
Efficient grouping for keypoint detection
Alexey Sidnev1,2, Ekaterina Krasikova1, Maxim Kazakov1,3

1Huawei Research Center, Nizhny Novgorod, Russia
2Lobachevsky State University of Nizhny Novgorod, Russia

3National Research University Higher School of Economics, Nizhny Novgorod, Russia
{sidnev.alexey, krasikova.ekaterina, kazakov.maxim}@huawei.com

Abstract—The success of deep neural networks in the tradi-
tional keypoint detection task encourages researchers to solve
new problems and collect more complex datasets. The size of the
DeepFashion2 dataset [1] poses a new challenge on the keypoint
detection task, as it comprises 13 clothing categories that span a
wide range of keypoints (294 in total). The direct prediction of
all keypoints leads to huge memory consumption, slow training,
and a slow inference time. This paper studies the keypoint
grouping approach and how it affects the performance of the
CenterNet [2] architecture. We propose a simple and efficient
automatic grouping technique with a powerful post-processing
method and apply it to the DeepFashion2 fashion landmark task
and the MS COCO pose estimation task. This reduces memory
consumption and processing time during inference by up to 19%
and 30% respectively, and during the training stage by 28% and
26% respectively, without compromising accuracy.

I. INTRODUCTION

Recent research shows that keypoints, which are also known
as landmarks, are one of the most distinctive and robust rep-
resentations of visual fashion analysis. The class of keypoint-
based methods in computer vision includes the detection and
further processing of keypoints. They can be utilized for object
detection, pose estimation, facial landmark recognition, and
more.

The performance of keypoint detection models strongly
depends on the number of unique keypoints defined in a task,
and this could be problematic for large datasets. One of the
newest fashion datasets DeepFashion2 provides annotations
for 13 classes, each of which is characterized by a certain
set of keypoints, totaling 294. Therefore, the straightforward
prediction of all keypoints requires a heavy CNN architecture,
leading to huge memory consumption, slow training, and low
inference speed (see Figure 1), which restricts the application
areas of such a model.

Authors [5], [3] use semantic information from the task
to manually merge certain keypoints into one group. This
helps train the model more quickly while also consuming less
memory. However, the manual grouping may contain human
errors and in many cases may not be optimal.

In this paper, we propose and study various techniques of
automatic keypoint grouping which help improve the CNN
model in terms of training speed, inference time, and memory
consumption without compromising accuracy. Additionally,
we study a powerful post-processing technique specifically
designed to improve the accuracy of keypoint detection after

65 70 75 80 85 90 95

Inference time, ms

170

180

190

200

210

220

M
em

or
y

u
sa

ge
,

M
B

(39,41)

294

120
81

62

-1
5.

4%

-21.8%

-1
9.

3%

-30%
0.413

0.415

0.420

0.425

0.430

0.435

mAP

Fig. 1. The inference time and memory usage of the mDLA-34 model [3]
on the DeepFashion2 dataset. Performance is shown for models with a direct
prediction of 294 keypoints, and with groupings obtained through the proposed
approach. Color scale represents the accuracy on the keypoint detection task.
Performance is measured on Huawei Mate 20 (Kirin 980) with MNN v1.0.1
(number of threads = 4) [4].

grouping. We show the results of the clothing landmark
detection task on the DeepFashion2 dataset [1] and those of
the human pose estimation task on the MS COCO dataset [6].

II. RELATED WORK

In general, the keypoint detection task can be used in
numerous application scenarios, such as to identify human
poses [7], find facial landmarks [8], and estimate clothing
landmarks [1], [9], [10].

DeepFashion2 [1] poses a new challenge on the keypoint
detection task. It is a large-scale fashion dataset that contains
consumer-commercial image pairs, and labels such as clothing
attributes, landmarks, and segmentation masks. The public ver-
sion of DeepFashion2 train set contains 191,961 rich images
covering 13 popular clothing categories from both commercial
shopping stores and consumers. It has about 320 thousand
clothing items, and the number of keypoints for every category
varies from 8 to 39, with 294 unique keypoints in total.

The keypoint detection task for multiple objects can be
solved in a number of ways:
• Top-down: We first detect objects, and then estimate the

keypoint position for each object [11], [12], [2].
• Bottom-up: We first detect all keypoints on the image,

and then group the keypoints into objects [13], [14].

ar
X

iv
:2

01
0.

12
39

0v
1

 [
cs

.C
V

]
 2

3
O

ct
 2

02
0

TABLE I
NUMBER OF OUTPUT CHANNELS FOR THE CENTERNET MODEL, WITH 294

DIRECTLY PREDICTED KEYPOINTS FOR DEEPFASHION2

Output tensor Number of channels Channel type
Center heatmap C = 13 Heatmap

Center offset 2 = 1 · 2 Regression: 4x, 4y
Object size 2 = 1 · 2 Regression: w, h

Keypoint regression 588 = 294 · 2 Regression: 4x, 4y
Keypoint heatmap K = 294 Heatmap

Keypoint offset 2 = 1 · 2 Regression: 4x, 4y

Keypoint-based detection methods are becoming more pop-
ular in recent research as they are simpler, faster, and more
accurate compared to anchor-based detectors. Previous ap-
proaches like [15], [16] require the manual designing of anchor
boxes to train a detector. The subsequent approach involved a
series of anchor-free object detectors, where the goal was to
predict the keypoints of the bounding box, rather than trying
to fit an object to an anchor. Law and Deng proposed a novel
anchor-free framework CornerNet [17], which detects objects
as a pair of corners. On each position of the feature map, class
heatmaps, pair embeddings and corner offsets were predicted.
Class heatmaps calculated the probabilities of pixels being
corners of an object, and corner offsets were used to regress
the corner locations while the pair embeddings grouped a pair
of corners that belong to the same objects. Without relying
on manually designed anchors to match objects, CornerNet
significantly improved detection accuracy on the MS COCO
dataset. Subsequently, there were several other variants of
keypoint-based one-stage detectors, with one of them being
CenterNet [2].

Methods that utilize hierarchical information to improve the
accuracy and performance of the model were widely studied
in the domain of image classification [18], [19], [20]. Some
of them explicitly used hierarchical information or encoded
the properties of such a class hierarchy into the probabilistic
model, while others attempted to address severe mistakes by
using graph distances in class hierarchies [21], [22], [23].
Visual hierarchies can be learned or used implicitly. The same
general idea of leveraging external semantic information to
improve performance may be applied to the keypoint detection
task.

Authors [5], [3] use semantic information in the clothes
landmark estimation task of the DeepFashion2 dataset to
achieve grouping by manually merging certain keypoints into
one group. Some clothing landmarks are evidently a subset
of others. For example, shorts can be represented as a part
of trousers; therefore, they do not need unique keypoints and
can be merged into trousers. As such, we can formulate a rule
for semantic grouping: the semantically identical keypoints
(collar center, top sleeve edge, etc.) from different categories
are merged into one group. This grouping method helps train
the model faster, while using less memory.

Backbone

w

h

h/
4

w/4

Object
Detection

Keypoint
Detection

Center
heatmap

Score
[C]

Object
size

(w, h)
[2]

Center
offset

(Δx, Δy)
[2]

Keypoint
regression

(Δx, Δy)
[K×2]

Keypoint
heatmap

Score
[K]

Keypoint
offset

(Δx, Δy)
[2]

Focal loss L1 loss L1 loss

Focal lossL1 loss L1 loss

BBox

Downscale

Keypoints

Fig. 2. CenterNet architecture for keypoint detection.

III. KEYPOINT GROUPING

A. CenterNet Architecture

CenterNet [2] architecture has proven to be effective for a
wide range of tasks. In particular, it is able to carry out two
tasks simultaneously: object detection and keypoint location
estimation. Figure 2 illustrates this architecture, where a back-
bone network downsamples an image four times to generate a
feature map, which is then processed to identify objects and
corresponding keypoints. The proposed architecture has six
output tensors, also called heads.

A center heatmap is used to predict the probability of each
pixel being the object’s center for each of C classes. The center
of an object is defined as the center of a bounding box. A
ground truth heatmap is generated by applying a Gaussian
function at each object’s center. Two additional channels in
the output feature map 4x and 4y are used to refine the
center coordinates, while both width and height are predicted
directly.

Another branch handles keypoint estimation. This task in-
volves estimating 2D keypoint locations for each object in one
image. The coarse locations of the keypoints are regressed as
relative displacements from the center of the box (keypoint
regression in Figure 2). Consequently, if a certain pixel has
already been classified as an object’s center, you can take
the values in the same spatial location from this tensor and
interpret them as vectors to keypoints. Keypoint positions
obtained through regression are not entirely accurate, and as
such, an additional heatmap with probabilities is used for each
keypoint type to refine the corresponding locations. Here, a
local maximum with high confidence in the heatmap is used
as a refined keypoint position. Like the detection case, two
additional channels (4x and 4y) are used to obtain more
precise keypoint coordinates. During model inference, the
location of each coarse keypoint is replaced with the closest
refined keypoint position. In this way, we can group keypoints
belonging to the same object.

During the training stage, CenterNet uses focal loss for
heatmaps and L1 loss for each regression feature map. The
loss function for keypoint regression is computed only for
keypoints that are presented in the ground truth.

TABLE II
ESTIMATION OF MEMORY USAGE FOR DIFFERENT ENCODERS AND INPUT

RESOLUTION

Encoder Weights
(MB)

Activations
(MB)

Output
tensors (MB)

Output
tensors (%)

DLA-34
128× 128

74.4 17.0 3.5 3.8

DLA-34
256× 256

74.4 68.1 14.1 9.8

DLA-34
512× 512

74.4 272.6 56.3 16.1

ResNet-50
128× 128

115.2 16.9 3.5 2.7

ResNet-50
256× 256

115.2 67.8 14.1 7.7

ResNet-50
512× 512

115.2 271.1 56.3 14.5

Hourglass
128× 128

743.4 42.4 3.5 0.4

Hourglass
256× 256

743.4 169.5 14.1 1.5

Hourglass
512× 512

743.4 677.9 56.3 4.0

B. Grouping Analysis

One of the first steps to overcoming the challenge in key-
point detection involves defining the model output. A straight-
forward approach is to concatenate keypoints from every
category and deal with them separately. However, this is not
the best solution because of the huge size of the model output.
For instance, directly predicting 294 keypoints leads to a huge
number of output channels: 901 = 13+2+2+588+294+2.
In this case, two tensors for keypoint detection occupy 97.9
% of output channels and computations.

To store FP32 output activations for an input resolution
of 512 × 512, 56 MB is needed (512/4 · 512/4 · 901 · 4).
This contributes to over 20% of the total activation size for
ResNet-50 and DLA-34. In Table II, we can assume that ReLU
and BatchNorm operations do not occupy extra memory,
while the last column shows how much memory is occupied
by the output tensors as a percentage of the total memory
consumption (activations + weights + input).

Memory consumption increases during neural network train-
ing (see Figure 3) because ground truth and loss computation
are needed for every output channel. In CenterNet imple-
mentation, focal loss for keypoint centers requires 18 extra
operations and potential memory allocation, while regression
loss for keypoint offsets requires only two extra operations.

It is clear that certain clothing landmarks are a subset of
others. Therefore, for example, shorts do not require unique
keypoints because they can be represented by a subset of
trouser keypoints. A manual grouping from [3] allows 62
groups to be formed and reduces the number of output
channels from 901 to 205 = 13+2+2+124+62+2. Figure 3
illustrates the findings of the experiments, and reveals that
such an approach can reduce memory consumption (during
the training stage) and training time by up to 28% and 26%,
respectively. Theoretical evaluation (Table II) and experiment

200 250 300 350 400 450

One optimization step time, ms

5
50

0
6
50

0
7
50

0
8
50

0
9
50

0

M
em

or
y
u
sa
ge
,
M
B

-25%

-2
8%

D
LA
-3
4

-26%

-2
6
%

R
es
N
et
-5
0

-12%

-1
1
%

Ho
ur
gla

ss

294 keypoints 62 keypoint groups

Fig. 3. GPU memory consumption and training iteration time on RTX 2080ti.
The input resolution is 256×256, the batch size is 32 for both DLA-34
and ResNet-50, and 8 for Hourglass. Time in ms was measured for one
optimization step: batch loading to GPU, forward pass, and backward pass.
GPU memory was measured by using the nvidia-smi tool. The image is
reproduced with permission from [3].

findings (Figure 3) reveal promising results for the keypoint
grouping approach.

The key problem of manual grouping involves the human
aspect. To maintain accuracy, a smart, automatic approach
is necessary. An accurate grouping approach will benefit the
generalization ability of the model as each group will receive
more diverse training samples. Meanwhile, the same grouping
can be used as a tool for solving the class imbalance problem.

C. Automatic Grouping Approach

We view the keypoint grouping task as a clustering problem,
which is defined as follows: ki is a unique keypoint type where
i = 1, n; and gj is a group label where j = 1,m. For the
DeepFashion2 dataset, n is equal to 294; and for MS COCO
Human Pose, n is equal to 17. The keypoint grouping task
involves assigning a group label gj for every keypoint type
ki.

The first thing we must determine to solve the clustering
problem is the dissimilarity measure between different key-
point types. We propose a method that uses the following
information about keypoints to measure distance:
• Ground truth location of keypoints.
• Weights of the last convolution layer.
Ground truth location of keypoints can be directly used to

analyze the spatial location of keypoints. We evaluate each
keypoint’s offset from the center of an object, and then use this
offset to estimate the mean location of every keypoint type.
Finally, we measure the dissimilarity between two keypoint
types by calculating the Euclidean distance between mean
locations.

Such an approach is very simple but does not utilize
information about the content of the input image. Moreover,
this approach can only be used for solving keypoint regression
task.

35 40 45 50 55 60

Slice, X

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

Original decode from CenterNet

Coarse keypoint position

Heatmap

Local maxima

Refined keypoint position

35 40 45 50 55 60

Slice, X

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

Keypoint heatmap rescoring

Mask

Coarse keypoint position

Masked heatmap

Local maxima

Refined keypoint position

Fig. 4. In CenterNet, the refined location is defined as the closest point to the
coarse keypoint position, which in turn is defined as a local maximum on the
heatmap. This can lead to errors when the closest prediction is not actually
the best one (as evident in the diagram above). In the proposed technique, the
refined location is determined as a global maximum of the keypoint heatmap
rescored by the Gaussian mask, improving keypoint localization. Image is
reproduced with permission from [3].

In fully convolution neural networks like CenterNet [2],
the last layer produces separate channels for each keypoint
type. For the regression task CenterNet provides each keypoint
type with two channels (4x and 4y), while the heatmap-
based branch uses only one channel. The last layer contains
weights that are applied to the same activation feature map,
and it produces results for different keypoint types. We follow
the intuition that similar keypoints should have convolution
weights that are almost the same, and use those weights to
measure the Euclidean distance between different keypoint
types.

The simplest way to implement keypoint grouping involves
merging keypoints from different object classes into one group
(for example, keypoints for shorts and trousers). This can be
achieved by setting a large distance value between keypoints
from the same class, and will be referred to as grouping
with restrictions. Hierarchical clustering approaches can han-
dle such keypoint merging well, and we use agglomerative
clustering with linkage ”average”.

To achieve the keypoint detection task, CenterNet relies
on two branches: keypoint location regression to estimate ap-
proximate keypoint locations, and keypoint heatmap to refine
regressed locations. Given this, we can allow two keypoints
from the same class (the same object) to be merged into a
single cluster by regression, provided that they stay in different
clusters by heatmap, and vice versa. In this way, we can decode
the original keypoints from clusters unambiguously. This type

19,54 39,41 62,62 81,81 120,120 294,294

Number of clusters (regression, heatmap)

0.36

0.41

0.42

0.43

0.44

0.45

m
A

P

..
.

Conv-based w\ restrictions

Conv-based w\o restrictions

Conv-based w\ restrictions, Manual

Manual, Manual

Offset-based, Manual

w\ heatmap rescoring

w\o heatmap rescoring

Fig. 5. Comparison of grouping strategies on training from scratch. Manual
groupings from [5], [3] are used as-is and in combination with keypoint
regression groupings: offsets-based and convolution-based (red points). Only
the best results with heatmap rescoring for manual grouping are shown to
avoid cluttering the chart.

of grouping method will be referred to as grouping without
restrictions.

We discovered that decoding substantially affects accuracy,
and provide the following modification to keypoint refinement
from [3].

By rescoring the keypoint heatmap, we propose adding a
penalty to the keypoint score in proportion to the distance from
a coarse keypoint position with Gaussian function. The final
keypoint position is determined as a location of the maximum
value in the rescored keypoint heatmap.

Assuming mask is a heatmap with zero values by default,
we set 1 into the mask in the coarse keypoint position and
fill neighbor values with 2D Gaussian function with standard
deviation sigma (see the second image in Figure 4). The
parameter sigma is estimated using a subset of validation
dataset for every model.

The keypoint heatmap is rescored for each coarse keypoint
position through the following formula:

Ĥkps = Hkps ·mask (1)

This modified decoding is particularly important when we
use grouping from the same class for keypoint regression. The
more points from the same class we merge, the further away
the coarse keypoint position is from the correct point on the
heatmap, and the more likely the scenario in Figure 4 is to
occur. As we show in the next section, decoding with keypoint
heatmap rescoring allows keypoints from the same class to be
merged without significantly affecting accuracy.

IV. EXPERIMENTS

A. Setup

To demonstrate the effectiveness of the proposed approach
and investigate its properties, we conducted experiments on
the DeepFashion2 dataset [1]. It provides annotations for 13
classes of clothing, with each class annotated by a unique
set of keypoints (294 keypoints in total). We also present
the results for human pose estimation on the MS COCO
dataset [6].

39,41
40,42

50 60 70 80 90 100 110 120 130 294

Number of clusters

0.415

0.420

0.425

0.430

0.435

0.440

m
A

P

(a)

Checkpoint #1

Checkpoint #2

39,41
40,42

50 60 70 80 90 100 110 120 130 294

Number of clusters

0.80

0.85

0.90

0.95

1.00

A
d

ju
st

ed
R

an
d

In
d

ex

(b)

Keypoint regression

Keypoint heatmap

Fig. 6. Grouping robustness. Figure (a) presents keypoint detection accuracy achieved after fine-tuning the initial model for 15 epochs with corresponding
grouping obtained from two different checkpoints. Figure (b) illustrates a consensus between two groupings from different checkpoints: one for keypoint
regression, and the other for keypoint heatmap. In almost all cases, the same number of clusters for regression and heatmap are used. The leftmost point
presents a minimal number of clusters.

TABLE III
DEEPFASHION2 KEYPOINT DETECTION ACCURACY WITH VARYING

NUMBERS OF CONVOLUTION CHANNELS BEFORE HEADS

Number of channels 256 64 32 16
mAP 0.401 0.412 0.431 0.423

All experiments are performed with an input image resolu-
tion of 256 × 256, using a batch of 64 images and Adam
optimizer. Like the original CenterNet architecture, DLA-
34 [24] is used as a backbone, but Deformable Convolution
is replaced with conventional convolution layer for faster
training. Backbone weights are initialized by the model pre-
trained on ImageNet.

An initial model was trained based on the following sched-
ule. The first 35 epochs with a constant learning rate of 3e-
3 were trained, and then a further 25 and 55 epochs for the
DeepFashion2 dataset and the MS COCO dataset, respectively,
were trained, with the learning rate decaying exponentially to
1e-5.

Since detection quality varies slightly from epoch to epoch,
the model was trained for another 20 short epochs of 250
iterations with a constant learning rate of 1e-5. The best
checkpoint on mini-val dataset was used for evaluation.

B. Convolution-based grouping with restrictions

In our experiments on the DeepFashion2 dataset, we use
the modified loss function for learning the keypoint heatmap:
supervision is present only at the keypoint heatmap’s channels
corresponding to the points present in the image. Therefore,
we no longer penalize the network for non-zero values in the
channels corresponding to other classes, which in turn enables
us to obtain closer weights for similar points (collar of classes
three and four, for example). In this way, we obtain weights
that reflect the semantic proximity of keypoints from different
classes.

Furthermore, using the proposed loss function allows us to
attain a more accurate model (with any grouping), where the

accuracy of the model with the original number of keypoints
is 0.424 mAP and 0.434 mAP for the base and modified loss
functions, respectively. Meanwhile, the accuracy of the model
with manual grouping by 62 groups is 0.417 mAP and 0.422
mAP for the base and modified loss functions, respectively.
The proposed loss function is only relevant for multi-class
keypoint detection tasks such as DeepFashion2. Experiments
on the single class MS COCO Human Pose dataset did not
yield any noticeable increase in accuracy.

Additionally, we discovered that the number of channels in
the convolution layers before heads significantly affects the
quality of grouping approximation. Originally, 256 channels
were used to achieve higher detection accuracy, while there
were numerous channels. This means, convolution weights
may consist of noise, and consequently affects keypoint ap-
proximation, ultimately leading to inefficient grouping. Con-
versely, a significantly small number of channels cannot
be adequate for providing accurate keypoint representations.
In Table III, quantitative results are presented for grouping
(60, 60) (the first value is a number of groups for keypoint
regression, and the second is a number of groups for keypoint
heatmap) after fine-tuning for 15 epochs. We found that 32
channels provide the most efficient grouping, and used this
configuration for training. Note that this configuration is only
used to train a checkpoint to gather convolution weights for
keypoints clustering.

To train a model with grouping we considered these two
strategies:

• Training from scratch with the parameters and schedule
described in the beginning of this section;

• Fine-tuning from the original model for 15 epochs with
a learning rate exponential decay from 4.0265e-4 to
1e-5. After keypoints are clustered, we cannot load
head convolution weights directly. To deal with this
issue we must initialize weights for each cluster g as
Wg = 1

|g|
∑

k∈g Wk, where k corresponds to the original
keypoints.

0

10

20

30

40

50

60

70

80

15 16 17 18 19 20 25 30 35 40 45 50 51 52 53 54 55 60 65 70 75 80 85 90 95 100

Number of clusters, keypoint heatmap

15
16

17
18

19
20

25
30

35
40

45
50

51
52

53
54

55
60

65
70

75
80

85
90

95
10

0

N
u

m
b

er
of

cl
u

st
er

s,
ke

yp
oi

nt
re

gr
es

si
on

82 82 79 57 57 51 24 24 22 19 19 16 14 8 8 2 2 2 0 0 0 0 0 0 0 0

79 79 76 54 54 51 24 24 22 19 19 16 14 8 8 2 2 2 0 0 0 0 0 0 0 0

79 79 76 54 54 51 24 24 22 19 19 16 14 8 8 2 2 2 0 0 0 0 0 0 0 0

76 76 73 51 51 51 24 24 22 19 19 16 14 8 8 2 2 2 0 0 0 0 0 0 0 0

74 74 71 49 49 49 22 22 20 17 17 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

74 74 71 49 49 49 22 22 20 17 17 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

74 74 71 49 49 49 22 22 20 17 17 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

59 59 59 43 43 43 22 22 20 17 17 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

59 59 59 43 43 43 22 22 20 17 17 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

51 51 51 35 35 35 22 22 20 17 17 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

49 49 49 33 33 33 20 20 19 17 17 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

48 48 48 32 32 32 19 19 19 17 17 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

41 41 41 30 30 30 18 18 18 16 16 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

41 41 41 30 30 30 18 18 18 16 16 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

41 41 41 30 30 30 18 18 18 16 16 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

41 41 41 30 30 30 18 18 18 16 16 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

41 41 41 30 30 30 18 18 18 16 16 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

31 31 31 30 30 30 18 18 18 16 16 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

24 24 24 23 23 23 18 18 18 16 16 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

23 23 23 22 22 22 17 17 17 15 15 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

23 23 23 22 22 22 17 17 17 15 15 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

22 22 22 21 21 21 17 17 17 15 15 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

22 22 22 21 21 21 17 17 17 15 15 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

22 22 22 21 21 21 17 17 17 15 15 14 12 6 6 0 0 0 0 0 0 0 0 0 0 0

15 15 15 14 14 14 11 11 11 9 9 8 6 6 6 0 0 0 0 0 0 0 0 0 0 0

8 8 8 7 7 7 4 4 4 4 4 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0

Fig. 7. Matrix of ambiguous decoding. Contains the number of keypoint
pairs from the same class that was merged for regression and heatmap
simultaneously.

Note that in both strategies, the model was trained with the
original 256 channels to achieve a high detection score.

Furthermore, we investigated the robustness of convolution-
based grouping in terms of detection accuracy and clustering
consensus. To achieve this, we evaluated various groupings
from two independent checkpoints trained with the same
parameters and schedule. To evaluate accuracy, we fine-tuned
models with each grouping for 15 epochs from the same
checkpoint. To measure the consensus between equivalent
groupings, we used the Adjusted Rand Index [25], and the
corresponding results are presented in Figure 6.

While at a lower number of clusters, one can observe
variations in accuracy and keypoint partitioning, and groupings
of 70 clusters become robust and able to achieve accuracy
comparable to the original training. A larger number causes
the clusters to become very dense and small, and further
partitioning is affected by variations in convolutional weights.
Therefore, the clustering consensus experiences a decrease, but
this should not affect the effectiveness of grouping, which is
supported by robust behavior in detection accuracy. As such,
the consensus measure can be used as a criterion to choose
the number of clusters.

Finally, we trained the models with groupings from scratch
and compared different grouping strategies, and the results
are presented in Figure 5. Grouping through the proposed
approach is slightly more effective than manual grouping. This
improvement is driven mostly by the effective grouping for
regression head since manual grouping has already been de-
signed in a heatmap manner. At the same time, straightforward
clustering based on offsets provides less effective grouping
which stresses the importance of keypoint approximation for

TABLE IV
DEEPFASHION2: CONVOLUTION-BASED GROUPING WITHOUT

RESTRICTIONS AND THE NUMBER OF INCONSISTENT PAIRS

Number of clusters 19,54 62,62 81,81 120,120
Keypoint regression 362 66 32 6
Keypoint heatmap 13 5 2 0

clustering. The heatmap rescoring technique increases accu-
racy in all cases. This is particularly true when the high
accuracy gain of 6 mAP is achieved for a very small number
of clusters. The best model with 120 clusters achieves slightly
better accuracy compared to the naive approach.

We also trained lighter models – DLA-34 with an input
image resolution of 128×128 and MobileNet v2 [26] – to
gather weights and perform clustering. We then used groupings
(62, 62) and (81, 81) to train our standard model and achieved
a detection accuracy very close to our predictions. Moreover,
we used groupings (62, 62) to train model DLA-34 with an
input image resolution of 512 × 512 and achieved accuracy
comparable to the original 294 keypoints model, yet almost
twice as fast while using 1.5 times less GPU memory for
training. These results demonstrate that the proposed grouping
approach can be used on models that are small and geared
towards training time to perform clustering. The grouping can
then be leveraged in the heavy model to accelerate the training
process without compromising accuracy.

C. Convolution-based grouping without restrictions

The accuracy results of the models that implement
convolution-based grouping without restrictions on the key-
point detection task of the DeepFashion2 dataset are presented
in Figure 5. The permitted number of clusters for each output
is determined by analyzing a matrix of ambiguous decoding
that contains the number of pairs from the same class that was
merged for regression and heatmap simultaneously (Figure 7).
The minimum grouping includes 19 and 54 clusters for the
keypoint regression and keypoint heatmap, respectively. The
number of inconsistent pairs (pairs of keypoints corresponding
to the same object category that were merged into a single
cluster) is shown in Table IV. As the number of clusters
decreases, the number of inconsistent pairs for the keypoint
regression increases, which leads to a drop in accuracy relative
to grouping with restrictions. As shown in Figure 5, the
keypoint heatmap rescoring technique prevents this drop from
happening.

Table V shows the accuracy results for the keypont detection
task on the MS COCO Human Pose dataset of the models that
implement convolution-based grouping without restrictions. In
these experiments, groupings were performed either for the
keypoint regression or the keypoint heatmap. Table V also
shows that the keypoint heatmap rescoring technique can sig-
nificantly reduce the keypoint detection accuracy drop caused
by a considerably smaller number of keypoint regression
groups. Our best grouping with 14 clusters achieves slightly
better accuracy than the model with a full set of keypoints.

TABLE V
MS COCO HUMAN POSE ACCURACY, AP

Number of clusters 10 14 17
Keypoint regression,
conv-based grouping

Base decode 0.322 0.349 0.359
Rescoring technique 0.360 0.369 0.368

Keypoint heatmap,
base decode

Conv-based grouping 0.281 0.334 0.359
Anti-offsets grouping 0.356 0.356 0.359

Let us analyze the results obtained for models with grouping
for the keypoint heatmap. If we merge the close points from
the same class into one cluster, they will probably be in close
proximity on the heatmap. Close points on the same heatmap
reduce accuracy; therefore, if we change the grouping strategy
and merge distant points in one group will accuracy increase?
To obtain the specified grouping we used clusterization by
referring to the negative distances between the average off-
sets of keypoints from the objects’ centers from annotations
(agglomerative clustering with ”complete” linkage was used),
which will be referred to as ”anti-offsets” grouping. As shown
in Table V, this strategy allows us to obtain models with
grouping for the keypoint heatmap featuring accuracy close
to that of the model with a full set of keypoints.

We applied 14 groups for keypoint regression to the human
pose estimation model provided by the authors of Center-
Net [2]. We fine-tuned the original DLA-34 512×512 model
(with Deformable Convolution) for 15 epochs using the batch
of 16, with a learning rate exponential decay equal to 0.8 from
1.008125e-4. The models have been tested with original image
resolution and flip testing. The accuracy of the model from the
CenterNet paper is 0.589 AP with base decoding, and 0.596
AP with the keypoint heatmap rescoring technique; whereas
the accuracy of the obtained model is 0.579 AP with base
decoding, and 0.592 AP with the keypoint heatmap rescoring
technique.

To obtain convolutional weights for grouping, we trained
the full network with six different outputs (heads) and losses.
However, this might not have been necessary and we can
obtain good keypoint representation by training only one
head – regression or heatmap for corresponding grouping.
We trained two models with one head by utilizing the same
parameters we used to train the full network. With groupings
obtained from those weights, we were able to achieve a
detection accuracy that is lower by only 1.5 mAP compared to
grouping from the full model. Meanwhile, the chosen values of
training parameters are not optimal for models with only one
head, which resulted in over-fitting. To improve the results,
more appropriate parameter values can be used.

V. CONCLUSION

We have shown that the proposed automatic grouping
approach with the special post-processing technique works
with the CenterNet architecture on human pose estimation
and fashion landmark detection tasks. It boosts training speed,
accelerates inference time, and reduces memory consumption
without compromising accuracy.

The proposed grouping approach can be used on models
that are small and geared towards training time to perform
clustering, and then the grouping can be used in the heavy
model to accelerate the training process.

Heatmap is the standard coordinate representation in key-
point detection tasks [27]. For this reason, the proposed
approach can also be applied to almost any keypoint detection
architecture, for example, HRNet [28], PoseFix [29], and Mask
R-CNN [12].

REFERENCES

[1] Y. Ge, R. Zhang, X. Wang, X. Tang, and P. Luo, “DeepFashion2:
A versatile benchmark for detection, pose estimation, segmentation
and re-identification of clothing images,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
5337–5345.

[2] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,” CoRR, vol.
abs/1904.07850, 2019. [Online]. Available: http://arxiv.org/abs/1904.
07850

[3] A. Sidnev, A. Krapivin, A. Trushkov, E. Krasikova, M. Kazakov,
and M. Viryasov, “Deepmark++: Real-time clothing detection at
the edge,” CoRR, vol. abs/2006.00710, 2020. [Online]. Available:
https://arxiv.org/abs/2006.00710

[4] X. Jiang, H. Wang, Y. Chen, Z. Wu, L. Wang, B. Zou, Y. Yang, Z. Cui,
Y. Cai, T. Yu, C. Lv, and Z. Wu, “Mnn: A universal and efficient
inference engine,” in MLSys, 2020.

[5] T. Lin, “Aggregation and finetuning for clothes landmark detection,”
CoRR, vol. abs/2005.00419, 2020. [Online]. Available: https://arxiv.org/
abs/2005.00419

[6] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[7] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” 2016.

[8] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Facial landmark detection by
deep multi-task learning,” in European conference on computer vision.
Springer, 2014, pp. 94–108.

[9] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang, “Deepfashion: Power-
ing robust clothes recognition and retrieval with rich annotations,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 1096–1104.

[10] S. Zheng, F. Yang, M. H. Kiapour, and R. Piramuthu, “Modanet: A
large-scale street fashion dataset with polygon annotations,” in 2018
ACM Multimedia Conference on Multimedia Conference. ACM, 2018,
pp. 1670–1678.

[11] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu, “Rmpe: Regional multi-person
pose estimation,” in Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 2334–2343.

[12] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask
R-CNN,” CoRR, vol. abs/1703.06870, 2017. [Online]. Available:
http://arxiv.org/abs/1703.06870

[13] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “Openpose:
realtime multi-person 2d pose estimation using part affinity fields,” arXiv
preprint arXiv:1812.08008, 2018.

[14] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P. V.
Gehler, and B. Schiele, “Deepcut: Joint subset partition and labeling for
multi person pose estimation,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 4929–4937.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[17] H. Law and J. Deng, “Cornernet: Detecting objects as paired key-
points,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 734–750.

http://arxiv.org/abs/1904.07850
http://arxiv.org/abs/1904.07850
https://arxiv.org/abs/2006.00710
https://arxiv.org/abs/2005.00419
https://arxiv.org/abs/2005.00419
http://arxiv.org/abs/1703.06870

[18] M. Marszalek and C. Schmid, “Semantic hierarchies for visual object
recognition,” in 2007 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2007, pp. 1–7.

[19] J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy, S. Bengio, Y. Li,
H. Neven, and H. Adam, “Large-scale object classification using label
relation graphs,” in European conference on computer vision. Springer,
2014, pp. 48–64.

[20] X. Zhang, F. Zhou, Y. Lin, and S. Zhang, “Embedding label structures
for fine-grained feature representation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
1114–1123.

[21] N. Verma, D. Mahajan, S. Sellamanickam, and V. Nair, “Learning
hierarchical similarity metrics,” in 2012 IEEE conference on computer
vision and pattern recognition. IEEE, 2012, pp. 2280–2287.

[22] J. Deng, A. C. Berg, K. Li, and L. Fei-Fei, “What does classifying
more than 10,000 image categories tell us?” in European conference on
computer vision. Springer, 2010, pp. 71–84.

[23] B. Zhao, F. Li, and E. P. Xing, “Large-scale category structure aware
image categorization,” in Advances in Neural Information Processing
Systems, 2011, pp. 1251–1259.

[24] F. Yu, D. Wang, E. Shelhamer, and T. Darrell, “Deep layer aggregation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 2403–2412.

[25] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classifica-
tion, vol. 2, no. 1, pp. 193–218, 1985.

[26] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[27] F. Zhang, X. Zhu, H. Dai, M. Ye, and C. Zhu, “Distribution-aware
coordinate representation for human pose estimation,” arXiv preprint
arXiv:1910.06278, 2019.

[28] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu,
Y. Mu, M. Tan, X. Wang et al., “Deep high-resolution representation
learning for visual recognition,” IEEE transactions on pattern analysis
and machine intelligence, 2020.

[29] G. Moon, J. Y. Chang, and K. M. Lee, “Posefix: Model-agnostic general
human pose refinement network,” 2018.

