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Abstract—The non-intrusive nature and high accuracy of face
recognition algorithms have led to their successful deployment
across multiple applications ranging from border access to
mobile unlocking and digital payments. However, their vulnera-
bility against sophisticated and cost-effective presentation attack
mediums raises essential questions regarding its reliability. In
the literature, several presentation attack detection algorithms
are presented; however, they are still far behind from reality.
The major problem with existing work is the generalizability
against multiple attacks both in the seen and unseen setting.
The algorithms which are useful for one kind of attack (such
as print) perform unsatisfactorily for another type of attack
(such as silicone masks). In this research, we have proposed
a deep learning-based network termed as MixNet to detect
presentation attacks in cross-database and unseen attack settings.
The proposed algorithm utilizes state-of-the-art convolutional
neural network architectures and learns the feature mapping for
each attack category. Experiments are performed using multiple
challenging face presentation attack databases such as SMAD
and Spoof In the Wild (SiW-M) databases. Extensive experiments
and comparison with existing state of the art algorithms show
the effectiveness of the proposed algorithm.

I. INTRODUCTION

Face being a non-intrusive biometrics modality has been
deployed to various security-related areas ranging from con-
strained scenarios such as mobile unlocking to unconstrained
scenarios such as surveillance. A forecastﬂ shows the popular-
ity of face recognition, which claims that the face recognition
market will increase to USD 10.9 billion by 2025 as compared
to USD 4.4 billion in 2019. However, the significant challenge
of the technology is the vulnerability against presentation at-
tacks. For instance, an attacker can hide the identity by merely
wearing a mask [I]], or an intruder can illegally access the
system using a 2D printed photo [2]. The tremendous amount
of face images on social media platforms and unrestricted
access to them can make it accessible to perform the attack.

The prevalent presentation attacks on face recognition can
be broadly classified into 2D artifacts based and 3D artifacts
based attacks. 2D attacks cover printed photos using the printer
and replay of photos or videos on an electronic screen. 3D
attacks such as silicone masks and latex masks are sophis-
ticated attacks and exhibit properties similar to the natural
face. In the literature, several presentation attack detection
(PAD) algorithms are presented, which are found effective
in handling similar domain attacks, i.e., where the detector
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Fig. 1. Images of genuine and different types of attack classes. The classi-

fication scores computed using DenseNet121 [3]] and the proposed algorithm
are also written. For genuine class the score should be close to 0 and for
attack it should be close to 1 for correct classification.

has seen the attack type or database at the time of training.
However, the generalizability against multiple attacks is still
a challenging task. At the same time, the development of
new sophisticated silicone mask based attacks increases the
detection complexity. The effectiveness of these 3D silicone
masks can be seen in the following two cases: (i) a young
person fooled the airport authority by wearing a mask and
boarded the airplaneﬂ and (ii) face recognition algorithm in
iPhone X is fooled by cost-effective maskﬂ On the other
hand, 2D based attacking mediums can also be used for
illegal access in unattended recognition systems. Therefore,
the generalizability of the PAD algorithms across attack types
is crucial. The aim of an effective PAD algorithm is to classify
the images as genuine or attack in the first step so that the fake
data is not processed through the recognition system.

The prime objective of this research is to develop a gener-
alized PAD algorithm. For an effective PAD algorithm, a chal-
lenging and unconstrained database is the first necessity. While
several databases are presented in the literature, the significant
limitation is the amount of data against each attack category.
To address this problem, we have merged two challenging
databases, namely SMAD and SiW-M [5]. The SMAD
database contains silicone mask attack and authentic images
captured in unconstrained settings. The SiW-M database is

Zhttps://tinyurl.com/udqda65
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captured in the wild containing multiple attack types, including
full masks and half masks. Further, we have also utilized
two popular 2D attack databases, namely Replay-Attack [6]
and MSU-MFSD [[7] for experimentation and comparison with
existing works. The experiments are performed in challenging
conditions, including seen attacks, unseen attacks, and cross-
database settings. As shown in Fig. [I] the proposed algorithm
is not only able to classify different images correctly, but also
able to handle variations such as pose and illumination.

In brief, the key highlights of this research are:

o A novel face PAD algorithm termed as MixNet is pro-
posed. It consists of three sub-architectures, one each for
detecting the three broad face presentation attacks - print,
replay, and mask attack;

o The proposed algorithm, unlike existing algorithms, can
further identify the type of attack images, i.e., whether the
images come from print, replay or mask attack without
an extra computational overhead;

« Extensive experiments concerning seen and unseen do-
mains showcase the strength of the proposed algorithm
as compared to hand-crafted features based and convolu-
tional neural network (CNN) based PAD algorithms.

II. RELATED WORK

The popular face PAD algorithms can be broadly grouped
into pre-deep learning era and post-deep learning era. The pre-
deep learning era based algorithms are mainly based on the
extraction of texture features [8|]-[13]], motion cue based [14],
[15], and hybrid algorithms [2]], [[16], [17]. The hand-crafted
features based algorithms are computationally efficient and
effective for the same domain attacks but lack generalizability
against unseen attacks, databases, or even sensors. Moreover,
generalizability is not the only issue, as shown by Agarwal et
al. [18]], [19]], existing PAD algorithms can be fooled through
feature manipulation or image transformations.

Menotti et al. [20] and Tu and Fang [21]] proposed the deep
architecture either through optimization or transfer learning
to utilize them for face anti-spoofing. Liu et al. [5] have
proposed deep tree learning for zero-shot attack detection.
Recently, Mehta et al. [22] developed the panoptic face PAD
algorithm using a shallow CNN model trained using focal
loss. Their algorithm yields high detection accuracy on the
individual attack and combined attack databases but lacks
generalizability against unseen attack or database. Jia et al.
[23]] have studied popular features implemented so far for PAD
in mobile scenarios using multiple challenging databases. It
is found that ResNet50 based detector yields the best result
under cross-database testing. Furthermore, several survey pa-
pers have discussed existing PAD algorithms along with their
limitations [1]], [24].

In the literature, it is observed that most of the exist-
ing algorithms are useful for a particular kind of attack or
database, but are less effective against multiple attacks in
generalized settings. Therefore, in this research, with the
aim of generalizability across multiple attacks, both in seen
and unseen settings, a novel CNN architecture based PAD

algorithm is presented. For each broad category of attack, a
CNN architecture is deployed for feature learning and at the
end confidence scores are combined together to yield the final
detection result.

III. PROPOSED FACE PAD ALGORITHM: MIXNET

As explained in Section [I face presentation attacks can be
broadly classified into three categories: print, replay, and 3D
mask attacks. However, recent databases also contain the vari-
ations of these attacks such as half masks, paper masks, and
transparent masks. An effective face PAD algorithm should
be agnostic to these variations while detecting the traditional
presentation attacks.

Most of the current algorithms have posed face PAD as a
binary classification problem, and the algorithms learn to dif-
ferentiate only between genuine and not genuine (i.e., attack)
samples. It might be the reason because of which most of the
existing algorithms are not generalized against unseen attacks.
The characteristics of the print attack (hard surface, glossy,
2D) are entirely different from that of mask attack (smooth
texture, 3D, similar to the skin); therefore, learning a single
unified network is challenging. In the proposed algorithm,
termed as MixNet, we have added an intermediate step of
detecting the three broad attacks before the final classification
of genuine/attack. MixNet consists of three sub-architectures
where each of them learns the feature mapping of one of the
three broad attacks.

A. Training of MixNet

On passing an attack sample to MixNet, only the sub-
architecture responsible for detecting that attack should output
a score close to 1. In contrast, the other two sub-architectures
should output a score close to 0. Finally, after combining these
three scores, MixNet shall return the final classification score
close to 1 to denote the detection of an attack. To enforce
the above process while training the architecture, we use four
losses and label each data sample as a quadruple, which we
explain in the following subsections

1) Loss Function: Each sub-architecture has a loss asso-
ciated with it, which results in three losses - ‘print loss’,
‘replay loss’, and ‘mask loss’. A particular loss enforces the
corresponding sub-architecture to detect the associated attack
with high efficiency. Further, there is final classification loss
for the output layer (softmax) of MixNet to classify a sample
as genuine or an attack. During training, MixNet tries to
minimize the total loss:

L:total = alﬁprint + a2£replay + OéB»Cmask + 044»Cfinal (1)

where a1, ae, a3, ay are the regularization coefficients for the
four losses. Each of these losses is categorical cross-entropy
loss represented as:

Ecrossfentropy = — Z Yi ]-Og(pz) (2)

Fig. Pa) shows the forward and the backward pass of the
proposed MixNet. When an image is forward passed, it goes
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Fig. 2. Schematic diagram of the proposed MixNet for face presentation attack detection.

through each architecture and based on the label of the input
image, the amount of loss corresponding to each branch is
back-propagated. Each loss affects only the layers that connect
the input to the loss. For example, during backpropagation
‘print architecture’ would only be affected by ‘print loss’ and
‘final classification loss’, i.e.,

a1£p7'int + 054£ffinal 3

2) Architecture Details: For training the proposed MixNet,
we label each data sample as described in Table [ The
first three entries correspond to the desired output from the
three sub-architectures (print, replay, and mask architectures).
On the other hand, the last entry corresponds to the final
classification output of MixNet.

The recent PAD algorithms [23]], [25], [26] yields state-
of-the-art performance when deep CNNs such as ResNet50
are used as the base network. Inspired from these studies,
in this research, we have used three different deep CNN
models for the three sub-architectures: ResNet50 [27] (pre-
trained on ImageNet [28]]), ResNet50-VF2 (pre-trained on VG-
GFace? [29]) and DenseNet121 [3] (pre-trained on ImageNet).
The MixNet with these architectures are referred MixNet-
ResNet50, MixNet-ResNet50-VF2 and MixNet-DenseNet121,
respectively. The regularization coefficients for each network
are as follows: (i) MixNet-ResNet50: a; = 0.3, ap = 0.5,
as = 1.0, ay = 5.0; (i) MixNet-DenseNet121 and MixNet-
ResNet50-VF2: o = 0.33, as = 0.33, a3 = 0.33, ay = 5.0.
The coefficients were experimentally found using grid-search

TABLE I
LABELING OF THE INPUT DATA FOR TRAINING MIXNET.

Type of Sample | Print Label | Replay Label | Mask Label | Final Label
Genuine 0 0 0 0
Print Attack 1 0 0 1
Replay Attack 0 1 0 1
Mask Attack 0 0 1 1

(1.3 = [0,1] and ay = [0,10]) on the training set. The
networks are trained with a batch size of 16 to optimize the
loss mentioned in section [[II-AT| using SGD optimizer with
the learning rate of 0.01.

B. Testing of MixNet

Once the MixNet is trained, it is utilized for detecting dif-
ferent attacks and genuine samples. ‘print architecture’ would
learn to detect print attacks. Similarly, ‘replay architecture’
and ‘mask architecture’ would learn to detect replay and mask
attacks, respectively. Each sub-architecture outputs a score
between 0 and 1, which indicates the confidence that the
corresponding attack is present in the input image. For the final
classification, MixNet combines the scores from the three sub-
architectures. As shown in Fig. 2(b), when the input is mask
attack image, mask architecture yields a score close to 1 while
print and replay architectures output a score close to 0. In the
end, the final softmax layer yields the score close to 1, which
implies the input is an attack image.

IV. EXPERIMENTAL SETTINGS

In this section, we describe the details of the experimental
evaluations. Three popular presentation attacks, i.e., print,
replay, and 3D mask, are utilized in our experiments. Print
and replay attacks are cost-effective and simple to perform
but are not as effective as 3D mask attacks, especially sil-
icone masks, which are significantly costlier and developed
using sophisticated hardware and software. For the efficacy
of the proposed algorithm we have used two challenging
databases; namely, Silicone Mask Attack Database (SMAD)
and Spoof In the Wild with Multiple Attack Types (SiW-M).
We have merged these databases together to create a large scale
database effective for training. Next, each database is described
followed by the description of experimental protocols and
evaluation metrics used to report the results.
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Fig. 3. The examples of genuine and attack images from the merged database.

TABLE I
DETAILS OF INTRA-DATABASE PROTOCOL. THIS IS USED TO TRAIN AND
EVALUATE A MODEL USING THREE-FOLD CROSS-VALIDATION.

Video Type Database | Number of Videos
Genuine SMAD 65
Genuine (from train split) SiW-M 217
Print Attack SiW-M 104
Replay Attack SiW-M 99
Mask Attack SMAD 65

A. Databases

SMAD: Manjani et al. created this first real-life silicone
mask attack database consisting of a total of 130 genuine and
mask attack videos. Amongst the 65 real and 65 attack videos,
43 and 59 are males, respectively; rest belong to females.
The authors have collected these videos from multiple sources
on the web. Thus, it has many variations in background,
illumination, facial expression, and video quality, making it
a challenging database.

SiW-M: Liu et al. introduced SiW-M, which contains a
total of 1,630 videos of 5-7 seconds each. It consists of 968
videos of 13 different attack types and 660 authentic videos
from 493 subjects. The attack types include print attack, replay
attack, and five types of mask attacks. The videos are captured
with the variations in pose, lighting, and expression. SiW-M
contains only 27 videos of 12 subjects for the silicone mask
attack. To include sufficient silicone mask attack videos in our
database while focusing on prevalent 2D and 3D attacks, we
have merged print, replay, and five types of 3D mask attacks
from the SiW-M database with SMAD. Fig. 3] shows sample
images from the above mentioned merged database.

B. Experimental Protocols

We divide the merged database into two non-overlapping
parts. For each part, we define a frame-based (classifying every
single frame as attack or genuine) protocol.

Intra-database Protocol: This part contains the print and the
replay attack videos from SiW-M and all the silicone attack
videos from SMAD. For genuine data, we use all the 65
genuine videos from SMAD and 217 videos from the train
split of the genuine data in SiW-M. We perform three-fold
cross-validation in our experiments. Videos from each class
(genuine, print, replay, and mask) of intra-database are equally
divided into three non-overlapping folds. In each iteration of

TABLE III
DETAILS OF CROSS AND UNSEEN ATTACK DATABASE PROTOCOL. ALL THE
VIDEOS ARE FROM SIW-M. THIS IS USED TO EVALUATE MODELS TRAINED
USING INTRA-DATABASE PROTOCOL UNDER DIFFERENT SCENARIOS.
SEEN: MODEL HAS BEEN TRAINED ON SAMPLES FROM THE SAME
DATABASE, CROSS: MODEL HAS BEEN TRAINED ON SIMILAR SAMPLES
FROM ANOTHER DATABASE, UNSEEN: MODEL HAS NOT BEEN TRAINED ON
THESE TYPE OF SAMPLES.

Video Type Number of Videos | Scenario
Genuine (from test split) 131 Seen
Silicone Mask 27 Cross
Paper Mask 17 Unseen
Half Mask 72 Unseen
Transparent Mask 88 Unseen
Mannequin 40 Unseen

cross-validation, the model is trained on two folds and tested
on the third fold. Table [l summarizes the details of this
protocol.

Cross and Unseen Attack Protocol: This part is used
to emulate cross-database testing and it helps evaluate the
performance on unseen attacks. It includes all the five 3D
mask attack videos of SiW-M and 131 genuine videos from
the test split of the genuine data in SiW-M. Table [ITI] presents
the details of this protocol. The three trained models, each
from the three iterations of cross-validation performed in
the intra-database protocol, are evaluated on this part. The
results are reported as the average for the three models.
Testing on silicone mask attack videos of SiW-M emulates
a cross-database scenario since the models are trained only
on silicone mask videos from SMAD. Further, the other four
3D mask attacks: paper mask, half mask, transparent mask,
and mannequin head are unseen attacks since the three trained
models have not seen these attacks during training. We expect
that since the training data has silicone mask attack samples,
our proposed architecture should be able to generalize on these
similar but unseen mask attacks.

C. Evaluation Metrics

We have used the standard evaluation metrics defined
by ISO/IEC 30107-3 [30]: Receiver Operating Characteristic
(ROC) curve, Attack Presentation Classification Error Rate
(APCER) and Bona Fide Presentation Classification Error Rate
(BPCER), and Average Classification Error Rate (ACER).
ROC is the plot of true positive rate (TPR) vs. false positive



rate (FPR) calculated while varying the decision threshold for
classification. The threshold for classification is computed on
the Equal Error Rate (EER) of ROC, which is the error rate at
the point where TPR equals the FPR. APCER is the fraction
of presentation attack attempts that were successful and thus
classified as genuine. BPCER is the fraction of bonafide
samples falsely rejected as spoof. ACER is the average of
APCER and BPCER. We report these metrics after averaging
across the test sets of the three-fold cross-validation. In each
iteration, we use the training fold to determine the threshold
corresponding to the equal error rate (EER) and then use it to
calculate ACER, APCER, and BPCER on the test sets.

V. EXPERIMENTAL RESULTS AND COMPARATIVE
ANALYSIS

This section summarizes the experiments and their results to
demonstrate the effectiveness of the proposed architecture. We
use the Face Detector in Dlib library, which is a HOG+SVM
based algorithm to crop face images from the videos of SiW-
M and SMAD databases. We first describe the implementation
details of the four algorithms used for comparison, then show
their performance in the intra-database testing followed by the
cross-domain testing results and analysis. For the cross-domain
setting, the proposed algorithm is also compared with existing
PAD algorithm, namely auxiliary supervision [31].

A. Existing Algorithms

The proposed algorithm is compared with two texture-based
algorithms: LBP+HOG and Multi-scale LBP [9] and two deep
learning algorithms: ResNet50 and DenseNet121.

1) Hand-Crafted Features + SVM: In the first algorithm,
we concatenate two popular hand-crafted features, namely
HOG [32] (Histogram of Oriented Gradients) and LBP [33]]
(Local Binary Patterns) histogram from an image, then apply
SVM (Support Vector Machine) for classification. For LBP
histogram, we obtain uniform non-rotation invariant 59-bin
histogram vector computed using 8 sampling points on a
circle of radius 1. For HOG features, we use 9 orientation
bins, 16 x 16 pixels per cell, and apply L2-Hysteresis block
normalization over blocks of 3 x 3 cells. Therefore, the
dimension of the HOG features is 324 (=9x3x3x2x2). In the
second algorithm, we have used the formulation proposed in
[9], to calculate the multi-scale LBP histogram feature vector.
The final histogram vector is passed to the non-linear SVM
with radial basis function kernel for classification.

2) Deep CNNs: We have used ImageNet [28|] database
trained CNNs, namely ResNet50 [27] and DenseNet121 [3]]
and fine-tuned for face PAD. The output layer of these CNNs
are replaced by a fully connected softmax layer of 2 nodes
representing real and attack class. The networks are fine-
trained using stochastic gradient descent (SGD) to optimize
categorical cross-entropy loss. The batch size and initial learn-
ing rate are set to 56 and 0.01, respectively.

B. Results for Intra-Database Protocol

The intra-database protocol described in section is
followed for obtaining the results. For each algorithm, we

TABLE IV
RESULTS (%) IN TERMS OF p 4= 0 FOR INTRA-DATABASE PROTOCOL.
ToP-2 RESULTS ARE IN BOLD.

Architecture ACER APCER BPCER

LBP+HOG 1498 + 290 | 1499 + 6.15 | 14.96 + 4.81
Multi-scale LBP [9] 16.01 + 1.64 | 12.60 &+ 0.65 | 19.43 &+ 3.06
ResNet50 10.05 + 2.82 | 1091 + 5.21 9.18 + 5.43
MixNet-ResNet50 6.41 + 0.69 2.34 + 1.34 10.49 + 2.06
MixNet-ResNet50-VF2 6.85 + 2.89 7.24 + 4.46 6.47 + 1.86
DenseNet121 6.02 + 0.63 7.16 £ 2.61 4.88 + 3.87
MixNet-DenseNet121 4.52 + 0.90 1.76 + 1.31 7.28 + 1.61
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Fig. 4. ROC for intra-database protocol.

have performed three-fold cross-validation. The error rates
corresponding to intra-database protocol are reported in Table

The combination of LBP and HOG yields an average error
rate of 14.98%, whereas, the LBP features computed over
multiple scales yields the highest error rate among all the
algorithms. The algorithms based on CNN models outperform
the hand-crafted features based algorithms. Among the two
CNN models used, the deeper model with 121 layers shows
the lowest error rates for APCER and BPCER. However,
the proposed MixNet-DenseNet121 reduces the attack error
(i.e., APCER) and overall error (i.e., ACER) by 75.42%
and 24.92%, respectively. On the other hand, the proposed
MixNet with the ResNet50 model shows an improvement of
36.22% in the average detection error rate. It is interesting to
note that DenseNet121 shows the lowest BPCER value. This
could be because vanilla DenseNet and ResNet only have to
classify samples as genuine or not genuine. In contrast, their
corresponding MixNet versions focus on detecting the three
types of attack. The MixNet corresponding to ResNet model
pre-trained on face images shows a slightly higher error rate
than object images based counterpart. Fig. f] shows the ROC
curves for intra-database experiments obtained using different
PAD algorithms.

Attack-wise APCER: We have also performed the ablation
study to see whether simultaneous learning in MixNet helps in
detecting a specific attack. The 3 fold cross-validation exper-
imental results on merged database shows that the proposed
MixNet yields APCER value of 0.04+0.0%, 0.084+0.12%, and



TABLE V
RESULTS (%) IN TERMS OF pt &= 0 ON CROSS AND UNSEEN ATTACK
PROTOCOL. TOP-2 RESULTS ARE IN BOLD.

Architecture ACER APCER BPCER

LBP+HOG 35.68 £+ 0.99 57.70 £ 0.65 13.66 + 1.47
Multi-scale LBP [9] 32.86 £+ 0.90 51.55 £+ 2.60 14.18 £+ 2.03
ResNet50 3548 + 0.54 56.75 + 2.32 14.21 £+ 1.41
MixNet-ResNet50 23.69 + 4.77 | 35.48 + 10.10 | 11.89 + 0.96
MixNet-ResNet50-VF2 | 3295 + 1.29 53.81 + 3.27 12.10 £ 0.71
DenseNet121 30.84 + 1.97 5048 + 4.24 11.20 + 0.51
MixNet-DenseNet121 24.72 + 0.61 36.93 + 0.95 12.51 £+ 0.64

2.87 £ 2.06% for print, replay, and mask attack respectively.
On the other hand, separately training three DenseNetl21
each dedicated to classify a specific attack and taking the
maximum of their output scores gives APCER of 2.94£2.03%,
5.74 +4.22%, and 6.71 £ 0.50% for print, replay, and mask
attack, respectively. If we take the average of output scores,
the APCERs are 1.97+2.36%, 3.70+4.25%, and 7.654+3.80%
for print, replay, and mask attack, respectively. Finally, vanilla
DenseNet121 yields APCER of 1.59 £ 0.85%, 1.68 £ 1.45%,
and 11.08 + 3.46% for the three attacks, respectively. The
lower error rate for each attack showcases the advantage of
proposed MixNet over simpler learning.

C. Results for Cross and Unseen Attack Protocol

As described in section the models corresponding
to each fold trained on intra-database protocols are used to
evaluate on cross-database and unseen attack settings. Table
[V] shows the average ACER, APCER, and BPCER for this
protocol. It is found that the proposed MixNet utilizing
ResNet50 performs slightly better than the MixNet utilizing
the DenseNet121. The PAD algorithms based on hand-crafted
features and deep CNN models yield APCER of at-least
50.48% while their BPCER is significantly lower. The pro-
posed MixNet-ResNet50 reduces the error rates of ResNet50
by at-least 16.33%. Similarly, the MixNet-DenseNet121 re-
duces the error rates of the fine-tuned DenseNet121 model
significantly. For example, the attack samples detection er-
ror rate of MixNet is 26.84% lower than the DenseNetl21
model. Interestingly, we have observed that the MixNet with
ResNet50 model pre-trained on VGGFace2 database yields
higher ACER value as compared to the MixNet with ResNet50
model pre-trained on the ImageNet database.

Table shows the attack detection error for each of the
five 3D mask attacks. The hand-crafted algorithms which
lack generalizability fail significantly for silicone mask and
transparent mask. The paper mask is found to be the easiest
attack to be detected, which might be because it lacks the
smooth texture and suffers from edge artifacts. Even in such a
case, the ResNet50 model shows more than 97% error rate. On
unseen attack types such as silicone mask, paper mask, half
mask, and mannequin, the error rate of the proposed MixNet-
DenseNet121 is 11.54%, 4.54%, and 21.56%, and 3.54%,
respectively. The effectiveness of the proposed algorithm on
attacks such as mannequin, which is not explored previously
in the literature, shows that it is generalizable to handle the
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Fig. 5. Visualisation of output scores from the three sub-architectures of
MixNet-DenseNet121 for a subset of test samples.

real-world scenarios. On the easiest paper-based mask, the
fine-tuned DenseNet121 model shows a 26.12% error rate,
which is 82.62% higher than the MixNet. On the remaining
attacks, the error rate of the proposed algorithm is at-least
12.24% lower than DenseNetl121. Further, the performance
of the proposed algorithm for mannequin attack detection
is 78.4% and 7.9% better than auxiliary supervision [31]
and deep tree [5], respectively. The silicone and half-mask
detection error rates of the proposed MixNet-DenseNetl121
are 36.8% and 22.0% lower than the auxiliary supervision
[31]], respectively. We have also observed that every model
performed poorly on samples from a transparent mask. It may
be because the real face behind a transparent mask is almost
visible, closely resembling a natural face. However, the error
rate of the proposed algorithm is 27.9% lower than auxiliary
supervision approach [31].

D. Visualization and Analysis

A 3D scatter plot shown in Fig. [5] is used to visualize the
output scores from three sub-architectures of MixNet and to
showcase their importance in detecting the particular attacks.
It is observed that the samples of genuine class and the
three attack classes form four separate clusters with minimal
overlap. This shows that MixNet can not only detect an attack
but even classify the type of the attack. It is observed that
the scores of mask attack samples are intermixed with the
cluster of genuine samples. In contrast, print and replay attack
samples are distant from the cluster of genuine samples. It
implies that mask attacks resemble real-life face texture and
quality more than print and replay attacks. Thus, the major
challenge lies in detecting mask attacks.

Deep Learning based techniques are often considered as
black boxes. To gain an insight into what kind of features
are learned by MixNet, we visualize the class activation maps
(CAM) [34]]. CAM is used to highlight the regions in an input
image that are most effective for classification. Fig. [] provides
some interesting insights: print and replay attacks are detected
using the regions around the nose and mouth, while for the



TABLE VI
APCER (%) ATTACK-WISE FOR CROSS AND UNSEEN ATTACK PROTOCOL. TOP-2 RESULTS ARE IN BOLD.

Architecture Silicone Mask | Paper Mask | Half Mask | Transparent Mask | Mannequin
LBP+HOG 53.33 21.44 54.06 83.85 26.98
Multi-scale LBP [9] 45.68 4.84 4291 84.74 21.03
ResNet50 12.84 97.50 44.28 98.18 31.32
MixNet-ResNet50 16.22 1.00 26.41 71.54 4.78
MixNet-ResNet50-VF2 17.74 10.20 61.73 82.46 23.67
DenseNet121 23.12 26.12 39.92 92.94 9.34
MixNet-DenseNet121 11.54 4.54 21.56 81.56 3.54
Print Attack  P. Score = 1.0 R. Score 0.1 M. Score = 0.0
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Fig. 6. The Class Activation Maps (CAMs) of four kinds of images obtained
from MixNet-DenseNet121. From left to right: original image, CAM of print,
replay, and mask architecture, respectively. The CAMs highlight the image
regions used by each sub-architecture to detect the corresponding attack. P.
Score, R. Score, M. Score represent the scores of Print, Replay, and Mask
class, respectively.

“

mask attacks, the full face region is required. The depth around
the nose region is different from the rest of the face, and hence,
print and replay attacks can be detected using these regions.
Mask attacks, however, can be detected using the areas where
there is an opening in the eyes and mouth and also by finding
discriminative patterns on cheek and forehead regions.

VI. ABLATION STUDY

In this section, we showcase the performance of the pro-
posed algorithm on existing face PAD databases using their
predefined protocol. Other than that, in place of training
the three sub-architectures simultaneously as MixNet, the
performance of sub-architectures trained independently is also
studied.

Results on Existing Databases: We have performed exper-
iments on the existing databases, namely Replay-Attack [6]
and MSU-MFSD for an extensive comparison of MixNet
with other face PAD algorithms. Replay-Attack consists of
1200 real, print, and replay videos of 50 subjects. MSU-
MFSD has 280 videos of photo and video attack attempts
of 35 subjects. We have used the predefined train test split of

both the databases to make a fair comparison with the exist-
ing algorithm. Since Replay-Attack and MSU-MFSD do not
contain mask attack samples, the MixNet-DenseNet for these
experiments only had two sub-architectures, one each for print
and replay attack. Table [VII|shows the face PAD results of the
proposed and existing algorithms on Replay-Attack and MSU-
MESD. The results show the effectiveness of the proposed al-
gorithm by surpassing several existing algorithms based on the
fusion of classifiers, image regions, and features. For example,
the recently proposed algorithm DR-UDA [25] consisting of
three modules: a source domain metric learning network (ML-
Net), an unsupervised adversarial domain adaptation module
(UDA-Net), and a disentangled representation learning module
(DR-Net) achieves 1.3% HTER and 6.3% EER on the Replay-
Attack and MSU database, respectively. On the other hand, the
proposed MixNet improves the performance to 0.6% HTER
and 0.4% EER on Replay-Attack and MSU-MFSD datasets,
respectively.

Simultaneous vs. Independent Sub-architectures Train-
ing: We have also compared the proposed MixNet to a method
where we separately train models, each dedicated to classify-
ing a specific attack type. The final output score is optimized
on the training or validation set using the maximum or average
rule of these models’ output scores. We selected the best model
among Xception [35], DenseNet121 [3]], and ResNet50
for each attack type based on HTER on the validation set.
For Replay-Attack, the best settings were ResNet50 for the
print attack model, DenseNet121 for the replay attack model,
and the average score for final output. Similarly, for MSU-
MEFSD, the best configuration used DenseNet121 for both the
attack types and took the maximum of these scores for the
final output score. As shown in Table VII, the lowest test EER
on MSU-MFSD is 2.36% which is 1.96% higher than the
MixNet. Similarly, the lowest test HTER of the independent
sub-architectures on Replay-Attack is 0.68% higher than the
proposed MixNet.

VII. CONCLUSION AND FUTURE WORK

The vulnerability of facial recognition algorithms to pre-
sentation attacks limit their usability for security purposes.
Thus, it becomes essential to develop more reliable and robust
algorithms to detect such attacks on facial recognition. This
paper introduces a novel architecture termed as MixNet,
which utilizes three sub-architectures to identify the particular
presentation attack. Experimental results show that MixNet



TABLE VII
INTRA-DATABASE EVALUATION ON REPLAY-ATTACK (HTER%) AND
MSU-MFSD (EER%).

Method Replay-Attack | MSU-MFSD
Haralick Features [10] - 5.0
Deep Learning [36] 2.1 5.8
ResNet18 [27] 2.8 8.7
DR-UDA (ResNet18) [25] 1.4 6.0
SE-ResNet18 [37] 2.4 8.7
DR-UDA (SE-ResNetl18) [25] 1.3 6.3
Multi-Regional CNN [38] 1.6 -
CCoLBP+Ensemble Learning [17] 4.0 5.0
SfSNet [39] 3.1 -
Independently Optimized Sub-Nets 1.3 2.4
Ours (MixNet-DenseNet) 0.6 0.4

outperforms multiple face PAD algorithms based on CNN
architectures and hand-crafted features to detect seen and
unseen attacks. Currently, for each sub-architecture in MixNet,
the same network has been used. We plan to explore the
selection of different architectures such that they are state
of the art for detecting the corresponding attack. Finally,
we believe the application of MixNet is not limited to face
presentation attack detection but can also be extended to other
biometrics such as iris and fingerprint PAD.
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