
Deep Iterative Residual Convolutional Network for
Single Image Super-Resolution

Rao M. Umer, G. L. Foresti, Senior member, IEEE, C. Micheloni, Member, IEEE
University of Udine, Italy.

Abstract—Deep convolutional neural networks (CNNs) have
recently achieved great success for single image super-resolution
(SISR) task due to their powerful feature representation capabili-
ties. The most recent deep learning based SISR methods focus on
designing deeper / wider models to learn the non-linear mapping
between low-resolution (LR) inputs and high-resolution (HR)
outputs. These existing SR methods do not take into account
the image observation (physical) model and thus require a large
number of network’s trainable parameters with a great volume of
training data. To address these issues, we propose a deep Iterative
Super-Resolution Residual Convolutional Network (ISRResCNet)
that exploits the powerful image regularization and large-scale
optimization techniques by training the deep network in an
iterative manner with a residual learning approach. Extensive
experimental results on various super-resolution benchmarks
demonstrate that our method with a few trainable parameters
improves the results for different scaling factors in comparison
with the state-of-art methods.

I. INTRODUCTION

The goal of the single image super-resolution (SISR) is to
recover the high-resolution (HR) image from its low-resolution
(LR) counterpart. SISR problem is a fundamental low-level
vision and image processing problem with various practical
applications in satellite imaging, medical imaging, astronomy,
microscopy, seismology, remote sensing, surveillance, biomet-
ric, image compression, etc. In the last decade, most of the
photos are taken using built-in smartphones cameras, where
the resulting LR image is inevitable and undesirable due to
their physical limitations. It is of great interest to restore sharp
HR images because some captured moments are difficult to
reproduce. On the other hand, we are also interested to design
low cost (limited memory and cpu power) camera devices,
where the deployment of our deep network would be possible
in practice. Both are the ultimate goals to the end users.

Usually, SISR is described as a linear forward observation
model by the following image degradation process:

y = Hx̃ + η, (1)

where y ∈ RN/s2 is an observed LR image (here N = m×n
is typically the total number of pixels in an image), H ∈
RN/s×N/s is a down-sampling operator (usually a bicubic,
circulant matrix) that resizes an HR image x̃ ∈ RN by a
scaling factor s and η is considered as an additive white
Gaussian noise with standard deviation σ. However, in real-
world settings, η also accounts for all possible errors during the
image acquisition process that include inherent sensor noise,
stochastic noise, compression artifacts, and the possible mis-
match between the forward observation model and the camera

device. The operator H is usually ill-conditioned or singular
due to the presence of unknown noise (η) that makes the
SISR of a highly ill-posed nature of inverse problems. Since,
due to ill-posed nature, there are many possible solutions,
regularization is required to select the most plausible ones.

Generally, SISR methods can be classified into three
main categories, i.e. interpolation-based methods, model-based
optimization methods, and discriminative learning methods.
Interpolation-based methods i.e. nearest-neighbor, bilinear, and
bicubic interpolators are efficient and simple, but have very
limited reconstruction image quality. Model-based optimiza-
tion [1] methods have powerful image priors to reconstruct
high-quality clean images, but require hundreds of iterations
to achieve acceptable performance, thus making these meth-
ods computationally expensive. Model-based optimization [2]
methods with the integration of deep CNNs priors can improve
efficiency, but due to hand-crafted parameters, they are not
suitable for end-to-end deep learning methods. On the other
hand, discriminative learning [3]–[5] methods have attracted
significant attentions due to their effectiveness and efficiency
for SISR performance by using deep CNNs. Our work is in-
spired by discriminative and residual learning approaches with
powerful image priors and large-scale optimization schemes in
an iterative manner for an end-to-end deep CNNs to solve
SISR problem. The visualization of our proposed iterative
SISR approach is shown in Figure 1, where the LR input (y)
is given to the network and then the network reconstructs the
SR output. A single optimizer is used for all network stages
with shared structures and parameters. Our contributions in
this paper are three-fold as follows:

1) We propose an end-to-end deep iterative Residual CNNs
for image super-resolution. In contrast to the existing
deep SISR networks, our proposed method strictly fol-
lows the image observation (physical) model (refers to
Eq. (1)), and thus it is able to achieve better reconstruction
results even with few network’s trainable parameters
(refers to Table III).

2) A deep SISR network is proposed to solve image super-
resolution in an iterative manner by minimizing the
discriminative loss function with a residual learning ap-
proach.

3) The proposed ISRResCNet is inspired by powerful im-
age regularization and large-scale optimization techniques
that have been successfully used to solve general inverse
problems in the past.

ar
X

iv
:2

00
9.

04
80

9v
1

 [
ee

ss
.I

V
]

 7
 S

ep
 2

02
0

Fig. 1: The visualization of our proposed iterative SISR approach as described in Algorithm 1. Given an LR image (y) and an
initial estimate (x0), each network’s stage ERD (Encoder-Resnet-Decoder) produces a new estimate x(k+1) from the previous
step estimate x(k). A single optimizer is used for all network stages with shared structures and parameters by K steps.

II. RELATED WORKS

Recently, numerous works have been addressed the task of
SISR that are based on deep CNNs for their powerful feature
representation capabilities. A preliminary CNN-based method
to solve SISR is a super-resolution convolutional network with
three layers (SRCNN) [6]. Kim et al. [3] proposed a very deep
SR (VDSR) network with residual learning approach. Lim
et al. [4] proposed an enhanced deep SR (EDSR) network
by taking advantage of the residual learning. Zeng et al.
[7] proposed an S3cSR method (conventional sparse coding)
that learns HR/LR dictionaries exploiting the iterative sparse
coding. Jiang et al. [8] proposed a Recursive Inception (RISR)
network to adopt the inception-like structure to extract HR/LR
features. Liu et al. [9] proposed an attention-based approach
for SISR problem. Yaoman et al. [10] proposed a feedback
network (SRFBN) based on feedback connections and recur-
rent neural network like structure. Zhang et al. [11] proposed
a deep plug-and-play Super-Resolution method for arbitrary
blur kernels by following the multiple degradation. In [12], the
authors proposed SRWDNet to solve the joint deblurring and
super-resolution task by following the realistic degradation.
The above methods are deep or wide CNN networks to learn
non-linear mapping from LR to HR with a large number
of training samples, while neglecting the image acquisition
process. However, our approach takes into account the physical
image observation process by greatly increase its applicability.

III. PROPOSED METHOD

A. Problem Formulation

By referencing to equation (1), the recovery of x from y
mostly relies on the variational approach for combining the
observation and prior knowledge, and is given as the following
objective function:

J(x) = argmin
x

1

2
‖y −Hx‖22 + λR(x), (2)

where 1
2‖y − Hx‖22 is the data fidelity (also known as log-

likelihood) term that measures the proximity of the solution
to the observations, R(x) is the regularization term that is
associated with image priors, and λ is the trade-off parameter

that governs the compromise between the data fidelity and the
regularizer term. Interestingly, the variational approach has a
direct link to the Bayesian approach and the derived solutions
can be described by either as penalized maximum likelihood or
as maximum a posteriori (MAP) estimates [13], [14]. Thanks
to the recent advances of deep learning, the regularizer (i.e.
R(x)) is employed by deep convolutional neural networks
(ConvNets) that have powerful image priors capabilities.

B. Objective Function Minimization Strategy

Besides the proper selection of the regularizer and formula-
tion of the objective function, another important aspect of the
variational approach is the minimization strategy that will be
used to get the required solution. In the literature, there are
several modern convex-optimization schemes for large-scale
machine learning problems, such as Split-Bregman [15], HQS
method [16], ADMM [17], Primal-dual algorithms [18], etc.
In our work, we solve the under study problem (2) by using
the Majorization-Minimization (MM) framework [19] because
J(x) is too complicated to manipulate (i.e. convex function
but possibly non-differentiable). In MM [19]–[21] approach,
an iterative algorithm for solving the minimization problem

x̂ = argmin
x

J(x), (3)

takes the form

x(k+1) = argmin
x

Q(x;x(k)), (4)

where Q(x;x(k)) is the majorizer of the function J(x) at a
fixed point x(k) by satisfying the following two conditions:

Q(x;x(k)) > J(x), ∀x 6= x(k) and Q(x(k);x(k)) = J(x(k)).
(5)

Here, we want to upper-bound the J(x) by a suitable majorizer
Q(x;x(k)), and instead of minimizing the actual objective
function (3) due to its complexity, we minimize the majorizer
Q(.) to produce the next estimate x(k+1). By satisfying the
properties of the majorizer given in (5), iteratively minimizing
Q(.;x(k)) also decreases the actual objective function J(.)

Fig. 2: The architecture of ERD (Encoder-Resnet-Decoder) blocks used in the proposed ISRResCNet.

[19]. Thus, we can write a quadratic majorizer for the complete
objective function (2) as the following form:

Q(x;x(k)) = argmin
x

1

2
‖y −Hx‖22 + λQR(x;x

(k)), (6)

To start an initial estimate x0, we have:

QR(x;x0) =
1

2
(x− x0)

T [αI−HTH](x− x0), (7)

where QR(.) is a distance function between x and x0. In
order to get a valid majorizer QR(.), we need to satisfy
two conditions in (5) as QR(x;x0) > 0, ∀x 6= x0 and
QR(x;x0) = 0. This suggests that αI − HTH must be a
positive definite matrix, which only holds if α > ‖HTH‖2.
The parameter α depends upon the largest eigenvalue of HTH,
but, in most image restoration cases [20] such as inpainting,
deblurring, demosaicking [22], and super-resolution, it approx-
imately equals to one (α ≈ 1). Based on the above discussion,
we can write the overall majorizer as:

Q(x;x0) =
1

2/α
‖x− z‖22 + λR(x) + const., (8)

where z = x0 + 1
αHT (y −Hx0), and the constant does not

depend on x and thus it is irrelevant to the optimization task.
Finally, we proceed with the MM optimization scheme to
iteratively minimize the quadratic majorizer function Q(.) by
the following formulation as:

x̂(k) = argmin
x

Q(x;xk)

= argmin
x

1

2
‖y −Hx‖22 + λQR(x;x

k)

= argmin
x

1

2/α
‖x− zk‖22 + λR(x)

= Prox(λ/α)R(.)(z
k)

(9)

where zk = zk + HT (y −Hzk) and Prox(.) is the proximal
operator [23], which is defined as:

PC(z) = argmin
x∈C

1

2σ2
‖x− z‖22 +

λ

α
R(x). (10)

It can be noted that the above Eq. (10) is treated as the
objective function of a denoising problem, where z is the noisy
observation with noise level σ. In this way, we heavily rely on
employing a deep denoising neural network to get the required
estimate x̂(k) by unrolling the MM scheme as K finite steps.
Another thing to notice, in Eq. (9), is that we decouple the
degradation operator H from x and now we need to tackle it

Algorithm 1: The proposed SISR iterative approach. The
ERD structure and parameters are shared across all itera-
tive steps.

Input : y: LR input, H: Down-sampling operator, HT :
Up-sampling operator, K: iterative steps,
w ∈ RK : extrapolation weights, σ: estimated
noise, λ, α: projection parameters

Initialization: x(0) = HTy, HT : Bilinear kernel;
z(1) = x(0) + HT (y −Hx(0));
for k ← 1 to K do

Extrapolation step:
z(k+1) = x(k) + w(k)(x(k) − x(k−1));

Proximal step (ERD-block):
x̂(k) = Prox(λ/α)R(.)(z

k + HT (y −Hzk));
end
Output: xK : SR output

with a less complex denoising problem. However, obtaining
the resulting solution x̂(k) from (9) can be computationally
expensive since it demands K times the parameters of the
employed denoiser and can exhibit the slow convergence [24],
[25]. To avoid this hurdles, we adopt the similar strategy
as done in [22], where the trainable extrapolation weights
w(k) are learnt directly from the training data instead of the
fixed ones [26]. Moreover, the convergence of our proposed
method is sped up by adopting the continuation strategy [27].
Our overall proposed method is shown in Fig. 1 and also
described in the Algorithm 1, where the input settings, initial-
ization, extrapolation steps, and proximal steps are defined.
Our proposed Algorithm 1 has a close connection to other
proximal algorithms such as ISTA [28] and FISTA [29] that
require the exact form of the employed regularizer such as
Total Variation / Hessian Schatten-norm [21]. However, in our
case, the regularizer is learned implicitly from the training data
(i.e. non-convex form), and therefore our algorithm acts as an
inexact form of proximal gradient descent steps.

C. Network Architecture

The proposed network architecture for super-resolution
is shown in Fig. 1. Given an LR image (y) and an initial
estimate (x0), each network’s stage ERD (Encoder-Resnet-
Decoder) produces a new estimate x(k+1) from the previous
step estimate x(k). The Algorithm 1 describes the inputs,

initial conditions, and desired updates for each network stage.
The ERD structure and parameters are shared across all
iterative steps. Finally, a single optimizer is used to minimize
the `1-Loss between the estimated latent SR image (x(k)) and
ground-truth (GT) (x(gt)) after k-steps as:

argmin
Θ
L(Θ) =

1

2

N∑
n=1

‖xkn − xgtn ‖1 (11)

where N is the mini-batch size and Θ are the trainable param-
eters of our network. Fig. 2 shows the ERD block used in the
network. In ERD network, both Encoder (Conv) and Decoder
(TConv) layers have 64 feature maps of 5×5 kernel size with
C × H × W tensors, where C is the number of channels
of the input image. Resnet consists of 5 residual blocks with
two Pre-activation Conv layers, each of 64 feature maps with
kernels support 3×3, and the pre-activation is the parametrized
rectified linear unit (PReLU) [30] with 64 out feature channels.
The Resnet also contains the Feedback (FB) path after 5
resblocks with an initial concatenation pre-activation Conv
layer by 1× 1 kernel support that maps 128 features channels
to 64 to feed into resblocks. The trainable projection layer [31]
inside the Decoder computes the proximal map for Eq. (10)
with given noise standard deviation σ and handle the data
fidelity and prior terms. The noise realization is estimated
in the intermediate Resnet that is sandwiched between the
Encoder and Decoder. The estimated residual image after
Decoder is subtracted from the LR input image. Finally, the
clipping layer incorporates our prior knowledge about the valid
range of image intensities and enforces the pixel values of
the reconstructed image to lie in the range [0, 255]. Reflection
padding is also used before all Conv layers to ensure slowly-
varying changes at the boundaries of the input images. Our
ERD structure can also be described as the generalization
of one stage TNRD [32] and UDNet [31] that have good
reconstruction performance for image denoising problem.

D. Network Training via TBPTT
Due to the iterative nature of our SISR approach, the net-

work parameters are updated using back-propagation through
time (BPTT) algorithm by unrolling K steps to train the
network, which is previously used in recurrent neural net-
works training such as LSTMs. However, it is computationally
expensive by increasing the number of iterative steps K, so
both K and mini-batch (N) size are upper-bound on the
GPU memory. Therefore, to tackle this problem, we use the
Truncated Backpropagation Through Time (TBPTT) algorithm
as do in [22] to train our network, where the sequence is
unrolled into a small number of k-steps out of total K and
then the back-propagation is performed on the small k-steps.
Furthermore, we compute the `1-Loss with respect to GT
images after k iterative steps according to Eq. (11).

IV. EXPERIMENTS

A. Data augmentation
We use DIV2K [33] dataset that contains 800 HR images

for training. We take the input LR image patches as a

TABLE I: The settings of input LR and corresponding HR
patch sizes during training.

Scale factor LR Patch size HR Patch size
×2 60× 60 120× 120
×3 50× 50 150× 150
×4 40× 40 160× 160

bicubic downsample (i.e. regarded as a standard degradation)
with their corresponding HR image patches. We augment the
training data with random vertical and horizontal flipping, and
90◦ rotations. Moreover, we also consider another effective
data augmentation technique, called MixUp [34]. In Mixup,
we take randomly two samples (xi,yi) and (xj ,yj) in the
training HR/LR set (X̃,Y) and then form a new sample (x̃,y)
by interpolation of the pair samples by following the same
degradation model (1) as do in [35]. This simple technique
encourages our network to support linear behavior among
training samples.

B. Technical details

We use the RGB input LR and corresponding HR patches
with different patch sizes according to the upscaling factor as
listed in Table I. We train the network for 300 epochs with
a batch size of 4 using the Adam optimizer with parameters
β1 = 0.9, β2 = 0.999, and ε = 10−8 without weight decay
to minimize the `1-Loss (11). We use the method of kaiming
He [30] to initial the Conv weights and bias to zero. The
learning rate is initially set to 10−3 for the first 100 epochs
and then multiplies by 0.5 for every 50 epochs. We set the
number of iterative steps (K) to 20 and feedback steps (FB)
to 4 for our method. The extrapolation weights w ∈ RK are
initialized with wt =

tk−1
tk+2

,∀1 ≤ t ≤ K, and then further fine-
tune on the training data as do in [22]. The projection layer
parameter σ is estimated according to [36] from the input LR
image. We initialize the projection layer parameter α on a
log-scale value from αmax = 2 to αmin = 1 and then further
fine-tune during the training via back-propagation. In order to
further enhance the performance of our network, we use a self-
ensemble strategy [37] (denoted as ISRResCNet+), where the
LR inputs are flipped/rotated and the SR results are aligned
and averaged for enhanced prediction.

C. Evaluation metrics and SR benchmarks

We evaluate the trained model under the Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity (SSIM) metrics
on four benchmark datasets: Set5 [38], Set14 [39], B100 [40],
and Urban100 [41]. In order to keep a fair comparison with
existing networks, the quantitative SR results are only eval-
uated on Y (luminance) channel of the transformed Y CbCr
color space.

D. Ablation study of iterative (K) and feedback (FB) steps

For our ablation study, we evaluate our proposed ISR-
ResCNet and ISRResCNet+ performance on Set5 benchmark
dataset at ×4 upscaling factor. Table III shows the average

TABLE II: Average PSNR/SSIM values for scale factors ×2, ×3, and ×4 with bicubic degradation model. The best performance
is shown in red and the second best performance is shown in blue.

Dataset Scale Bicubic SRCNN [6] VDSR [3] EDSR-baseline [4] RISR [8] SRFBN-S [10] ISRResCNet ISRResCNet+
(ECCV-2014) (CVPR-2016) (CVPR-2017) (ICPR-2018) (CVPR-2019) (Ours) (Ours)

Set5
×2 33.55 / 0.9304 36.16 / 0.9509 37.30 / 0.9573 37.59 / 0.9605 37.63 / 0.9590 37.39 / 0.9597 37.67 / 0.9596 37.79 / 0.9600
×3 30.35 / 0.8686 32.28 / 0.9020 33.50 / 0.9197 34.18 / 0.9270 33.91 / 0.9234 33.99 / 0.9252 34.08 / 0.9251 34.20 / 0.9258
×4 28.39 / 0.8109 29.99 / 0.8519 31.20 / 0.8818 31.89 / 0.8932 31.58 / 0.8870 31.76 / 0.8914 31.63 / 0.8890 31.77 / 0.8908

Set14
×2 30.05 / 0.8701 31.81 / 0.9033 32.84 / 0.9121 33.21 / 0.9177 33.16 / 0.9133 33.04 / 0.9157 32.89 / 0.9144 33.06 / 0.9155
×3 27.40 / 0.7763 28.70 / 0.8151 29.54 / 0.8323 29.91 / 0.8421 29.91 / 0.8338 29.72 / 0.8376 29.63 / 0.8365 29.76 / 0.8381
×4 25.86 / 0.7056 26.92 / 0.7427 27.75 / 0.7688 28.20 / 0.7820 28.19 / 0.7707 28.05 / 0.7785 27.99 / 0.7757 28.08 / 0.7776

B100
×2 29.51 / 0.8439 31.07 / 0.8838 31.83 / 0.8949 32.03 / 0.8996 32.01 / 0.8968 31.87 / 0.8972 31.98 / 0.8974 32.03 / 0.8980
×3 27.19 / 0.7399 28.17 / 0.7799 28.80 / 0.7971 29.03 / 0.8056 28.92 / 0.7996 28.90 / 0.8015 28.91 / 0.8014 28.96 / 0.8024
×4 25.96 / 0.6698 26.70 / 0.7029 27.27 / 0.7252 27.53 / 0.7365 27.37 / 0.7270 27.41 / 0.7321 27.40 / 0.7301 27.44 / 0.7313

Urban100
×2 26.84 / 0.8409 29.01 / 0.8885 30.67 / 0.9129 31.81 / 0.9271 31.06 / 0.9168 31.27 / 0.9208 31.29 / 0.9205 31.45 / 0.9220
×3 24.44 / 0.7359 25.82 / 0.7874 27.09 / 0.8271 28.05 / 0.8524 27.41 / 0.8338 27.60 / 0.8418 27.57 / 0.8409 27.70 / 0.8432
×4 23.13 / 0.6593 24.11 / 0.7051 25.14 / 0.7522 25.98 / 0.7850 25.41 / 0.7595 25.66 / 0.7725 25.56 / 0.7682 25.65 / 0.7705

(a) PSNR vs. K

(b) SSIM vs. K

Fig. 3: Average PSNR/SSIM performance (Set5 on ×4) of
proposed ISRResCNet and ISRResCNet+ after each iterative
step (K).

TABLE III: The impact of iterative (K) and feedback (FB)
steps on ISRResCNet on the scale factor ×4. The average
PSNR/SSIM values are evaluated on Set5 testset.

Feedback
steps (FB)

Iterative
steps (K)

#Params
(×103)

ResBlocks
(D)

Feature-Maps
(F) ISRResCNet ISRResCNet+

None 10 380 5 64 31.44 / 0.8855 31.59 / 0.8876
None 20 380 5 64 31.56 / 0.8874 31.69 / 0.8891

4 10 388 5 64 31.63 / 0.8890 31.77 / 0.8908

PSNR/SSIM performance after iterative steps (K) and feed-
back (FB) steps. Our trained model achieves better perfor-
mance (PSNR/SSIM) by increasing the number of iterative
steps 1 to 20 with the shared network parameters (i.e. 380K)
without using FB steps (see in Fig. 3 and Table III). When
the FB connections introduce into our network, the model con-
verges in the less number of iterative steps (i.e. 10) with better
reconstruction results by requiring a few additional parameters
(i.e. +8K) because these error feedback connections [10] after
residual blocks provide strong early reconstruction ability.
Since these error feedbacks are beneficial on the higher scale
(×4), so we report the quantitative results in the Table II

with feedback steps at ×4 upscaling factor, while the others
(×2,×3) are without feedback steps with 20 iterative steps. It
can also be noted (see Fig. 3) that a few iterative steps (e.g. 5)
are enough to obtain excellent SR results with the performance
trade-off between quantitative results and the computation time
of our method.

Fig. 4: Visual comparison of our method with other state-of-art
methods on ×4 super-resolution.

E. Comparison with the state-of-art methods

We compare our method with other state-of-art SISR meth-
ods including SRCNN [6], VDSR [3], EDSR [4], RISR [8],
and SRFBN [10], whose source codes are available online
except for RISR method for which the quantitative results are
directly taken from the paper. We run all the source codes by
default parameters test settings through all the experiments.
We report the quantitative results of our method with others in
the Table II. Our method exhibits better improvement in PSNR
and SSIM compared to other methods, except the EDSR. Since
the EDSR has a much deeper network containing 16 residual
blocks with 1.5M parameters, while our model contains 5
residual blocks with 380K parameters, which is a much lighter
model than EDSR with slightly performance difference in
the PSNR (i.e. +0.12dB on Set5) at ×4 upscaling factor.
Despite that, the parameters of the proposed network are much
less than the other state-of-art SISR networks, which makes
it suitable for deployment in mobile devices where memory
storage and cpu power are limited as well as good image
reconstruction quality (see section IV-D).

Regarding the visual quality, Fig. 4 shows the visual
comparison of our method with other SR methods for a
high (×4) upscaling factor. The proposed method successfully
reconstructs the good textures regions, sharp edges, and finer
details of SR image compared to the other methods.

V. CONCLUSION

We proposed a deep iterative residual CNNs for a single im-
age super-resolution task by following the image observation
(physical / real-world settings) model. The proposed method
solves the SISR problem in an iterative manner by minimizing
the discriminative loss function with residual learning. Our
model requires few trainable parameters in comparison to other
competing methods. The proposed network exploits powerful
image regularization and large-scale optimization techniques
for image restoration. Our method achieves excellent SR
results in terms of PSNR/SSIM and visual quality by following
the real-world settings for limited memory storage and cpu
power requirements for the mobile/embedded deployment.

REFERENCES

[1] W. Dong, L. Zhang, G. Shi, and X. Li, “Nonlocally centralized sparse
representation for image restoration,” IEEE Transactions on Image
Processing, vol. 22, pp. 1620–1630, 2013.

[2] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep CNN denoiser
prior for image restoration,” IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2808–2817, 2017.

[3] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution
using very deep convolutional networks,” CVPR, pp. 1646–1654, 2016.

[4] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual
networks for single image super-resolution,” CVPRW, pp. 1132–1140,
2017.

[5] R. Muhammad Umer, G. Luca Foresti, and C. Micheloni, “Deep
generative adversarial residual convolutional networks for real-world
super-resolution,” in The IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, June 2020.

[6] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional
network for image super-resolution,” ECCV, pp. 184–199, 2014.

[7] K. Zeng, H. Zheng, Y. Qu, X. Qu, L. Bao, and Z. Chen, “Single image
super-resolution with learning iteratively non-linear mapping between
low-and high-resolution sparse representations,” IEEE International
Conference on Pattern Recognition (ICPR), pp. 507–512, 2018.

[8] T. Jiang, X. Wu, Z. Yu, W. Shui, G. Lu, S. Guo, H. Fei, and Q. Zhang,
“Recursive inception network for super-resolution,” IEEE International
Conference on Pattern Recognition (ICPR), pp. 2759–2764, 2018.

[9] Y. Liu, Y. Wang, N. Li, X. Cheng, Y. Zhang, Y. Huang, and G. Lu, “An
attention-based approach for single image super resolution,” 24th IEEE
International Conference on Pattern Recognition (ICPR), pp. 2777–
2784, 2018.

[10] Y. Li, J. Yang, Z. Liu, X. Yang, G. Jeon, and W. Wu, “Feedback network
for image super-resolution,” CVPR, 2019.

[11] K. Zhang, W. Zuo, and L. Zhang, “Deep plug-and-play super-resolution
for arbitrary blur kernels,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 1671–1681.

[12] R. M. Umer, G. L. Foresti, and C. Micheloni, “Deep super-resolution
network for single image super-resolution with realistic degradations,”
in ICDSC, September 2019, pp. 21:1–21:7.

[13] M. Bertero and P. Boccacci, Introduction to inverse problems in imaging.
CRC press, 1998.

[14] M. Figueiredo, J. M. Bioucas-Dias, and R. D. Nowak, “Majorization–
minimization algorithms for wavelet-based image restoration,” IEEE
Transactions on Image processing, vol. 16, no. 12, pp. 2980–2991, 2007.

[15] T. Goldstein and S. Osher, “The split bregman method for L1-regularized
problems,” SIAM Journal on Imaging Sciences, pp. 323–343, 2009.

[16] D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic
regularization,” IEEE Transactions on Image Processing, pp. 932–946,
July 1995.

[17] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, pp. 1–
122, 2011.

[18] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” Journal of Mathematical
Imaging and Vision, pp. 120–145, 2011.

[19] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” The
American Statistician, pp. 30–37, 2004.

[20] M. A. Figueiredo, J. M. Bioucas-Dias, and R. D. Nowak, “Majorization–
Minimization algorithms for wavelet-based image restoration,” IEEE
Transactions on Image processing, pp. 2980–2991, 2007.

[21] S. Lefkimmiatis, A. Bourquard, and M. Unser, “Hessian-based norm
regularization for image restoration with biomedical applications,” IEEE
Transactions on Image Processing, pp. 983–995, 2011.

[22] F. Kokkinos and S. Lefkimmiatis, “Iterative joint image demosaicking
and denoising using a residual denoising network,” IEEE Transactions
on Image Processing, pp. 4177–4188, 2019.

[23] N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and
Trends in Optimization, pp. 127–239, 2014.

[24] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM journal on imaging sciences,
pp. 183–202, 2009.

[25] F. Kokkinos and S. Lefkimmiatis, “Deep image demosaicking using a
cascade of convolutional residual denoising networks,” IEEE European
Conference on Computer Vision (ECCV), pp. 303–319, 2018.

[26] H. Li and Z. Lin, “Accelerated proximal gradient methods for noncon-
vex programming,” Advances in neural information processing systems
(NIPS), pp. 379–387, 2015.

[27] Q. Lin and L. Xiao, “An adaptive accelerated proximal gradient method
and its homotopy continuation for sparse optimization,” International
Conference on Machine Learning (ICML), pp. 73–81, 2014.

[28] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Com-
munications on Pure and Applied Mathematics: A Journal Issued by the
Courant Institute of Mathematical Sciences, pp. 1413–1457, 2004.

[29] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM journal on imaging sciences,
pp. 183–202, 2009.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” IEEE
International Conference on Computer Vision (ICCV), pp. 1026–1034,
2015.

[31] S. Lefkimmiatis, “Universal denoising networks: A novel cnn architec-
ture for image denoising,” CVPR, pp. 3204–3213, 2018.

[32] Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flexible
framework for fast and effective image restoration,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, pp. 1256–1272, 2017.

[33] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image
super-resolution: Dataset and study,” in CVPRW, 2017, pp. 126–135.

[34] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond
empirical risk minimization,” International Conference on Learning
Representations (ICLR), 2018.

[35] R. Feng, J. Gu, Y. Qiao, and C. Dong, “Suppressing model overfitting
for image super-resolution networks,” IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 0–0, 2019.

[36] X. Liu, M. Tanaka, and M. Okutomi, “Single-image noise level estima-
tion for blind denoising,” IEEE transactions on image processing, pp.
5226–5237, 2013.

[37] R. Timofte, R. Rothe, and L. Van Gool, “Seven ways to improve
example-based single image super resolution,” in CVPR, 2016, pp. 1865–
1873.

[38] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, “Low-
complexity single-image super-resolution based on nonnegative neighbor
embedding,” BMVC, 2012.

[39] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using
sparse-representations,” in International conference on curves and sur-
faces, 2010, pp. 711–730.

[40] D. Martin, C. Fowlkes, D. Tal, J. Malik et al., “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in ICCV, 2001.

[41] J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution
from transformed self-exemplars,” in CVPR, 2015, pp. 5197–5206.

	I Introduction
	II Related Works
	III Proposed Method
	III-A Problem Formulation
	III-B Objective Function Minimization Strategy
	III-C Network Architecture
	III-D Network Training via TBPTT

	IV Experiments
	IV-A Data augmentation
	IV-B Technical details
	IV-C Evaluation metrics and SR benchmarks
	IV-D Ablation study of iterative (K) and feedback (FB) steps
	IV-E Comparison with the state-of-art methods

	V Conclusion
	References

