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Abstract—Siamese trackers have recently achieved interesting
results due to their balance between accuracy and speed. This
success is mainly due to the fact that deep similarity net-
works were specifically designed to address the image similarity
problem. Therefore, they are inherently more appropriate than
classical CNNs for the tracking task. However, Siamese trackers
rely on the last convolutional layers for similarity analysis
and target search, which restricts their performance. In this
paper, we argue that using a single convolutional layer as
feature representation is not the optimal choice within the deep
similarity framework, as multiple convolutional layers provide
several abstraction levels in characterizing an object. Starting
from this motivation, we present the Multi-Features Siamese
Tracker (MFST), a novel tracking algorithm exploiting several
hierarchical feature maps for robust deep similarity tracking.
MFST proceeds by fusing hierarchical features to ensure a
richer and more efficient representation. Moreover, we handle
appearance variation by calibrating deep features extracted from
two different CNN models. Based on this advanced feature
representation, our algorithm achieves high tracking accuracy,
while outperforming several state-of-the-art trackers, including
standard Siamese trackers. The code and trained models are
available at https://github.com/zhenxili96/MFST.

I. INTRODUCTION

During the last few years, deep learning trackers achieved a
stimulating effect by bringing new ideas to object tracking.
This paradigm has become successful mainly due the use
of convolutional neural network (CNN)-based features for
appearance modeling. While several tracking methods used
classification-based CNN models that are built following the
principles of visual classification tasks, another approach [1]
formulates the tracking task as a deep similarity learning
problem, where a Siamese network is trained to locate the
target within a search image. This method uses feature
representations extracted by CNNs and performs correlation
operation with a sliding window to calculate a similarity map
for target location. Rather than detecting by correlation, other
deep similarity trackers [2], [3], [4] generate the bounding
box for the target object by regression networks. For example,
GOTURN [4] predicts the bounding box of the target object
with a simple CNN model. The trackers [3] and [2] generate
a number of proposals for the target after extracting feature
representations. Classification and regression procedures are
then applied to produce the final tracking.

By formulating object tracking as a deep similarity problem,
Siamese trackers achieved significant progress in terms of
both speed and accuracy. However, less efforts have been

devoted to advance the feature representation power of these
models. In fact, Siamese trackers typically rely on features
from the last convolutional layers for similarity analysis and
target state prediction. In this work, we argue that this is not
the optimal choice, and demonstrate that features from earlier
layers are important for improving tracking accuracy. Indeed,
the combination of several convolutional layers was shown
to be efficient for robust tracking [5], [6], as features from
different layers provide different levels of information on the
object. In particular, the last convolutional layers retain general
characteristics represented in summarized fashion, while the
first convolutional layers provide low-level features. These
latter are extremely valuable for precise localization of the
target, as they are more object-specific and capture finer spatial
details.

Therefore, instead of using features from a single CNN
model, we propose to exploit different models within the
deep similarity framework. Diversifying feature representa-
tions significantly improves tracking performance, and such
an approach is shown to ensure robustness against appearance
variation [7], one of the most challenging tracking difficulties.

Based on these principles, we propose the Multi-Features
Siamese Tracker (MFST). MFST exploits diverse features
from several convolutional layers and utilizes two models
with proper feature fusing strategies to achieve an improved
tracking performance. Our contributions can be summarized
as follows. Firstly, we explore feature fusing strategies with a
feature recalibration module to make a better use of feature
representations. Secondly, we exploit feature representations
from several hierarchical convolutional layers as well as differ-
ent models for object tracking. Thirdly, we present the MFST
algorithm, that achieves an improved performance compared
to recent state-of-the-art trackers.

II. RELATED WORK

A. Deep similarity tracking

Siamese trackers formulate the tracking task as a similarity
learning problem. First, the deep similarity network is trained
during an offline phase to learn a general similarity function.
The model is then applied for online tracking to evaluate the
similarity between two network inputs: the target template and
the current frame. The pioneering work SiamFC [1] applied
two identical branches made up of fully convolutional neural
networks to extract the feature representations, on which cross



correlation is computed to generate the tracking result. SiamFC
outperformed several state-of-art trackers, while achieving
real-time speed. Several improvements were subsequently pro-
posed. For example, rather than performing correlation on deep
features directly, CFNet [8] trained a correlation filter based on
the extracted features of object to speed-up tracking. SA-Siam
[9] encoded the target by a semantic branch and an appearance
branch to improve tracking robustness. But since these siamese
trackers only use the output of the last convolutional layers,
more detailed target specific information from earlier layers is
not exploited. In our work, we propose a siamese tracker that
combines features from different hierarchical levels.

B. Exploiting multiple hierarchical levels in CNNs for tracking

Most CNN-based trackers used only the output of the
last convolutional layer that contains semantic information
represented in a summarized fashion. However, different con-
volutional layers embed different levels of visual abstraction.
In fact, convolutional layers provide several detail levels in
characterizing an object, and the combination of different
levels is demonstrated to be efficient for robust tracking [5],
[10]. In this direction, the pioneering method HCFT [5] tracks
the target using correlation filters learned on each layer. That
work demonstrated that the combination of several hierarchical
convolutional features allows to improve tracking robustness.
Subsequently, [6] presented a visualization of features ex-
tracted from different convolutional layers. In their work,
they employed three convolutional layers as the target object
representations, which are then convolved with the learned
correlation filters to generate the response map, and a long-
term memory filter to correct results. The use of multiple
hierarchical features allowed their method to be much more
robust.

C. Multi-Branch Tracking

Target appearance variation is one of the most challenging
problems in object tracking. In fact, the object appearance
may change significantly during tracking due to several factors
(e.g. deformation, 3D rotation). Thus, a single fixed network
cannot guarantee discriminative feature representations in all
tracking situations. To handle the problem of target appear-
ance variation, TRACA [11] trained multiple auto-encoders,
each for different appearance categories. These auto-encoders
compress the feature representation for each category. The
best expert auto-encoder is selected by a pretrained context-
aware network. By selecting a specific auto-encoder for the
tracked object, a more robust representation can be generated
for the tracking. MDNet [12] applied a fixed CNN for feature
extraction, but used multiple regression branches for ob-
jects belonging to different tracking scenarios. More recently,
MBST [7] extracted the feature representation for the target
object through multiple branches and selected the best branch
according to their response maps. With multiple branches
MBST can obtain diverse feature representations and select
the most discriminative one under the prevailing circumstance.
In their study, we can observe that the greater the number of

branches, the more robust the tracker is. However, This is
achieved at the cost of higher computation time. In this work,
we can get a diverse feature representation of a target at lower
cost because some of the representations are extracted from
many layers of the CNNs. Therefore, we do not need a large
number of siamese branches.

III. THE PROPOSED MFST TRACKER

In our method design, we consider that features from
different convolutional layers provide different levels of ab-
straction, and that the different channels of the features play
different roles in tracking. Therefore, we recalibrate deep
features extracted from CNN models and combine hierarchical
levels to ensure a more efficient representation. Besides, since
models trained for different tasks can diversify the feature
representation as well, we build our siamese architecture with
two CNN models to achieve better performance.

A. Overview of the network architecture
The network architecture of our tracker is shown in Figure

1. We use two different pretrained CNN models as feature
extractors, SiamFC [1] and AlexNet [13], as indicated in
Figure 1. The two models are denoted as S and A respectively
in the following explanations. Both of them are five layers fully
convolutional neural networks.

The input of our method consists of an exemplar patch z
cropped according to the initial bounding box or the result of
last frame and search region x. The exemplar patch has a size
of Wz×Hz×3 and the search region has a size of Wx×Hx×3
(Wz < Wx and Hz < Hx), representing the width, height and
the color channels of the image patches. Since our method
formulates the tracking task as a similarity learning problem,
let x be considered as a collection of candidate patches.

With the two CNN models, we obtain the deep features
Sli , Ali (l = c3, c4, c5, i = z, x) from conv3, conv4, conv5
layers of each model. These are the preliminary deep feature
representations of the inputs. All the features are then recal-
ibrated with Squeeze-and-Excitation blocks (SE-blocks) [14].
The recalibrated features are denoted as S∗li , A

∗
li

, respectively
for the two models. The details of SE-blocks are illustrated
in Fig. 2. The blocks are trained to explore the importance
of the different channels for tracking. They learn weights for
different channels to recalibrate features extracted from the
preliminary models.

Once feature representations are generated, we apply cross-
correlation operations for each recalibrated feature map pairs
to generate response maps. The cross-correlation operation can
be implemented by a convolution layer using the feature of
the exemplar as filter. Then, we fuse these response maps to
produce the final response map. The new target position is
selected as the maximum value location in the final response
map.

B. Feature extraction
a) Hierarchical convolutional features: It is well known

that the last convolutional layers of CNNs encode more seman-
tic information, which is invariant to significant appearance



Fig. 1. The architecture of our MFST tracker. Two CNN models are utilized as feature extractors. Their features are calibrated by Squeeze-and-Excitation
(SE) blocks. Correlations are then applied over the features of the search region with the features of the exemplar patch. The output response maps are fused
to calculate the new position of the target. Bright orange: SiamFC (S) and dark orange: AlexNet (A).

Fig. 2. Illustration of the SE-block. The SE operation comprises two steps: squeeze and excitation. The squeeze step uses average pooling operation to
generate the channel descriptor. The excitation step uses a two layers MLP to capture channel-wise dependencies.

variations compared to earlier layers. However, its resolution
is too coarse (due to the large receptive field) for precise
localization. On the contrary, features from earlier layers
contain less semantic information, but they retain more spatial
details and are more precise in localization. Thus, we propose
to exploit multiple hierarchical levels of features to build a
better representation of the target.

We use the convolutional layers of two lightweight pre-
trained CNN models as feature extractors: SiamFC [1] and
AlexNet [13]. The two models are trained for object tracking
and image classification tasks, respectively. We use features
extracted from the 3rd, 4th, 5th convolutional layers as the
preliminary target representations.

b) Feature recalibration: Considering that different
channels of deep features play different roles in tracking, we
apply SE-blocks [14] over the raw deep features extracted from
the basic models. An illustration of SE-block is shown in Fig.
2. The SE-block includes two operations: 1) squeeze and 2)
excitation. The squeeze step corresponds to an average pooling
operation. Given a 3D feature map, this operation generates
the channel descriptor ωsq as follows:

ωsq =
1

W ×H

W∑
m=1

H∑
n=1

vc(m,n), (c = 1, ..., C) (1)

where W , H , C are the width, height and the number of
channels of the deep feature, and vc(m,n) is the corresponding
value in the feature map. The subsequent step is the Excitation
through a two layers Multi-layer perceptron (MLP). Its goal
is to capture the channel-wise dependencies that can be
expressed as:

ωex = σ(W2δ(W1ωsq)) (2)

where σ is a sigmoid activation, δ is a ReLU activation, W1 ∈
R

C
r ×C and W2 ∈ RC×C

r are the weights for each layer, and
r is the channel reduction factor used to change the dimension.
After the excitation operation, we obtain the channel weight
ωex. The weight is used to rescale the feature maps extracted
by the basic models:

F ∗li = ωex · Fli , (3)

where · is a channel-wise multiplication and F = (S,A). Note
that ωex is learned for each layer in a basic model, but the
corresponding layers for the CNNs of the exemplar patch and
the search region use the same channel weight. We train the
SE-blocks to obtain six ωex in total.

C. Combining response maps
Once the feature representations from convolutional lay-

ers of each model are obtained, we apply cross-correlation



operation, which is implemented by convolution over the
corresponding feature maps to generate the response map r
as:

r(z, x) = corr(F ∗(z), F ∗(x)), (4)

where F ∗ is the weighted feature map generated by the CNN
model and SE-block. The response maps are then combined.
For a pair of image input, six response maps are generated.
They are denoted as rSc3, rSc4, rSc5, rAc3, rAc4 and rAc5. Note that
we do not need to rescale the response maps for combina-
tion, since they have the same size (see Section IV-A, Data
Dimensions).

The response maps are combined hierarchically. After fus-
ing rS and rA for the two CNN models, we combine the
two response maps to get the final map. The combination
is performed by considering three strategies: hard weight
(HW), soft mean (SM) and soft weight (SM) [6], illustrated
as follows:

Hard weight: r∗ =
N∑
t=1

wtrt (5)

Soft mean: r∗ =
N∑
t=1

rt
max(rt)

(6)

Soft weight: r∗ =
N∑
t=1

wtrt
max(rt)

(7)

where r∗ is the combined response map, N is the number
of response maps to be combined together, and wt is the
empirical weight for each response map.

The optimal weights of HW and SW are obtained by ex-
periments. We choose the corresponding strategy that achieves
the best performance on the OTB benchmarks to generate the
combined response maps from each model, which are denoted
as rS and rA. As illustrated in Table II, we then test the
three different strategies again to find the best strategy to
combine rS and rA. Finally, the corresponding location of
the maximum value in the final response map is selected as
the new location of the target.

IV. EXPERIMENTS

We firstly perform an ablation study by investigating the
contribution of each module, in order to find the best response
map combination strategy corresponding to optimal represen-
tations. Secondly, we present a performance comparison with
recent state-of-the-art trackers.

A. Implementation Details

a) Network Structure: We use SiamFC [1] and AlexNet
[13] as feature extractors. The SiamFC network is a fully
convolutional neural network (including five layers) trained
on a video dataset for object tracking. The AlexNet network
consists of five convolutional layers and three fully connected
layers trained on an image classification dataset. We slightly
modified the stride of AlexNet to obtain the same dimensions
for the outputs of both CNN models. Since only deep features

are needed to represent the target, we remove the fully
connected layers of AlexNet and keep only the convolutional
layers to extract features.

b) Data Dimensions: The inputs of our method consist
in the exemplar patch z and the search region x. The size of
z is 127 × 127 and the size of x is 255 × 255. The output
feature maps of z have sizes of 10 × 10 × 384, 8 × 8 × 384
and 6 × 6 × 256 respectively. The output feature maps of x
have sizes of 26×26×384, 24×24×384, and 22×22×256
respectively. Taking the features of z as filters to perform a
convolution on the features of x, the size of the output response
maps are all the same, 17 × 17. The final response map is
resized to the size of the input to locate the target.

c) Training: The SiamFC model is trained on the Im-
ageNet dataset ([15]) by considering only color images. The
ImageNet dataset contains more that 4,000 sequences, about
1.3 million frames and 2 million tracked objects with ground
truth bounding boxes. For the input, we take a pair of images
and crop the exemplar patch z in the center and the search
region x in another image. The SiamFC model is trained for
50 epochs with an initial learning rate of 0.01. The learning
rate decays with a factor of 0.86 after each epoch. The
AlexNet model is pretrained on the ImageNet dataset for the
image classification task. We trained the SE-blocks for the two
models separately in the same manner. For each model, the
original parameters are fixed. We then apply SE-blocks on the
output of each layer and take the recalibrated output of each
layer as the output feature to generate the result for training.
The SE-blocks are trained on the ImageNet dataset with 50
epochs with an initial learning rate of 0.01. The learning rate
decays with a factor of 0.86 after each epoch.

We performed our experiments on a PC with an Intel i7-
3770 3.40 GHz CPU and a Nvidia Titan Xp GPU. The bench-
mark results are calculated by the Python implementation of
the OTB toolkit ([16]). The average testing speed of our tracker
is 39 fps.

d) Tracking: We initialize our tracker with the coordi-
nates of the bounding box in the first frame. The exemplar
patch is fed into the basic SiamFC model and AlexNet
model to generate the preliminary feature representations Slz ,
Alz (l = c3, c4, c5). Then, SE-block is applied to produce the
recalibrated feature maps S∗lz , A∗lz , which are used to produce
response maps for tracking the target on all subsequent frames.

When processing the current frame, the tracker crops the
region centered on the last object center position, generates
the feature representations, and output the response maps by
a correlation operation with the feature maps of the target
object. The new position of the target is indicated by the the
maximum value in the final combined response map.

e) Hyperparameters: The channel reduction factor r in
SE-blocks is set to 4. The empirical weights wts for rSc3, rSc4,
rSc5, rAc3, rAc4 and rAc5 are fixed to 0.1, 0.3, 0.7, and 0.1, 0.6,
0.3, respectively. The empirical weights wts for rS and rA are
0.3 and 0.7. To handle scale variations, we search the target
object over three scales 1.025{−1,0,1} during evaluation and
testing.



TABLE I
EXPERIMENTS WITH SEVERAL VARIATIONS OF OUR METHOD, WHERE A AND S DENOTE RESPECTIVELY THE ALEXNET MODEL AND SIAMFC MODEL.

BOLDFACE INDICATES BEST RESULTS.

OTB-2013 OTB-50 OTB-100
Model Conv3 Conv4 Conv5 Fusion SE AUC Prec. AUC Prec. AUC Prec.

A D 0.587 0.740 0.474 0.618 0.559 0.712
A D D 0.603 0.755 0.504 0.642 0.587 0.747
A D 0.632 0.789 0.536 0.692 0.614 0.778
A D D 0.637 0.801 0.544 0.707 0.623 0.795
A D 0.582 0.763 0.496 0.665 0.557 0.735
A D D 0.573 0.762 0.507 0.696 0.575 0.769
A D D D HW 0.623 0.774 0.515 0.657 0.605 0.763
A D D D SM 0.633 0.797 0.542 0.705 0.616 0.784
A D D D SW 0.630 0.795 0.538 0.699 0.616 0.786
A D D D HW D 0.627 0.798 0.537 0.700 0.617 0.790
A D D D SM D 0.631 0.799 0.542 0.706 0.621 0.792
A D D D SW D 0.635 0.811 0.545 0.716 0.627 0.803

S D 0.510 0.661 0.439 0.574 0.512 0.656
S D D 0.545 0.709 0.465 0.608 0.532 0.687
S D 0.584 0.757 0.507 0.666 0.570 0.742
S D D 0.592 0.772 0.518 0.686 0.581 0.758
S D 0.600 0.791 0.519 0.698 0.586 0.766
S D D 0.606 0.801 0.535 0.722 0.588 0.777
S D D D HW 0.614 0.794 0.532 0.692 0.602 0.776
S D D D SM 0.612 0.787 0.539 0.697 0.607 0.777
S D D D SW 0.615 0.808 0.534 0.705 0.600 0.780
S D D D HW D 0.627 0.823 0.542 0.716 0.606 0.787
S D D D SM D 0.591 0.761 0.501 0.649 0.575 0.736
S D D D SW D 0.603 0.780 0.518 0.673 0.590 0.759

B. Datasets and Evaluation Metrics
We evaluate our method on the OTB benchmarks [17],

[16], which consist of three datasets, OTB50, OTB2013 and
OTB100. They contain 50, 51, and 100 video sequences. The
benchmarks propose two evaluation metrics for quantitative
analysis: (1) the center location error (CLE) and (2) the overlap
score, which are used to produce precision and success plots
respectively. The precision plot is obtained by calculating
the ratios of successful tracking iterations at several CLE
thresholds. The threshold of 20 pixels is used to rank the
results. For the success plot, we compute the IoU (intersection
over union) between the tracking results and the ground truth
labels for each frame. The plot show the corresponding success
rate for each overlap threshold. The AUC (area-under-curve)
is used to rank the results.

C. Ablation Analysis
To investigate the contributions of each module and the

optimal strategies to combine representations, we perform an
ablation analysis with several variations of our method.

a) A proper combination of features is better than fea-
tures from a single layer: As illustrated in Table I, we
experimented using features from a single layer as the target
representation and combined features from several layers with
different combination strategies for the two CNN models.
The results show that, taken separately, conv3, conv4, conv5
produce similar results. Since object appearance changes,
conv3 that should give the most precise location does not

always achieve good performance. However, with a proper
combination, the representation is significantly improved.

b) Features get enhanced with recalibration: Due to
the Squeeze-and-Excitation operations, recalibrated features
achieve better performance than the preliminary features. Re-
calibration through SE-block thus improves the representation
power of features from single layer, which results in a better
representation of the combined features.

c) Multiple models are better than a single model: Our
approach utilizes two CNN models as feature extractors. Here
we also conducted experiments to verify the benefit of using
two CNN models. As illustrated in Table II, we evaluated
the performance of using one CNN model and using the
combination of the two CNN models. The results show that
the combination of two models is more discriminative than
only one model regardless of the use SE-blocks.

d) A proper strategy is important for the response maps
combination: We applied three strategies to combine the
response maps: hard weight (HW), soft mean (SM) and
soft weight (SW). Since the two CNN models we used are
trained for different tasks and that features from different
layers embed different level of information, different types
of combination strategies should be applied to make the best
use of features. The experimental results show that generally,
combined features are more discriminative than independent
features, while a proper strategy can improve the performance
significantly as illustrated in Table I and Table II. In addition,
we observe that the soft weight strategy is generally the most



TABLE II
EXPERIMENTS ON COMBINING RESPONSE MAPS FROM THE TWO CNN MODELS. Aconv5 IS ONLY TAKING FEATURES FROM THE LAST CONVOLUTIONAL

LAYER OF ALEXNET NETWORK, Sconv5 IS ONLY TAKING FEATURES FROM THE LAST CONVOLUTIONAL LAYER OF SIAMFC NETWORK. Acom IS THE
COMBINED RESPONSE MAP FROM ALEXNET NETWORK BY SOFT WEIGHT COMBINATION, Scom IS THE COMBINED RESPONSE MAP FROM SIAMFC

NETWORK BY HARD WEIGHT COMBINATION. BOLDFACE INDICATES BEST RESULTS.

OTB-2013 OTB-50 OTB-100
A S Fusion SE AUC Prec. AUC Prec. AUC Prec.

Aconv5 0.582 0.763 0.496 0.665 0.557 0.735
Acom 0.630 0.795 0.538 0.699 0.616 0.786
Acom D 0.635 0.811 0.545 0.716 0.627 0.803

Sconv5 0.661 0.854 0.581 0.764 0.647 0.831
Scom 0.614 0.794 0.532 0.692 0.602 0.776
Scom D 0.627 0.823 0.542 0.716 0.606 0.787

Acom Scom HW 0.637 0.815 0.555 0.720 0.625 0.801
Acom Scom SM 0.647 0.819 0.560 0.728 0.638 0.816
Acom Scom SW 0.647 0.818 0.564 0.734 0.637 0.813
Acom Scom HW D 0.667 0.852 0.583 0.761 0.644 0.824
Acom Scom SM D 0.640 0.810 0.557 0.718 0.632 0.804
Acom Scom SW D 0.667 0.854 0.581 0.764 0.647 0.831

appropriate, except for combining hierarchical features from
the SiamFC model.

D. Comparison with state-of-the-art trackers

We compare our tracker MFST with MBST [7], LMCF [18],
CFNet [8], SiamFC [1], Staple [19], Struck [20], MUSTER
[21], LCT [22], MEEM [23] on OTB benchmarks [17], [16].
The precision and success plots are shown in Figure 3.
Both plots show that our tracker MFST achieves the best
performance among these state-of-the-art trackers on OTB
benchmarks, except on the precision plot of OTB-50. The
feature calibration mechanism we employed is beneficial for
tracking as well. It demonstrates that by using the combined
features, the target representation of our method is more
efficient and robust. From the results, although we use siamese
networks to address the tracking problem as SiamFC, and
take SiamFC as one of our feature extractors, our tracker
achieves much improved performance over SiamFC. Besides,
despite the fact that the MBST tracker employs diverse feature
representations from many CNN models, our tracker achieves
better results with only two CNN models, in terms of both
tracking accuracy and speed. A speed comparison is shown in
Table III.

V. CONCLUSION

In this paper, we presented the Multi-Features Siamese
Tracker (MFST), a new tracking algorithm that exploits diverse
feature hierarchies within the Siamese framework. We utilize
features from different hierarchical levels and from different
models using three combination strategies. Based on the
feature combination, different abstraction levels of the target
are encoded into a fused feature representation. Moreover, the
tracker greatly benefits from the new feature representation due
to our Squeeze-and-Excitation mechanism applied to different
channels to recalibrate features. As a result, MFST achieved
strong performance with respect to several state-of-the-art
trackers.
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