Abstract:
Wrist-wearable devices such as smartwatch hardware have gained popularity as they provide quick access to various information and easy access to multiple applications. Am...View moreMetadata
Abstract:
Wrist-wearable devices such as smartwatch hardware have gained popularity as they provide quick access to various information and easy access to multiple applications. Among the numerous smartwatch applications, user verification based on the handwriting is gaining momentum by considering its reliability and user-friendliness. In this paper, we present a novel technique for user verification using a smartwatch based writing pattern or style. The proposed approach leverages accelerometer data captured from the smartwatch that is further represented using 2D Continuous Wavelet Transform (CWT) and deep features extracted using the pre-trained ResNet50. These features are classified using an ensemble of classifiers to make the final decision on user verification. Extensive experiments are carried out on a newly captured dataset using two different smartwatches with three different writing scenarios (or activities). Experimental results provide critical insights and analysis of the results in such a verification scenario.
Date of Conference: 10-15 January 2021
Date Added to IEEE Xplore: 05 May 2021
ISBN Information:
Print on Demand(PoD) ISSN: 1051-4651