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Abstract—In contrast to human vision, common recognition
algorithms often fail on partially occluded images. We propose
characterizing, empirically, the algorithmic limits by finding a
minimal recognizable patch (MRP) that is by itself sufficient to
recognize the image. A specialized deep network allows us to find
the most informative patches of a given size, and serves as an
experimental tool. A human vision study recently characterized
related (but different) minimally recognizable configurations
(MIRCs) [1], for which we specify computational analogues (de-
noted cMIRCs). The drop in human decision accuracy associated
with size reduction of these MIRCs is substantial and sharp.
Interestingly, such sharp reductions were also found for the
computational versions we specified.

I. INTRODUCTION

Deep neural networks (DNNs) provide the current state-
of-the-art performance in many computer vision tasks, and
especially in recognition [2]–[4]. In contrast to human recog-
nition processes, which can successfully recognize small or
only partially visible objects [1], [5], the performance of
neural networks quickly deteriorates when objects are partially
occluded or cropped [6]–[8].

This raises a natural question: What is the minimal image
part (or parts) that suffice for recognizing an object?

In this work, we consider a special practical version of
this question: what is the minimal size of a square sub-image
(patch) that is sufficient for recognition using a convolutional
neural network (CNN)? We chose to consider a CNN as a
substitute to general recognizability because, currently, CNN
algorithms are as good as if not better than any other algorithm
at this task. We actually examine that question for two types
of patches:
Globally minimal patch - Here we look for a patch of min-

imal size that provides the correct (and best) categoriza-
tion. We denote this sub-image the minimally recogniz-
able patch, or MRP.

Locally minimal patch - Here we look for a patch that suf-
fices for correct categorization, but whose contained sub-
patches, do not. This criterion follows the minimally
recognizable configuration (MIRC) specified in [1] using
human responses (see Sec. II). We specify this patch
computationally and correspondingly denote it cMIRC.

Note that cMIRCs are not unique and are also not of
minimal size. The MRP on the other hand, is unique and is of
minimal size, no larger than the size of the smallest cMIRC
in the given image (see examples in Fig. 1). Being minimal,

Fig. 1. Examples of minimal patches. Top row: MRPs (blue) and best
smaller unrecognizable patches (red). Bottom row: cMIRCs (excluding highly
overlapping patches).

it may be considered as one way for quantifying the minimal
amount of information required for recognition. See Sec. II
for related studies.

To find minimal recognizable patches, we designed a special
neural architecture that identifies the most informative patch
and classifies the image based on the information within it.
Several variations of this patch-based classification (PBC) ar-
chitecture, corresponding to different patch sizes and different
ways of accumulating the local information, are considered.
As expected, the minimal recognizable patches we found differ
between and within categories, and increase in size for higher
required accuracy.

A particularly surprising finding of the MIRC paper [1],
which motivated this study, is that human recognition accuracy
drops sharply and significantly with patch size, exactly for the
size separating MIRCs and their sub-patches. This comes in
contrast to algorithmic classifiers where the accuracy decreases
smoothly with patch size, and suggests that a different mech-
anism is applied in the human system. Interestingly, and in
contrast to previous studies, we found similar sharp changes
for MRPs and cMIRCs.

This paper offers the following contributions:

• PBC neural architecture that finds the most informative
patch and uses it to categorize the entire image.

• Characterization of globally and locally minimal patches
sufficient for categorization.

• An investigation of the confidence vs. patch size be-
haviour, pointing at similarities between patch-based cat-
egorization in human vision and in algorithmic imple-
mentations.
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II. RELATED WORK

Local regions and features have been widely used by
classical recognition algorithms and have provided improved
immunity to pose change, partial occlusion, and in-class
variance. Prominent examples include image fragments [9],
visual bag of words models [10] and the deformable-parts-
models [11].

Likewise, convolutional neural networks (CNNs) calculate
local-scale descriptions, which are implicitly integrated into
discriminative part representations and eventually globally
combined into a decision [2], [12], [13]. The process carried
out by CNNs of combining local features with increasingly
more global and expressive structural information provides
the current state-of-the-art performance in classification and
detection of fully visible objects. Yet, recognition accuracy of
CNNs decreases when faced with partially visible objects, as
happens for example in the presence of occlusions [6], [7],
[14],

A CNN’s robustness to partial occlusions can be improved
by incorporating samples of occluded objects during training
[6]. However, not every possible occlusion can be encountered
in the training dataset as the occlusion distribution seems
to follow a long tail [15]. In addition, the effects of such
an approach are limited and do not generalize well [8].
Specialized dedicated modifications to standard recognition
architectures either exploit domain-specific prior knowledge
[16] or work by reducing the spatial support of their learned
features [7]. These approaches improve their partial object
accuracy, which however is still considerably lower than that
obtained with full-object visibility.

This deterioration is expected, yet it stands in contrast
to human vision, in which object recognition is attained
remarkably well, even when seeing only partial data. First,
low resolution is sufficient [17] and 32× 32 color (or 64× 64
gray-level) images are recognized well. Second, human object
recognition abilities remain robust when only small amounts
of information are available due to heavy occlusion and 10%
visibility is adequate for performance well above chance [5].

Recently, a psychophysical study [1] further showed that
reliable human object recognition is possible even from small
image-patches and specified a special class of minimal image
patches. These patches are minimal in the sense that they
are recognizable, but their sub-patches, smaller by 20%, or
identical patches with 20% lower resolution, are not. That
is, such patches, denoted minimal recognizable configurations
(MIRCs), are locally minimal. Interestingly, this study found
that human recognition accuracy associated with the sub-
patches was significantly lower than that associated with the
MIRC itself. Tests with recognition algorithms, applied to
MIRCs and to their sub-images, did not find a similar accuracy
drop. A follow-up on this work demonstrated that CNN classi-
fication for some patches, denoted fragile recognition images
(FRIs), may be changed due to small translation or to small
resolution reduction [18]. Our work relates to the psychophys-
ical study mentioned above [1] as we use our model to both

evaluate the MIRCs and to suggest computationally specified
locally minimal recognizable patches, denoted cMIRCs, which
exhibit similar properties to the human-specified MIRCs.

The amount of information required for algorithmic recog-
nition was considered in several works. Image regions of inter-
mediate complexity were found to be maximally informative
[19]. Sensitivity of common CNN architectures to occlusions
was evaluated in various studies [5], [6], [8]. Robustness to
different image distortions such as blur, noise, contrast and
JPEG compression was also examined [8], [20]. It seems that
local features carry a lot of information and suffice for high
accuracy classification [21].

III. TOOLS FOR DETERMINING PATCH RECOGNIZABILITY

A. Patch Recognizability

Our goal is to characterize the globally and locally minimal
sub-image (patch) required for successful categorization. In
this paper, we consider this general question in the context of
a specific data set and in the closed set setting.

To address image variation, due to scaling and other pose
changes, we specify patch size as a fraction of the full
object size, as seen in the given image. In our study, we
use fixed size images (32 × 32) from the CIFAR datasets.
Most images contain one object, tightly bounded by the image
boundaries. For these images, a fixed fraction of the object size
corresponds to a fixed size in pixels.

Consider a specific patch. We shall say that this patch is
Locally Recognizable if a categorization procedure accepting
only this patch as its input classifies it to the correct category.
Formally, let Sc

p denote the score of class c associated with
the patch p. Here this score is provided by a CNN, denoted
a single-patch-network, described below. Then the patch is
Locally Recognizable relative to this score if the inferred class,

ĉ = argmaxc Sc
p (1)

is correct.
Note that this notion of recognizability is rather weak. A

patch can be small or smooth and get similar scores for
several categories. Yet, if the score associated with the correct
category is a bit larger than the other, it is, by this definition,
recognizable. The following definition is more meaningful: A
patch is q-Locally Recognizable if a categorization procedure
accepting this patch as its input classifies it to the correct cate-
gory with a confidence larger than q. We shall use confidence
measures defined below.

We are also interested in global, image-level, recognizability
from an image patch. A sub-image is globally recognizable if
the correct class score associated with this patch is higher than
all other scores associated with all other patches and with other
classes. Thus, when the image contains at least one globally
recognizable patch, then the estimates class

ĉ = argmaxc (maxp Sc
p) (2)

is correct.



Fig. 2. PBC model - (A) Input image is split into patches which are resized to a standardized size. (B) Each patch is analysed by the SPN. (C) The aggregation
layer transforms patch-level scores into image-level scores and a softmax layer converts them into image-level class-probabilities.

In contrast to local recognizability, it is unlikely that a
very small or smooth patch would be associated with the
maximum global score. This is because typically, numerous
similar patches will be present in images of other categories.
On the other hand, for categories that are not too similar, we
expect to find in each image a sub-image of sufficient size and
detail that is consistent only with its category.

B. The Patch Based Classification Model

The main computational tool developed for the study of
minimal recognizable patches is the patch-based classification
(PBC) model, which calculates scores and confidences, and
performs image-classification based on information included
in the best or most informative single patch of the full image.
The best patch is unknown and is not pre-specified; therefore,
locating it is part of the network’s task. This also means that
learning the PBC classifier is a weakly supervised task. The
model is aimed at finding the globally minimal patch. Yet, its
learning process provides scores and confidences that are used
for finding locally minimal patches as well. Aiming at global
recognizability is a harder task, and as we found, training for
it also produces better classifiers for local recognizability.

We use different networks, sharing a fixed architecture, for
each patch size. The network is composed of the following
parts: a. Splitting the input image into Np (overlapping)
spatial patches and resizing each one to a standardized size. b.
Independently analyzing each patch using a CNN, denoted the
single-patch-network (SPN). For each patch, the SPN provides
Nc patch-level scores, one for each category. c. An aggregation
layer converting the patch-level scores of all Np patches into
Nc image-level scores, which are normalized by a softmax
layer, providing Nc image-level class-probabilities. See Fig. 2
for a diagram of the model. We elaborate on these network
parts below.

C. Single Patch Network

The patch network could be any standard classification
network, and finding the most accurate network is not a goal
of this paper. The network used in our experiments follows
the All-Convolutional-Net model [22]. Relatively simple in
nature, this model achieves high accuracy just a little lower
than the best much more complex classifiers. We modified

it slightly by replacing the dropout regularization layers with
batch-normalization and the 6×6 global-averaging layer with a
more generalized 6×6 convolutional layer. The softmax layer
was moved out of the single-patch-network, to be placed after
the aggregation stage (see Section III-E).

Comparing responses and accuracies for different patch
sizes is essential in this study. Therefore, to avoid an
architecture-dependent bias, we insisted on using a uniform
architecture (with different learned weights) and on interpolat-
ing the patches to the same input size: 32× 32. As expected,
when experimenting with other interpolated input sizes, we
found that smaller interpolated patches work somewhat better
with smaller original patch sizes, for which the interpolation
is less extreme. However, the small differences in the accuracy
(less then 5%) were not significant for this study.

D. Patch Score Aggregation

The scores for all patches and all categories (patch-level
scores) are aggregated to give image level scores, one for each
category. We considered two types of max score aggregation:
Category-independent max - (Sc

max−ind) This score, eval-
uated separately for each category, is the maximal score
of this category over all patches. For this aggregation,
the score for each class is usually taken from a different
patch.

Winner-directed max - (Sc
max−dir) The image score for all

classes is taken from a single patch, the one associated
with the overall maximum score.

Both aggregation methods classify the image using the
best overall score, as specified in Equation (2). The first
uses patches that are possibly different from the winner, for
evaluating the scores associated with other classes. The second
aggregation takes the other classes’ scores from the same
patch, ignoring possibly higher scores from other patches.
Formally,

Sc
max−ind = max

p
{Sc

p}, (3)

Sc
max−dir = Sc

p∗ ,where p∗ = argmaxp (maxc Sc
p) (4)

The aggregation method influences the confidence associ-
ated with the different categories, prediction loss, and hence
the training process.



It seems that an intelligent agent wishing to categorize
the object(s) in a scene, would scan that scene and try to
extract the best evidence for each category, no matter where.
In this context, calculating confidence using the first, category-
independent aggregation, is justified. On the other hand, when
only one patch is observed, the second, winner-directed, ag-
gregation describes the available information better. Moreover,
in scenes containing several objects, the second aggregation
allows the detection of multiple categories. For such scenes,
it also helps the learning process, because the presence of
an object from one category on one place does not indicates
that responses to other categories in other locations should
be suppressed. Empirically, the two aggregation methods give
similar results, with some advantage to the first. See Section
V-C for more details.

E. Placing the Softmax Layer

The softmax score normalization is the final layer, acting on
the image-level scores provided by the aggregation layer. In
principle, we could alternatively apply softmax normalization
on the scores of every patch separately, before aggregation.
This however, would let the response to other classes influence
the maximum. A substantial, but not maximal response to
some class, for example, would lower the normalized response
to the winning class, which might otherwise be larger than
the response to this class in all other patches. We also found
experimentally that using a local, patch-level softmax layer
hurts the model’s generalization ability.

IV. EXPERIMENTAL SETUP

A. The CIFAR10∗ Dataset

We started our experiments with the CIFAR10 dataset,
containing ten classes [23]. Eight of these classes can be
divided into pairs of related and similar categories: ship-
plane, car-truck, dog-cat and horse-deer. We observed that for
small patches, the learned model often preferred one of two
similar categories and “gave up” on the second one. It seems
that informative small patches of related categories (e.g, the
wheels in automobiles and trucks) were effectively indistin-
guishable for the classifier. By choosing the class with larger
amount, or clearer, appearance of this patch, the classifier
achieves better mean performance. This observation points at
a limitation of recognizing from a patch.This phenomenon
interferes with finding minimal recognizable patches for the
non-preferred categories. Therefore, we experimented with a
CIFAR10 variant, which is easier in the sense of containing
less inner-similarities. This variant, denoted CIFAR10∗, was
based on classes from the CIFAR10 and CIFAR100 datasets,
and consisted of 3, 000 samples from each of the following
classes: airplane, automobile, bird, cat, deer, frog, fish, tree,
person and insect. The data set was divided into a training
set of 25, 000 images and a test set of 5, 000 images, both
well-balanced between the 10 classes.

B. Training and Implementation

We used a grayscale version of the CIFAR10∗ dataset
to train 16 patch-based models with the first aggregation
(category-independent max) for 16 square patch sizes, di× di
pixels, where d1 = 32, d2 = 30, . . . , d15 = 4, d16 = 2. We
refer to the models simply as ”model of size d”. The model
of size 32 corresponds to the full image. These grayscale
input, category-independent aggregation-trained models are
the default models used throughout our experiments. We
also trained models with color inputs and using the (second)
winner-directed aggregation.

During training, the spatial stride taken while splitting each
image was set to be half the patch size, except the smallest,
2×2 patch, for which a 2×2 stride was used. For evaluation,
the stride was always set to be a single pixel.

For training, we used a categorical cross-entropy loss func-
tion with an Adam optimizer. Training was conducted for 150
epochs, with an initial learning rate of 0.001, reduced by a
factor of 2 every 30 epochs. Weights were regulated by ridge
regression with a 1e− 4 coefficient. The batch size was set to
50 images.

The same hyper-parameters were used for the training of all
models. We found that models working with smaller patches
can benefit from lower regularization. However, the difference
was small (less then 4%) and not significant for this study.

C. Preliminary Results

We evaluated the pre-softmax output of the PBC model,
associated with the correct and incorrect category classifiers.
As expected, correct category classifier scores are higher. In-
terestingly, the maximal scores associated with incorrect clas-
sifiers (with category-independent aggregation) are relatively
consistent among different categories and patch sizes (see Fig.
3 (left)). In particular, small patches get almost constant small
scores, as apparent from the low standard deviation. This
observation is used later in the cMIRC specification process.
The distribution of all false scores is much wider.

Fig. 3. Mean and standard deviation of maximal false scores (left) and
maximal correct scores (right) as functions of patch size.



Fig. 4. Confidence curves of images with the largest (left) and smallest (right) maximal drops.

V. PATCH SIZE AND RECOGNIZABILITY

A. Single-Image Recognizability
Ideally, we would like to estimate the recognition accuracy

as a function of patch size. For a particular image, the accuracy
cannot be estimated empirically and is substituted by a single
image accuracy estimate, or confidence. In networks trained
with cross entropy loss, the softmax response approximates
the posterior probability for this category and may be used
as a simple and yet reasonably accurate confidence [24]. We
evaluated correct class confidence as a function of patch size
and further measured the confidence difference between two
consecutive patch sizes di −→ di+1.

The confidence curves for specific images reveal sharp,
significant confidence drops in most images. For each image,
we refer to the maximal confidence drop associated with two
consecutive patch sizes, and denote this shortly as the maximal
drop. The curves describing the confidence in the images
associated with the largest and the smallest maximal drop
(two images for each category) are plotted in Fig. 4. A small
part of the images were associated with a smooth uniform
confidence decrease and small maximal confidence drop (see
Fig. 4 (right)). Some other images were difficult to classify
even as full images, and were associated with low, smooth
confidence curves.

For most images, however, the maximal confidence drop is
substantial, as revealed in the maximal drop histogram (see
Fig. 5). Specifically, for the majority of images (3, 492 out of
5, 000), the maximal drop was larger than 0.5.

The critical patch sizes associated with the maximal con-
fidence drop are not fixed. Even images of objects from the
same category differ a lot due to the intra-class variability
and the uncontrolled object pose. To show this variation,
we plotted 2D histograms of the maximal drop size and the
corresponding (larger) patch size di (see Fig. 6). Clearly, the
size of this critical patch varies significantly over the set of
images associated with each category, and for some categories
there are even several dominant sizes. The images’ maximal
drops varied as well, and were typically larger when they
occurred with larger patches.

This behavior was reproduced for both grayscale and color
images. The average maximal drop was slightly different:

0.608 for color vs. 0.624 for grayscale, and patch size associ-
ated with the maximal confidence drop was smaller for color.
That is to say, as expected, larger patch sizes are required for
recognition from gray level images [17].

The classifier trained with the second, winner-directed,
aggregation led to even more substantial maximal drops: 0.72
on average. The number of images with a maximal drop
larger than 0.5 increased as well (3, 683 vs. 3, 492). This
is not surprising, because for each incorrect category, the
score associated with the patch corresponding to the winner
is, by definition, lower than the score obtained for the best
patch in this category. This makes the confidence higher.
The confidence drop tends also to be higher because it is a
difference between two winner-directed confidences, each of
which is higher than the corresponding category-independent
confidence.

Fig. 5. Histograms of maximal confidence drops for classifiers trained with
the category-independent (left) and winner-directed (right) aggregations.

Fig. 6. 2D histograms of maximal confidence drop (x-axis) and its associated
patch size (y-axis), for classifiers trained with the category-independent
aggregation.



B. Category Recognizability

We carried out additional experiments designed to evaluate
the accuracy of categorization from a single patch. This accu-
racy is estimated simply as the fraction of images for which the
PBC model provides the correct label. As expected, smaller
patches provide less information and lower accuracy (see Fig.
7). Remarkably, all categories were classified correctly with
50% accuracy with 12×12 patches, corresponding to roughly
0.14 of the image area.

Considerable variation exists between the curves of different
categories as well. Some categories may be identified from
very small patch sizes, which may correspond to either distinct
small features (e.g. a wheel or an eye) or to texture (tree
foliage). Other categories required a coarser scale structure
(e.g. birds and cats).

The variability of critical patch sizes within each category,
observed in the histograms, imply also that different images
of the same category may need different patch sizes to be
recognized reliably. The fraction of images associated with
a sufficiently large patch grows slowly with the patch size,
and corresponds to the smooth accuracy curves seen in Fig.
7 (top). The critical patch size variability (within category)
is influenced by the variance of the available instances.
Categories with low appearances variance (e.g. cars, which
are typically photographed from specific viewpoints) showed
higher accuracy over all patch sizes, and in particular, benefit
also from small discriminative features.

As expected , similar tests with color images, produced
higher accuracy and weaker dependency on patch size. See
[17] for a study revealing the advantage of color in low-
resolution images.

Fig. 7. Mean and class-specific categorization accuracy with category-
independent aggregation (top), and its comparison with winner-directed ag-
gregation (bottom).

C. The Aggregation Effect on Categorization Accuracy

An important part of the proposed patch-based model is
the aggregation, which can be either category-independent, or
winner-directed (see Section III-D). The choice of the aggre-
gation method influences the resulting classification accuracy.
Note that the accuracy difference is only due to different
training, because once the classifier is trained, the aggregation
provides the same winner: the class associated with the highest
score in any of the patches (Equation 2).

The differences in results between the two aggregations
are small (see Fig. 7 (bottom)). The small difference is
still noteworthy, however, because in training with category-
independent aggregation, the best patches for each incorrect
class are used for suppressing the score to this class. Using
these patches and not the particular winner-directed patch is
much more informative and leads to better SGD steps, more
stable training, and faster convergence. Yet, with the less
informative winner-directed patches, the obtained accuracy
is almost as good. It turns out that with smaller patches,
the overlap between these best patches and the winner patch
is smaller, the difference is potentially larger, and the dis-
advantage of learning with winner-dependent aggregation is
more significant. The difference in accuracy is correspondingly
larger, but it is still small.

VI. MINIMAL RECOGNIZABLE IMAGE-PATCHES

A. Globally Minimal Recognizable Patches

For all images, the correct classification confidence de-
creases with the patch size. Let d∗ be the minimal patch size
for which the image classification is correct. (Such a minimal
patch exists for almost all images, with the exception of a
few images that are not classified correctly even from a full
image). With some abuse of notation, we denote one of these
recognizable patches (of size d∗) – the one associated with
maximal score (and confidence) – as the minimal recognizable
patch (MRP). By definition, the MRP is unique and of globally
minimal size. Other globally recognizable image patches of
the same critical size d∗, but with somewhat lower scores, are
often present in the image. As described in Section V-A, for a
majority of images, there is a sharp confidence drop larger than
0.5. Let (di, di+1) be the pair of patch sizes associated with
this maximal drop. Interestingly, while the MRP is determined
exclusively based on recognizability, for most images (3, 418
out of 5, 000) it is associated with the maximal confidence
drop; that is d∗ = di. Several MRPs are shown in Fig. 8.
Some of them are consistent with human judgment which can
identify the category from the MRP but not from the best
smaller patch. For most MRPs, however, this consistency is
weaker.

B. Locally Minimal Patches

An important motivation for our study was the sharp accu-
racy drops associated with decreasing patch sizes observed in
human vision experiments, but not with recognition algorithms
[1]. In our single image confidence experiments, however, we
found sharp confidence drops, but these experiments consider



Fig. 8. MRP examples. Top: Images with their MRP (blue), best smaller
unrecognizable patches (red), and the associated confidence drop. Middle:
MRP sub-image. Bottom: best unrecognizable sub-image.

globally minimal patches and are therefore different than the
MIRCs considered in both perceptual and computational tests
in [1].

1) Computational MIRCs: To get closer to the tests per-
formed in [1], we now consider local, MIRC like patches.
Our goal here is to specify them, find their distribution in the
image, and test whether sharp confidence drops arise.

We focus on patches associated with correct classification.
Thus, we start by using the learned single-patch-network
(SPN) to calculate correct class confidence for every image
patch (of every size). It turns out that calculating confidence
for every patch is not straightforward. This is because most
patches, and especially the smaller ones, are non-informative,
while the SPN was trained mostly on the most informative
patches in the image. Therefore, the SPN gives arbitrary scores
for non-informative small patches and the resulting softmax
confidence may be occasionally erroneously high, leading to
the false conclusion that the patch is informative. Note that
even if the classifier would give a low score for all classes,
it could be that the softmax ratio would be still high. Thus
we take an indirect approach and estimate the confidence as
follows: for calculating the correct class confidence of a patch,
we take the score (SPN output) from this patch. However, for
the incorrect classes, we set the scores as the maximal scores
associated with possibly other patches in the image. This is
similar to the category-independent (global) aggregation used
in the training process. Here, however, as we do not have
access to the rest of the image, we substitute these scores with
their expected values. As we saw in Section IV-C, these values
are roughly constant, and do not depend on the particular
image chosen.

We argue that the usage of learned typical scores is legit-
imate. It makes the decision closer to open set classification
and is more consistent with the tests performed in [1]. It is
likely that humans, attempting to recognize an object from
a partially visible object, use past experience for calculating
their confidence and their final decision. Following the MIRC
definition [1], a cMIRC patch is specified as one that is q-
locally recognizable (see Section III-A), while all its nine
contained sub-patches (obtained by cropping each spatial di-
mension by two pixels) are not. We experimented with several
q ∈ [0.2, 0.7] values and got similar results. The following

results correspond to q = 0.5.
We found that each image from the CIFAR10∗ test dataset

contains multiple cMIRCs of different sizes and positions. On
average, we found 51.5 cMIRCs per image. This number is
bigger than the 15.1 ± 7.6 MIRCs per image found in [1].
However, if we exclude cMIRCs with shifts of a single pixel,
we revert to 20.6 cMIRCs per image (comparable with [1]).
As expected, we found cMIRCs of several sizes (see Fig. 9),
and one of the smallest cMIRCs typically coincides with the
MRP. The average confidence drop between each cMIRC and
its best sub-patch (over all images) is 0.64.

These results are similar to those observed in the human
vision study [1], and suggest a simplistic, feedforward model
to the perceptual mechanism. An explanation why previous
algorithmic attempts did not reproduce the sharp accuracy drop
is discussed below.

2) Evaluating MIRCs with the PBC Model: Typically,
MRPs and some of the cMIRCs are relatively small and
difficult for humans to recognize (see Fig. 8). The MIRCs
specified in [1] are more recognizable. We hypothesize that
the reason for this difference is the easier tasks considered in
our computational study, where close set classification with
only 10 categories were considered. In the human study,
however, the task was to recognize objects from an unlimited
library, which is harder. Therefore, more informative patches,
of larger size and detail, were specified as MIRCs. This
probably implies that their sub-MIRCs are also recognizable
by computational closed set algorithms, which, in turn, imply
that the accuracy change, between MIRC and sub-MIRCs, is
not significant.

To test this hypothesis, we took two images from [1] that
belong to the CIFAR10∗ categories: a airplane and a bird, and
tested all their MIRCs. The MIRC sub-images were estimated
manually from the original paper. Each MIRC was resized to
a size of 32 × 32, and split into 49 sub-MIRC patches (each

Fig. 9. Mean drop in confidence between a cMIRC and its best (out of nine)
contained sub-patch (top) and the amount of discovered cMIRCs (bottom) as
functions of a cMIRC’s patch size.



Fig. 10. Two images from [1] with their human-specified MIRCs (left) and
computationally specified cMIRCs (right).

of size 26× 26 (81%)). The correct class confidences and the
confidence drop between the MIRC and its best sub-MIRC
patch were evaluated using our PBC model. Since MIRCs are
originally of different sizes (Section V-B), this was repeated
for all PBCs, corresponding to all input sizes and the largest
drop was kept. The mean and maximal confidence drop for
all MIRCs were 0.11 and 0.3, respectively. These drops are
considerably smaller than drops associated with MRPs and
cMIRCs, but are consistent with the finding in [1].

VII. CONCLUSIONS

This work empirically characterizes the globally minimal
sub-image required to categorize an image successfully. A
specialized deep network that learns by a weakly supervised
auxiliary task was designed for this task. We show that the size
this minimal sub-image takes, on average, is a small fraction
of its full area, but also that it varies significantly within each
category. Following a human vision study [1], another type of
minimal recognizable patches that are not globally minimal,
but are (locally) minimal in the sense that no sub-patch of
them is recognizable, was specified as well.

Both types of minimal recognizable patches share a surpris-
ing common property with the human vision study described in
[1]: there are image regions that are sufficiently informative for
recognition, but which stop providing the required information
for recognition following a small size decrease. Moreover, the
reduction in region informativeness is sharp and substantial.
Remarkably, in both studies, this sharp reduction was not part
of the demands but was found, empirically, as a byproduct.
Earlier work did not succeed to computationally reproduce
the perceptual sharp reduction effect [1] (see however [18]).

In contrast to previous work, which provide specific infor-
mative image patches (e.g., the ”fragments” in [9]) characteriz-
ing the images of certain categories, we provide here a gener-
alized and somewhat different characterization: a network that
gives a high, discriminative score to the informative patches.
Thus the informative patches themselves are only implicitly
characterized, and the best image patches (of the same size
and category) may be different in different images.

The minimal recognizable patches we found were small, and
usually unrecognizable by humans. This is due, in our opinion,
to the closed-set setting and the small number of classes. We
intend to estimate MRPs that are more consistent with human
vision using more classes or open-set classification tools.
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