arXiv:1912.11619v3 [cs.CV] 18 Oct 2020

Learn to Segment Retinal Lesions and Beyond

Qijie Wei*T, Xirong Li*T, Weihong Yu?, Xiao Zhang*, Yongpeng Zhang?, Bojie HuY, Bin Mo?
Di Gongll, Ning Chen**, Dayong Ding', Youxin Chen?
*Key Lab of DEKE, Renmin University of China, Beijing, China
TVistel Al Lab, Visionary Intelligence Ltd, Beijing, China
iPeking Union Medical College Hospital, Beijing, China
§Beijing Tongren Hospital, Beijing, China
’ITianjin Medicial University Eye Hospital, Tianjin, China
HChina-Japanese Riendship Hospital, Beijing, China
**The Affilliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
Email: gijie.wei@vistel.cn, xirong@ruc.edu.cn, chenyouxinpumch@ 163.com

Abstract—Towards automated retinal screening, this paper
makes an endeavor to simultaneously achieve pixel-level retinal
lesion segmentation and image-level disease classification. Such
a multi-task approach is crucial for accurate and clinically
interpretable disease diagnosis. Prior art is insufficient due to
three challenges, i.e., lesions lacking objective boundaries, clinical
importance of lesions irrelevant to their size, and the lack of
one-to-one correspondence between lesion and disease classes.
This paper attacks the three challenges in the context of diabetic
retinopathy (DR) grading. We propose Lesion-Net, a new variant
of fully convolutional networks, with its expansive path re-
designed to tackle the first challenge. A dual Dice loss that
leverages both semantic segmentation and image classification
losses is introduced to resolve the second challenge. Lastly, we
build a multi-task network that employs Lesion-Net as a side-
attention branch for both DR grading and result interpretation.
A set of 12K fundus images is manually segmented by 45
ophthalmologists for 8 DR-related lesions, resulting in 290K
manual segments in total. Extensive experiments on this large-
scale dataset show that our proposed approach surpasses the
prior art for multiple tasks including lesion segmentation, lesion
classification and DR grading.

I. INTRODUCTION

Given the increasing demand of retinal screening and the
clear shortage of experienced ophthalmologists, fundus image
based retinal disease diagnosis is crucial for the well-being of
many [1]-[3]]. Previous studies on fundus image segmentation
concentrate on anatomical structures in retina including optic
disc / cup and vessels [4]|-[6]]. By contrast, this paper aims for
retinal lesions, which are symptoms of ocular fundus diseases
manifested in color fundus images. By answering the question
of what lesions are in a fundus image and where in the
image they are located, lesion segmentation has a potential
to enable clinical interpretability of disease classes predicted
at the image level. Attacking lesion segmentation and retinal
disease classification in a unified framework is thus valuable.

Note that for natural images as in PASCAL-VOC alike
tasks [7]-[9], the semantic segmentation task and the image
classification task typically share the same class vocabulary.
Consequently, developing a multi-task approach seems to be
relatively straightforward, e.g., by converting classes predicted
at the pixel-level to the image-level by max or mean pooling.

TABLE I
A SUMMARY OF THE AMERICAN ACADEMY OF OPHTHALMOLOGY
(AAO) PREFERRED PRACTICE PATTERN GUIDELINES FOR DIABETIC
RETINOPATHY GRADING. AS VENOUS BEADING AND IRMA ARE VERY
DIFFICULT TO BE RECOGNIZED EVEN FOR OPHTHALMOLOGISTS AND
OCCUR RARELY, WE EXCLUDE THEM FROM THIS STUDY. THE EIGHT
LESIONS STUIDED IN THIS WORK ARE INDICATED BY V.

Grade Lesion evidence for DR grading
Sufficient Indirect
DRI e Microaneurysm (MA), exclusively v/ | —
DR2 e Intraretinal hemorrhage (iHE) v/ e Hard exudate (HaEx) v/
Any of the following:
DR3 o Over 20 iHEs in each of 4 quadrants | e Cotton-wool spot
e Venous beading in 2+ quadrants (CWS) v
e IrMA in 1+ quadrants
Any of the following:
DR4 e Neovascularization (NV) v/ e Fibrous proliferation
e Vitreous hemorrhage (VHE) v/ (FiP) v
e Preretinal hemorrhage (pHE) v/

For fundus images, however, lesion labels and disease classes
are distinct and lack one-to-one correspondence. See for
instance lesions used in the clinical practice guidelines for
diabetic retinopath (DR) grading in Table |l This means
lesion segmentation cannot be directly converted to image-
level DR grades. Hence, a unified framework that effectively
segments lesions and exploits the segmentation for accurate
disease classification is in demand.

Given a fundus image, instances of a specific lesion class
occupy a specific region or multiple regions with diverse visual
appearance, see Fig. |1} With the advent of fully convolutional
networks (FCN) [11], exciting progress has been made in
semantic segmentation, especially for natural scenes [12]-
[16]. However, directly applying the state-of-the-art for retinal
lesion segmentation is problematic. Unlike objects in natu-
ral images, retinal lesions lack clear boundaries against the
background. It is practically impossible for ophthalmologists
to segment lesions at the same preciseness, meaning an FCN
has to learn from annotations with imprecise boundaries. In the
meanwhile, for diagnosis, it is mostly the presence and locality
of specific lesions that are involved, see Table [l Extremely
precise segmentation is not only difficult to achieve but also

IDiabetic retinopathy is a complication of diabetes mellitus caused by
damage to blood vessels of the light-sensitive tissue at the retina [10].
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Fig. 1.
paper. For a clear view, we show only one lesion per image.

Visual examples of 8 DR-related retinal lesions studied in this

unnecessary from a clinical view. We thus hypothesize that
cutting-edge FCNs, e.g., DeepLabv3+ [14], are over-designed
for lesion segmentation.

Moreover, while the importance of an object in a natural
image is largely reflected by its size [[17], the importance of
a lesion in a fundus image does not count on the amount of
pixels it possesses. Diabetic retinopathy, depending on what
lesions are presented, is categorized into five levels, from DRO
(i.e., no DR) to DR4 (i.e., proliferative DR). The presence
of a preretinal hemorrhage, even though in a relatively small
size, means DR4. Such a property cannot be well addressed
by current segmentation losses including cross entropy [11],
[ 18]I, [19]], focal loss [20], [21], and Dice [4]], [22].

To conquer the aforementioned challenges, this paper makes
the first endeavor to simultaneously solve retinal lesion seg-
mentation and disease classification in an end-to-end frame-
work. We choose DR, a leading cause of blindness [[10], as
our target disease. Our main novelties are

e We study eight lesions including microaneurysm (MA),
intraretinal hemorrhage (iHE), hard exudate (HaEx), cotton-
wool spot (CWS), vitreous hemorrhage (VHE), preretinal hem-
orrhage (pHE), neovascularization (NV), and fibrous prolifer-
ation (FiP) that support the full range of DR grades. This is
a new state-of-the-art in terms of quantity, complexity and
clinical usability.

e We propose Lesion-Net for retinal lesion segmentation.
While inheriting FCN’s classical contracting-and-expansive
structure, Lesion-Net has a re-designed expansive path with
its length adjustable and its upsampling operation lightweight
trainable. We adopt a dual loss that combines both seman-
tic segmentation and image classification losses. These two
designs enable Lesion-Net to effectively learn from lesion
annotations with imprecise boundaries and to substantially
reduce false alarms of small-size lesions.

e We propose a multi-task network that effectively harnesses
lesion segmentation maps, as side information, for improving
DR grading. Such an attention mechanism conceptually differs
from prevalent self-attention mechanisms [15], [23]], [24].
Once trained, the multi-task network performs three tasks, i.e.,
lesion segmentation, lesion classification and DR grading, all
in one forward pass.

e We conduct extensive experiments on 12K color fundus
images collected from Kaggle [25] and local hospitals. With
290K expert-labeled pixel-level lesion segments, the dataset is
the largest of its kind. The experiments confirm the superiority
of both Lesion-Net and the multi-task network against the
prior art including FCN [11]], U-Net [[18|], DANet [15], and
DeepLabv3+ [[14]] for lesion segmentation and classification,

Inception-v3 [26] and ABN [24] for DR grading. To promote
related research, we have released the Kaggle part of our test
data, containing 1,593 images and 34,268 expert-labeled lesion
segment substantially larger than the present-day dataset
that has only 81 images with manual segmentation for four
lesions [27].

II. RELATED WORK

Models for semantic segmentation. Since Long ef al. [11],
FCNs have been the de facto standard technique for semantic
segmentation. An FCN can be conceptually decomposed into
a contracting path and an expansive path. The contracting
path progressively extracts and downsamples feature maps
from an input image. The expansive path, by transforming
and upsampling, produces a full-resolution segmentation map
of the same size as the input image. Towards more precise
segmentation, novel designs are continuously proposed either
in the contracting path, or in the expansive path or in both.
For instance, dilated convolutions are introduced in [12], so
the contracting path can produce feature maps with higher
resolutions to preserve more detailed spatial information. In
U-Net [18]], the contracting path and the expansive path are
carefully designed to be symmetrical. Skip connections from
the contracting path to the expansive path are added, again
for the purpose of preserving spatial information to generate
more accurate segmentation boundaries. In order to capture
long-range contextual information in both spatial and channel
dimensions, DANet [[15] introduces a position attention mod-
ule and a channel attention module in the expansive path. The
state-of-the-art DeepLabv3+ uses both dilated convolutions
and spatial pyramid pooling in its contracting path [14].
Its expansive path uses multiple skip connections to exploit
features from lower levels. As identifying the precise boundary
of a retinal lesion is secondary to the practical use of lesion
segmentation, a new FCN is required.

Retinal lesion segmentation. While earlier works for
retinal lesion segmentation use traditional image processing
techniques [28]], [29], current works mostly take a patch-based
deep learning approach [30]-[33]]. In [30], for instance, a cus-
tomized CNN is used to segment iHE by patch classification.
Similarly in [32]], a patch-trained CNN is applied in a sliding
window manner, classifying every grid in a test image into five
classes, i.e., normal, MA, iHE, HaEx and high-risk lesion. By
predicting whether a given patch contains a specific lesion,
segmentation maps obtained by the above works tend to be
sparse and imprecise. A more fundamental drawback is that
the approach lacks a holistic view. Consider MA and iHE
for instance. The two lesions are visually close as both are
small lesions look like dark dots. However, MA occurs around
vessels. Also, an image with no other lesion is more likely to
have MA than iHE. For a model looking only at local areas,
modeling these kinds of holistic clues is difficult.

Lesion-enhanced DR grading. Initial efforts have been
made towards lesion-enhanced DR grading. A two-step

Zhttps://github.com/WeiQijie/retinal-lesions
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method is developed in [34], where an input image is first
converted to a weight map by using a CNN to classify all
patches of the image as normal, MA or iHE. The image,
multiplied by the weight map, is fed into a DR grading
network. A lesion-guided attention mechanism is described
in [35] to weigh specific regions in the input image. Three
lesions are considered: MA, iHE and HaEx. Neither of these
works considers severe lesions such as pHE, vHE, and NV.

Attention-enhanced image classification. The state-of-the-
art is Attention Branch Network (ABN) [24]], which extends a
response-based visual explanation model [36] by introducing
an attention branch into a specific CNN. Consequently, ABN
not only improves image classification but also produces an
attention map to interpret the decision. Note that the attention
is self-generated. Our attention mechanism exploits the output
of the semantic segmentation network as side information, and
thus conceptually differs from ABN.

III. APPROACH

Given a color fundus image, we aim to perform lesion
segmentation, classification and subsequently DR grading in a
unified framework. We use X’ to denote a specific s x s image,
which contains an array of s? pixels {x1,...,%;,...,2:}.
Let £ = {l1,...,l;n} be m lesions in consideration. Re-
gions of distinct lesions, e.g., HaEx and iHE, often overlap
partially, meaning a pixel can be assigned with multiple
labels. So the goal of lesion segmentation is to automatically
assign to each pixel x; a m-dimensional probabilistic vector,
pi = {pi1,...,Pim}, where p;; € [0,1] indicates the
probability of the pixel belonging to the j-th lesion. Lesion
classification is to predict lesions at the image level. Given the
probabilistic segmentation map {ps,...,Pps2}, the probability
of the presence of a specific lesion [;, denoted as Pj, is
naturally obtained by global max pooling on the map, i.e.,

P; == max{p1j,...,ps2j}, j=1,...,m. (1)

For both lesion segmentation and classification, hard labels are
obtained by thresholding at 0.5. As for DR grading, the goal
is to exclusively assign one of the following labels, i.e., {DRO,
DR1, DR2, DR3, DR4}, to the given image.

Next, we depict the proposed lesion segmentation network,
followed by the multi-task network.

A. Lesion-Net for Retinal Lesion Segmentation

Network architecture. For the contracting path of Lesion-
Net, we use convolutional blocks of Inception-v3 [26] for its
outstanding feature extraction ability. Note that other state-of-
the-art CNNs [[37]-[39]] can, in principle, be used.

Our task-specific design lies in the expansive path, where
we leverage the effectiveness of U-Net [[18] for re-using
information from the contracting path and the flexibility of
the original FCN [11] in cutting off the expansive path for
preventing over-precise segmentation.

In concrete, in order to re-use feature maps from the
contracting path, we adopt U-Net’s copy-and-merge strategy
instead of adding operations in the FCN, see Fig. For

upsampling, we replace U-Net’s deconvolution by a 1 x 1
convolution to adjust the number of feature maps and subse-
quently a parameter-free bilinear interpolation to enlarge the
feature maps. Such a tactic not only reduces the number of
parameters. By applying an element-wise sigmoid activation,
the output of the 1 x 1 convolution is naturally transformed to
m probabilistic maps with respect to the m lesions.

The fact that retinal lesions lack accurate boundaries makes
it unnecessary to seek for very precise segmentation. While
the symmetry between the contracting and expansive paths in
U-Net is useful in its original context of cell segmentation, we
argue that such a constraint is unnecessary for the current task.
In fact, extra parameters introduced by the symmetry into the
expansive path increases the difficulty of training the network.
Therefore, we let the length of Lesion-Net’s expansive path
adjustable. If the expansive path is cut at an early stage
with feature maps of size 28 x 28, the maps need to be
upsampled by a factor of 32 to produce the final segmentation
maps. Following the convention of [11]], we term this variant
Lesion-Net-32s. By contrast, Lesion-Net-2s exploits all the
intermediate feature maps. The models that fall in between
are Lesion-Net-16s, Lesion-Net-8s and Lesion-Net-4s. Fig.
shows Lesion-Net with distinct expansive paths.

Loss function. Training Lesion-Net is nontrivial due to the
following two issues. First, while the area of a specific lesion
varies, the importance of the lesion does not depend on its
size. This property cannot be well reflected in a pixel-wise
loss, to which a smaller blob contributes less. Misclassifying
a small blob does not lead to a significant increase in the
segmentation loss, and thus difficult to be corrected during
training. Such a small misclassification, even though ignorable
from the viewpoint of semantic segmentation, can be crucial
for proper diagnosis of related diseases. Second, the data is
extremely imbalanced, making commonly used loss functions
such as cross entropy ineffective. Our study on a set of 12k
expert-labeled fundus images shows that pixels of lesions
account for less than 1%. By contrast, for PASCAL VOC2012
[40], a popular benchmark set for natural image segmentation,
the proportion of pixels corresponding to objects is about 25%.
We find in preliminary experiments that with the cross-entropy
loss, the lesion segmentation model easily got trapped in a
local optimum, predicting all pixels as negative, albeit a very
low training loss.

To jointly address the two issues, we introduce a new dual
loss that combines a semantic segmentation loss loss,c, and
an image classification loss loss.y, i.e.,

108Sdqual = A - 108Sseqg + (1 — A) - lossey, 2)

where A € [0,1] is a hyper parameter to strike a balance
between the two sub-losses. We instantiate both loss,., and
lossc ¢ using the Dice loss, previously used for segmenting
prostate MRI [22] and optic disc / cup [4]. Our ablation study
in Section shows that Dice loss is more effective than
Weighed Cross Entropy [41] and Focal Loss [20]. The weight
A is empirically set to 0.8 based on a held-out validation set,
a common practice for selecting hyper parameters.
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Proposed multi-task network for (1) lesion segmentation, (2) lesion classification and (3) DR grading. Given a color fundus image, Lesion-

Net-16s (the lower branch) generates probabilistic segmentation maps for eight lesions. Lesion classification is accomplished by global max pooling on the
maps. For lesion-enhanced DR grading, a side-attention branch is used to fuse the segmentation maps with an array of 2,048 feature maps from Inception-v3
in the upper branch. Compared with directly weighing the feature maps with the segmentation maps, the trainable side-attention is more effective.
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Fig. 3. Variants of Lesion-Net. The variable-length expansive path enables
learning from lesion annotations with imprecise boundaries.

Note that the dual Dice loss is conceptually different from
the multi-scale Dice [4], which combines pixel-level Dice
losses computed from images of varied scales and thus re-
mains insensitive to small-sized errors. The motivation of our
dual loss also differs from the combined cross-entropy loss
described in [42], where the image classification loss is used
as a regularization term to reduce overfitting.

Given a mini-batch of n images, we compute the Dice
version of [0ss,c4 as

2
23000 Y Pty

.g2 .g2 bl

> i Z]m=1 pzz,j + 20 Z]m=1 tzz,j

where t; ; € {0,1} is ground truth of the i-th pixel with

respect to the j-th lesion. In the extreme case where all pixels
are predicted as negative, the dice loss is close to 1.

3)

10885¢g = 1 —

We compute the Dice version of loss.¢ as

2- 3 > Py T
Doy Z;n:1 13127 + >0 27:1 Tzzy ’

where T;; € {0,1} is the ground-truth label indicating
whether the j-th lesion is present in the i-th image in the
given batch. Recall that both P; ; and T;; are obtained by
global max pooling on the pixel-level labels, so F; ;, T; ; and
accordingly loss. s are all invariant to the lesion size.

“4)

losscqp =1—

B. Multi-task Network for Lesion-enhanced DR Grading

To predict DR grades, we choose Inception-v3 [26] as
our baseline model. This model has established the state-
of-the-art for predicting referable DR [1]], age-related eye
diseases [43]] and other retinal abnormalities [2]. In fact, for
all models evaluated in this work, we use Inception-v3 as
their backbones for fair comparison. To produce a probabilistic
score per DR grade, we modify Inception-v3 by adding after
the global average pooling (GAP) layer a fully connected layer
of size 2,048 x 5, followed by a softmax layer. Different from
previous works that use a typical resolution of 299 x 299 [,
we use a much larger resolution of 896 x 896, making our
Inception-v3 a much stronger baseline.

For lesion-enhanced DR grading, we propose a multi-task
network, with its overall architecture shown in Fig. |Zl The
multi-task network consists of two branches. At the top is its
main branch, with Inception-v3 as the backbone, that performs
DR grading. The side-attention branch, with Lesion-Net as
its backbone, is responsible for injecting semantic and spatial
information contained in the m lesion segmentation maps into
the main branch. In particular, the injection is performed at
the last feature maps, denoted as {fi,..., fx}, in the main
branch, with & = 2, 048. To that end, the side-attention branch



shall generate the same number of weight maps, denoted as
{w1,...,w}. Multiplying the feature maps by the weight
maps side by side generates new weighted feature maps as

{fl®wl7f2®w27"'afk®wk:}7 (5)

where ® indicates element-wise multiplication. The new fea-
ture maps then go through a GAP layer, followed by a
classification block. It is worth point out that the weight
information is essentially from the side-attention branch rather
than generated by the main branch itself. Hence, the multi-
task network is conceptually different from self-attention net-
works [[15], [23], [24].

To convert the lesion segmentation maps {s1, ..., Sy} into
the weight maps, an intuitive strategy is to let the main branch
pay attention to regions with maximal lesion response. This
is achieved by channel-wise max pooling (CW-MaxPool) over
the segmentation map i.e.

w; := CW-MaxPool({s1,...,8m}), i=1

However, a region deemed to be negative with respect to
the lesions does not necessarily mean it is useless for DR
grading. So we further consider a learning based strategy,
using a lightweight convolutional block consisting of two 3 x 3
convolutional layers, i.e.

ke (6)

., wg} = Conv({s1, ..

5 Sm}). )

We train the multi-task network with the cross-entropy loss,
commonly used for multi-class image classification.

{’(1)1,..

IV. EVALUATION
A. Experimental Setup

According to the AAO guidelines [44], there are seven
lesions used as sufficient evidence for specific DR grades.
Among them, venous beading and IrMA are very difficult to be
recognized even for ophthalmologists and occur rarely. So they
are excluded from this study. We include three other lesions,
i.e., HaEx, CWS, and FiP, indirectly related to DR grading.
We compile a final list of eight lesions, see Table

Ground-truth construction. Public datasets suited for our
purpose does not exist. So we construct a large collection of
12,252 color fundus images with both pixel-level lesion an-
notations and image-level DR grades as follows. We collected
initially 23K color fundus images of posterior pole, consisting
of 12k images from our hospital partners and 11k images
randomly sampled from the Kaggle DR Detection task [25].
While the images were from patients with diabetes, some of
them show other eye diseases such as glaucoma, AMD and
RVO. So DRO does not necessarily mean a healthy eye. Such
a characteristic makes the data close to the real scenario and
thus challenging.

For expert labeling, a panel of 45 experienced ophthal-
mologists was formed. We developed a web-based annotation
system, where an annotator marks out lesions in a given image

3The segmentation maps here are already down-sampled to the same size
as the feature maps in the main branch.

using either ellipses or polygons and accordingly grade the
image. Lesion annotation and DR grading from a single image
are somewhat subjective. So for quality control, each image
was assigned to at least three annotators. Images receiving
consistent DR grades, i.e., the majority vote for a specific
grade, are preserved. Accordingly, per image we cleaned lesion
annotations so they are complied to the diagnostic guidelines.
Eventually, we obtain 12,252 images with 290K expert-labeled
lesion segments. We split the dataset at random for training
(70%), validation (10%) and test (20%).

Implementations. An input image is sized to 896 x 896, as
small lesions can not be seen well in lower resolution. We use
SGD with a weight decay factor of 0.0001 and a momentum of
0.95. The initial learning rate is 0.001. Validation occurs every
1K batches. If the validation performance does not improve in
4 consecutive validations, the learning rate will be divided by
10. Early stop occurs once the performance does not improve
in 10 consecutive validations. For training Lesion-Net, we start
with [05s5c4. Once the learning rate is reduced, l05S,c4 is
replaced by l0osSgyuq;. For DR grading, a pre-trained Lesion-
Net is used for the multi-task network. We tried to train both
branches, but found no improvement in DR grading yet an
absolute decrease of 0.01 in the segmentation performance.
So we did not go further in that direction. For the varied
models assessed in this paper, we use Inception-v3 pre-trained
on ImageNet [45] as their backbones. Random rotation, crop,
flip and random changes in brightness, saturation and contrast
are used for data augmentation. Training was performed using
PyTorch on two NVIDA Tesla P40 GPUs.

Evaluation criteria. For lesion segmentation, we report
pixel-wise F1 score, the harmonic mean of precision and
recall. For lesion classification, we report image-wise F1. As
lesions predicted at the pixel level are propagated to the image
level via global max pooling, the two criteria complements
each other, providing a more comprehensive assessment of
a specific segmentation model. For DR grading, We report
the quadratic weighted kappa, which measures inter-annotator
agreement and used by the Kaggle DR Detection task [25]].

B. Experiment 1. Lesion Segmentation

Baselines. Our criteria for choosing baselines are two-
fold: state-of-the-art in related tasks and open-source, allowing
us to run them with the same preciseness as intended by
their developers. Four prior arts, i.e., FCN [11], U-Net [18],
DeepLabv3+ [14], and DANet [15], are compared. For all
networks, we use Inception-v3 as the backbone of their
contracting paths. In addition, as the majority of the existing
works utilize a patch-based sliding window approach to detect
retinal lesions, we include patch-based FCN-32s. To train the
patch-based model, we uniformly divide each image into 4 x 4
patches, each sized to 224 x224. Given a test image, the model
is run with a window size of 224 x 224 and a stride of 112.
Scores from overlapped areas are averaged. All the baselines
are trained with the Dice loss.

Comparing Lesion-Net with distinct settings. As Table
shows, the overall performance of Lesion-Net increases first,



TABLE II
LESION SEGMENTATION AND CLASSIFICATION BY DIFFERENT MODELS.

Model Lesion segmentation Lesion classification

Mean MA iHE HaEx CWS vHE  pHE NV FiP Mean MA iHE HaEx CWS vHE  pHE NV FiP
patch FCN-32s 0553 0209 0.583 0.714 0535 0.622 0549 0.554  0.659 0.704 0.886 0.849 0.828 0720 0.634 0544 0.637 0.535
FCN-32s 0571 0327 0592 0728 0528 0.642 0562 0.530 0.662 0.769 0900 0.858 0.856 0.771 0.722 0.683 0.694  0.669
FCN-16s 0.587 0369 0.608 0.737 0575 0.639 0.515 0.581 0.671 0.787 0.890 0.849 0.847 0.743 0.758 0.726 0.696 0.783
FCN-8s 0.586 0.369 0.609 0.740 0573 0.640 0.534 0.583 0.639 0.778 0.891 0.858 0.854 0.749 0.766 0.711 0.671 0.725
U-Net 0.570  0.384 0.598 0730 0565 0.547 0.604 0.538 0.592 0.757 0.888 0.855 0.843 0.755 0.639 0.689 0.653  0.737
DeepLabv3+ 0553 0367 0612 0732 0558 0.550 0477 0498 0.631 0.794 0.899 0.863 0866 0.764 0.800 0.693 0.677 0.792
DANet 0.585 0351 0.608 0.733 0560 0.623 0.589 0.543  0.671 0.775 0900 0.853 0.852 0772 0.713 0.682 0.715 0.712
Inception-v3 - - - - - - - - - 0.716  0.895 0.893 0865 0.766 0.500 0.540 0.594 0.678
ABN-lesion - - - - - - - - - 0.726 0900 0.900 0.871 0.761 0519 0.552 0.627 0.678
Lesion-Net (Dual Dice loss)
Lesion-Net-32s 0.573 0289 0590 0.730 0.539 0.632 0.536 0.582  0.687 0.792  0.899 0.881 0857 0778 0.720 0.773  0.669  0.762
Lesion-Net-16s 0591 0377 0.612 0740 0565 0.645 0590 0571 0.623 0.801 0902 0.882 0.866 0.792 0.733 0726 0.701  0.807
Lesion-Net-8s 0.603 0377 0.617 0.740 0575 0.648 0.616 0.580 0.667 0.780 0900 0.881 0.861 0.771 0.687 0.693 0.711 0.733
Lesion-Net-4s 0592 0394 0.614 0743 0577 0.633 0588 0.570 0.616 0.781  0.904 0.883 0.862 0.791 0.678 0.660 0.719 0.748
Lesion-Net-2s 0.581 0.381 0.614 0.744 0567 0.634 0569 0.565 0.572 0.787 0900 0.893 0.868 0.793 0.706 0.706  0.667 0.764
Lesion-Net-16s (WCE) 0364 0.180 0.389 0543 0346 0424 0245 0363 0423 0.534  0.864 0.822 0780 0.574 0324 0274 0354 0.282
Lesion-Net-16s (Focal) 0458 0.165 0479 0.682 0409 0471 04838 0423 0.548 0.745  0.880 0.869 0.837 0.723 0.650 0.693  0.627  0.683
Lesion-Net-16s (Dice) 0.594 0362 0.609 0.734 0570 0.637 0.587 0.573  0.683 0.769  0.899 0.860 0851 0.754 0.709 0.661 0.694 0.724

from 0.573 (Lesion-Net-32s) to 0.591 (Lesion-Net-16s), and
decreases later, from 0.592 (Lesion-Net-4s ) to 0.581 (Lesion-
Net-2s). The peak is obtained by Lesion-Net-8s, with an F1
of 0.603. The result confirms our hypothesis that when the
network parameters keep increasing, the additional layers can
have a negative effect on the performance.

Comparing loss functions. As the parameter « in Focal
loss [20] is dataset-dependent, we set it to 0.8 according to our
validation set, with the parameter v set to 2 as suggested in the
original paper. Dice and the proposed dual loss outperform Fo-
cal and WCE [41]] with a large margin, see Table[[l, Correcting
small-sized errors cannot be well reflected by the pixel-wise
F1 score. This explains the relatively small difference between
Dice and the dual loss for lesion segmentation.

Comparing with the baselines. Lesion-Net outperforms
the baselines. Patch-based FCN-32s is less effective than its
full-resolution counterpart. As noted in Section properly
recognizing MA requires a holistic view, which is absent for
the patch-based model. This explains its lowest performance
(F1 of 0.209) on this lesion. Patch-based FCN-32s also has
difficulty in segmenting large lesions such as VHE and pHE.
Compared to DeepLabv3+, Lesion-Net shows similar perfor-
mance on MA, iHE, HaEx and CWS while noticeably better
for vHE, pHE, NV and FiP. Comparing the two groups of
lesions, the latter lack clear boundaries. As shown in Fig. El,
irregular segmentation boundaries produced by DeepLabv3+
implies its attempt to produce precise boundaries, which are
however unnecessary for retinal lesions. The results confirm
our hypothesis that DeepLabv3+ is over-designed for this task.
In the meantime, the viability of the proposed Lesion-Net for
retinal lesion segmentation is justified.

As shown in Fig. [5] for small-sized lesions with relatively
clear boundaries (MA, iHE, CWS and HaEx), we observe
close performance among distinct models. Exceptions are
L-Net-32s and FCN-32s, as they do 32X upsampling by
parameter-free bilinear interpolation, and thus difficult to
accurately locate small lesions. For large lesions yet with
imprecise boundaries (NV, pHD and vHE), the simplicity
of FCN and L-Net becomes advantageous. The L-Net series

produce more smooth segmentation boundaries. The fact that
the top performer for FiP is L-Net-32s is due to the relatively
clear boundary of this large lesion.

C. Experiment 2. Lesion Classification

Baselines. We re-use the baselines from Experiment 1,
with lesion classification obtained by global max pooling on
segmentations. We also compare with two segmentation-free
models, i.e., Inception-v3 [26] and ABN [24], both trained
using image-level lesion annotations and Dice.

Comparing Lesion-Net with distinct settings. As Table
shows, for lesion classification Lesion-Net with a shorter
expansive path, e.g. Lesion-Net-16s and Lesion-Net-32s, is
preferred. From Table [II] we see that Lesion-Net trained with
the dual loss is the best, suggesting small misclassified blobs
are reduced.

Comparing with the baselines. Inception-v3 and ABN
are less effective than the majority of the segmentation based
models. The results suggest the importance of lesions’ spatial
information even for making image-level predictions. Differ-
ent from its behavior for lesion segmentation, DeepLabv3+
becomes runner-up for lesion classification. For vHE, this
model outperforms the others with a large margin. Note that
DeepLabv3+ is specifically designed to capture multi-scale
information by its parallel dialated convolutions. This design
appears to be good at capturing the major pattern of vHE
which often occupies more than half of an image. Overall
Lesion-Net-16s is the best.

D. Experiment 3. Lesions for DR Grading

Baselines. We again compare with Inception-v3 and ABN,
both re-trained for DR grading. One might also consider a
more straightforward method that enriches the output of the
GAP layer by concatenating the m-dimensional lesion vector
(P1,...,P,). Accordingly, the size of the fully connected
layer is adjusted to (2,048 + m) x 5. Note that similar ideas
have been exploited in the context of image captioning for
obtaining semantically enhanced image features [46]. We term
this baseline Lesion-Concat.
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TABLE IIT
DR GRADING RESULTS. NUMBERS AFTER INCEPTION-V3 MEANS THE
INPUT RESOLUTION.

DR model Attention weights Lesion model Kappa
Inception-v3 (224 x 224) - - 0.660
Inception-v3 (488 x 448) - - 0.729
Inception-v3 - - 0.774
Lesion-Concat - Inception-v3 0.780
Multi-task network Conv (Eq. U-Net 0.780
Multi-task network CW-MaxPool (Eq. E] Lesion-Net-16s 0.781
Multi-task network Conv (Eq. FCN-8s 0.787
Multi-task network Conv (Eq. DeepLabv3+ 0.787
Lesion-Concat - Lesion-Net-16s 0.788
ABN-grading - - 0.797
Multi-task network Conv (Eq. Lesion-Net-16s 0.803

Results. We use Lesion-Net-16s in the multi-task network
for its best overall performance in the previous experiments.
As Table [[1I] shows, using a better lesion segmentation model
results in more accurate DR grading, with the multi-task
network (Lesion-Net-16s) as the top performer. The better
performance of learned weights (Eq. compared to CW-
MaxPool (Eq. [6) supports our statement that a region deemed
to be negative with respect to the lesions does not necessarily
mean it is useless for DR grading

We summarize the performance in Table When com-
pared to the best baseline per task, the improvement seems to
be not significant. However, for the best overall performance,
one has to simultaneously deploy three distinct baselines
(FCN-8s, DeepLabv3+ and ABN-grading) with 3.2GB GPU
memory at run time, while our multi-task network performs
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Fig. 4. Some qualitative results of lesion segmentation and classification. Red font indicates false alarms. The proposed Lesion-Net-16s produces more

TABLE IV
OVERALL PERFORMANCE OF DIFFERENT MODELS.
Model Lesion ation Lesion Classification DR grading
FCN-8s 0.586 0.778 -
DeepLabv3+  0.553 0.794 -
ABN-grading - 0.797
Our model 0.591 0.801 0.803

better in all three tasks with half GPU memory (1.5GB).

V. CONCLUSIONS

We have developed a multi-task deep learning approach to
lesion segmentation, lesion classification and disease classifi-
cation for color fundus images. Extensive experiments justify
the superiority of the proposed approach against the prior
art. The proposed Lesion-Net, with its re-designed expansive
path and the proposed dual loss, is found to be effective
for learning from retinal lesion annotations with imprecise
boundaries. Exploiting Lesion-Net as a side-attention branch,
the multi-task network simultaneously improves DR grading
and interprets the decision with lesion maps.

While working on fundus images, our work reveals good
practices for developing a semantic segmentation network
given training data with imprecise object boundaries and
extremely imbalanced classes, and for converting attributes
predicted at pixel-level to categories at a higher level. We
believe the lessons learned are beyond the specific domain.
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