of 200 bird species with 5,994 images for
training and 5,794 for testing. ILSVRC 2012 dataset contains
1.28M training images and 50,000 validation images. There
are 1000 categories of objects. For both datasets we evaluate
the performance in terms of classification and localization
accuracy. An image is said to be correctly localized if the pre-
dicted class matches the true class and the predicted bounding
box has 50% overlap with the ground-truth. The localization
accuracy is denoted as Top-1 Loc in the results. For explic-
itly measuring the localization performance(regardless of the
classification accuracy), another metric called GT-Known Loc
is used where the GT image label is provided. In that case, a
localization is deemed as correct if the 50% overlap criteria
is satisfied. Unlike CAM, our method can provide multiple
bounding boxes per image. But in Top-1 Loc we are only using
the box with the highest score. When this top scoring box is
centered at the object, we get the best bounding box. But this
is not always the case with CSTN, especially when the top
scoring box is focusing on the discriminative object regions.
There could be other boxes, for which the score is very close
to the top box but they overlap well with the ground-truth box.
So we also considered a metric which we call the Top-5 box
localization where we check if one among the top five boxes
with high scores has 50% overlap with the object. Top-5 box
localization gives interesting results regarding the localization
ability of our method in contrast to the CAM. We measured
GT-Known Top-5 box Loc in this comparison.
Implementation details. We used ResNet101 [30] as the
backbone network which is pre-trained on ImageNet [29]]. We
removed the last average pooling and fully connected layer
and added an additional convolution(with 3 x 3 filter size and
padding 1) and batch norm [31] layer. Feature pyramid is ob-
tained from this network with its last two levels as described in
[7]. The input images are resized to 320 x 320 pixels. For data
augmentation, we used horizontal flip with 50% probability.
Images are normalized with mean = [0.485,0.456, 0.406] and
std = [0.229, 0.224, 0.225] as in ImageNet training [29]. The
model is trained on NVIDIA GTX 1080 GPU with 12GB
memory.

B. Ablation Study:

The ablation studies are conducted to assess the impact
of spatial transform, multi-scale localization and the reg-
ularization on 6. We used CUB-200-2011 dataset in our
ablation experiments. To assess the importance of the spatial

transform, we computed the localization accuracy when the
default box is used for localization instead of the transformed
output from STN. Note that this does not change the training
procedure, since CSTN is still used the same way to learn
the localization. At the implementation level, instead of using
the transformed coordinates, we used the original coordinates
to compute the localization performance. Table [Ij shows the
result of this study on both datasets. It can be observed that
the transform is improving the localization around 5-8%. To
see this impact visually, figure [5] shows some sample images
where the transform is modifying the original receptive field
box to improve the localization. It also highlights some failure
cases where the transform is producing wrong localization.

TABLE I
IMPACT OF TRANSFORM ON THE LOCALIZATION PERFORMANCE. FOR
BOTH DATASETS THE CSTN IS FUNDAMENTAL TO OBTAIN GOOD

PERFORMANCE.
Dataset Top-1 Loc

without transform | with transform
CUB-200-2011 40.64 49.03
ImageNet 36.69 42.38

To further study whether the CSTN is learning a good
representation for localization we compared the localization
performance with and without CSTN. For the case without
CSTN, we used the same architecture and classification head,
the only difference is that no transform is learned in this
settings, i.e, instead of CSTN, a normal convolution is used.
The classification head is now classifying the fixed sampling
space of the convolution. Table [[I| shows the result of this study
on CUB-200-2011 dataset. It can be observed that without
CSTN, the localization performance has reduced drastically.
The classification performance also goes low but the impact is
less. This means that the CSTN not only learn to better localize
an object in the image, but it also learn a better representation
of the object that produces an improved classification.

TABLE II
LOCALIZING WITH AND WITHOUT CONVOLUTIONAL STN ON
CUB-200-2011 DATASET. IT CAN BE OBSERVED THAT THE CSTN 1S
VERY EFFECTIVE IN LEARNING A GOOD REPRESENTATION FOR
LOCALIZATION. IT IMPROVES THE LOCALIZATION BY 26.79%.

Type Top-1 Class | Top-1 Loc
Without conv STN 77.40 21.64
With conv STN 78.46 49.03

The multi-scale localization is another important component
in our model. To assess the importance of this, we conduct
ablation experiments with localization from two level of the
feature pyramid independently and compare it with the model
where these levels are combined. Figure [6] shows the results
from this study. Here a histogram is created by dividing the
area of the bounding box into 10 bins of equal size. The
histogram shows in green the total number of samples at
each resolution and in blue and red the percentage of images



Fig. 5. Demonstration of some transforms learned by CSTN on CUB-200-2011 and ILSVRC dataset. The last column shows some failed localization on the
ILSVRC dataset. The non transformed box is shown in blue, transformed box in red and the ground-truth is green.

that are correctly localized in each bin for the model without
and with bounding box transformations. From figure [6[a) and
[lb) we see that different levels are specialized on different
object sizes. With the multi-scale model (Figure |§kc)) we
balance the localization between the two levels and improve
the localization accuracy. Notice also that the effect of the
bounding box transformation become stronger when using a
multi-scale model. This is in line with out hypothesis that
the STN performs a local optimization and for improved
performance, the transformations should be relatively small
from a reference size. This can be compared to learning the
transforms with respect to anchor boxes in the fully supervised
object detectors [9).

8

Another key component of our method is the regularization
on §. We observed that without this regularization, the learned
transformations are not from the distribution of possible object
bounding boxes. The transformations tend to overfit and shrink
to discriminative image parts resulting in poor localization.
Figure [7] show samples of bounding boxes learned without
using regularization on 6. To obtain a good localization, tuning
the hyperparameter X is critical. Table [[TI] shows the perfor-
mance in classification and localization for different values
of . As expected, while the model classification is barely
affected, localization is highly affected by this parameter. For
the regularization on the scales, we found that « can vary in
a range of values without affecting too much the localization
results. Thus we did not include a study on that.

C. Comparison with state-of-the-art methods:

We compare the localization of the CSTN with state-
of-the-art solutions for WSOL. Results are summarized in
table [[V] and table [V] for CUB-200-2011 and ILSVRC 2012
respectively.

On the CUB-200-2011 dataset, CSTN performs better than
all the CAM based methods. except the ADL [32]. In this

TABLE III
IMPACT OF A ON CLASSIFICATION AND LOCALIZATION ACCURACY. FOR A
HIGH VALUE OF A THE LOCALIZATION ACCURACY TENDS TO THE ONE
OBTAINED WITHOUT STN. FOR NO REGULARIZATION, THE
TRANSFORMATIONS BECOME TOO STRONG AND FOCUS ON SMALL PARTS
OF THE OBJECT THUS PRODUCING A VERY POOR LOCALIZATION SCORE.

A Top-1 Loc | Top-1 Class
0.01 27.39 78.98
0.001 30.88 78.63
0.0001 49.03 78.46
0.00001 45.52 78.25
0 5.13 77.32

dataset, the scale of objects are distributed unevenly, i.e, many
objects are of nearly the same size, extreme variations in the
size are very less (not too many small and large objects).
As shown in the ablation study, different levels of the CSTN
specializes on different scales, therefore, we can get the best
of the localization from this model by focusing more on the
crowded scales (where there are many objects). The hyper-
parameter « is not very sensitive to the Top-1 Loc, so it can
be tuned fairly easily. The difference in performance with
ADL is mostly due to the wrong location selection as the
recall is still close to 99%(so the CSTN is able to produce
transformations that match the object sizes). The GT-Known
Top-5 Loc is around 2.5% higher than the GT-Known Loc
of the ADL. This also reinforces our claim that the CSTN is
learning better localization. Compared to all the CAM based
methods including the state-of-the-art ADL []3;2[], CSTN has
some clear advantages. These methods need rigorous tuning of
their hyperparameters to obtain good localization. The hyper-
parameters of CSTN are not very sensitive to the localization
accuracy. The « regularization term can be avoided if we can
find a suitable heuristic that tells whether the object is small or
large. Thus small object can be localized from lower level and
the large one from higher level. Then it works similar to the
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(a) Localization from level 4 (Top-1 Loc is 37.78%).
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(c) Localization with the multi-scale model combining levels 4 and 5 (Top-1
Loc is 48.43%).

Fig. 6. Impact of multi-scale localization. Localization from each level
is compared with the multi-scale model which combines all levels. The
histogram is created by dividing the area of all bounding boxes into 10 equal
bins. Green bars shows the number of images in each bin, red bar shows
number of images that are correctly localized by CSTN in that bin and the blue
bars shows the number of images correctly localized without the bounding
box transformation, as reported in Table I.

level selection in multi-scale fully supervised detectors based
on the area of the ground truth box. The € regularization is
also fairly easy to tune as shown in the ablation experiments.
Recent studies observed that WSOL algorithms which improve
the localization based on erase and learn strategy [@]], [@]],
are very sensitive to their hyperparameters [33].

On the ILSVRC dataset, CSTN is outperformed by many of
the CAM based method. This is probably due to the sensitivity
to the scale. The number of objects in different scales are
nearly uniformly distributed in this dataset. So the multi-scale
localization should specialize on each scale equally well in
this case. This can be better explained with the histogram of
localization on ImageNet shown in figure [§] As we can see, it
favors the localization towards large objects in this case. As a
result, it fails to localize most of the smaller objects. The GT-

Fig. 7. Transforms learned without using the regularization on 6. The
receptive field box is shown in blue, transformed box in red and the ground-
truth is green. It can be observed that, the boxes learned are not from the
distribution of possible object bounding boxes.
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Fig. 8. Histogram of localization on ImageNet validation set. The histogram is
created by uniformly dividing the range of the area of objects in the validation
set. It can be observed that the scale of objects are not uniform.

Known Top-5 Loc in this case is comparable to the GT-Known
Loc of the state-of-the-art methods including ADL and SPG.

We believe that improving the multi-scale localization
component of our method can close this performance gap
compared to the state-of-the-art CAM based WSOL. If we try
to localize an object with the wrong scale (i.e, from the wrong
level of the feature pyramid), it will end-up in getting stuck at
some discriminative object region. Figure[9]shows some failure
cases of this when localizing large objects using CSTN. Since
the end goal of STN is still to get a good classification, it will
not try to localize the integral object. The softmax aggregation

TABLE IV
PERFORMANCE COMPARISON ON THE CUB-200-2011 TEST SET.
CONVOLUTIONAL STN PERFORMS BETTER THAN ALL OTHER METHODS,
EXCEPT ADL. THE TOP-1 CLASS IS LEFT BLANK FOR SOME METHODS,
BECAUSE IT IS NOT REPORTED IN THE ORIGINAL PAPER.

[ Method | Top-1 Loc | GT-Known Loc | Top-1 Class |

41.00 71.13 -
44.67 73.32 76.64
45.92 75.30 71.90
46.64 74.11 -
62.29 78.62 80.34
49.03 76.06 78.46

CSTN Top-5 box - 81.14 -




TABLE V
PERFORMANCE COMPARISON ON THE ILSVRC VALIDATION SET. THE
Top-1 LOC IS COMPETITIVE BUT DUE TO THE SENSITIVENESS TO SCALE,
CONVOLUTIONAL STN MISS TO LOCALIZE SMALL OBJECTS. THE
SENSITIVITY OF THE CAM TO SCALE IS LESS, SO THIS CAN BE THE
REASON FOR THE DIFFERENCE IN TOP-1 LoOcC.

[ Method [ Top-1 Loc | GT-Known Loc | Top-1 Class |

42.80 61.10 66.60
4521 63.12 70.70
45.83 62.73 67.50
48.60 64.24 -
48.43 63.72 75.85
42.38 60.48 69.48

- 63.45 -

Fig. 9. Localizing large objects using the wrong scale. The STN fails to learn
large transforms for this case to give an accurate localization The receptive
field box is shown in blue, transformed box in red and the ground-truth is
green.

strategy is a simple and straightforward expansion to introduce
the multi-scale capability. Having better methods to select the
matching scale can bring the benefit of CSTN to all such multi-
scale improvements. Moreover, improving the box selection
strategy can also give better Top-1 Loc, since our GT-Known
Top-5 Loc is always good.

V. CONCLUSION

In this work, we have introduced a novel method for weakly
supervised object localization. Different from the dominant
paradigm of Class Activation Maps, we show that the use
of a convolutional spatial transformer can lead to competitive
performance in localization. Compared to the activation map
based methods, convolutional spatial transformer is less sensi-
tive to their hyperparameters for weakly supervised localiza-
tion. This component can be plugged into any convolutional
network giving an end-to-end weakly supervised localization
module. The learning of the convolutional STN is fairly easy
and it adds few additional convolutional layers to the standard
CNN. Our Convolutional STN with multi-scale localization
gives competitive results on the benchmarked datasets. Em-
pirical study reveals that the localization with convolutional
STN is sensitive to the object scale and we have proposed two
regularization strategies to deal with those issues. Future work
is about extending the method to weakly supervised object
detection.
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