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Abstract—One of the biggest obstacles in Chinese and
Japanese text line recognition is how to present their
enormous character sets. The most common solution
is to merely choose and represent a small subset of
characters using one-hot encoding. However, such an
approach is costly to describe huge character sets, and
ignores their semantic relationships. Recent studies
have attempted to utilize different encoding methods,
but they struggle to build a bijection mapping. In
this work, we propose a novel encoding method, called
LOgographic DEComposition encoding (LODEC), that
can efficiently perform a 1-to-1 mapping for all Chinese
and Japanese characters. As such, LODEC enables to
encode over 21,000 Chinese and Japanese characters
by 520 fundamental elements. Moreover, to handle
the vast style variety of handwritten texts in the two
languages, we propose a novel deep learning (DL) archi-
tecture, called LODENet, together with an end-to-end
training scheme, that leverages auxiliary ground truths
generated by LODEC or other radical-based encoding
methods. We systematically performed experiments
on both Chinese and Japanese datasets, and found
that our approach surpassed the performance of state-
of-the-art baselines. Furthermore, empirical evidence
shows that our method can gain significantly improve-
ment using synthesized text line images without the
need for domain knowledge.

I. Introduction

Optical character recognition (OCR) is a crucial com-
ponent in document analysis systems [1]. OCR technology
is critical since it offers effective storage and information
retrieval solutions, which help to speed up the manuscript
digitization process, and make it more efficient for people
to access or analyze them [2]. In addition, as commercial
documents are very common in daily activities and are
kept being accumulated over time, OCR-based systems are
in high demand to convert them into digital forms.

Input data in the offline form of OCR methods are raw
bitmaps or compressed images that store printed or writ-
ten texts on a background characterized by their colors,
shapes, and textures. Whereas printed texts of a certain
font are consistent throughout documents, handwritten
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Fig. 1: (a) A handwritten sample of the character 號
and its corresponding encoding methods: (b) Cangjie, (c)
Ideographic Description Sequences (IDS) and (d) LODEC.

texts erratically vary during writing, which makes offline
handwritten OCR challenging.

In the scope of this study, we specifically focus on
offline handwritten Chinese and Japanese text line images.
While Chinese and Japanese Kanji are logographic sys-
tems, Japanese Kana – Hiragana and Katakana – are syl-
labic ones. Concerning Kanji, there are several well-known
challenges. Unlike Latin phonograms representing limited
phonetic elements (e.g., 26 characters in the English alpha-
bet), Chinese and Japanese logographic characters are sig-
nificantly numerous since they possess both semantic and
phonetic traits [3]. As such, the Kangxi dictionary has over
47, 000 Kanji characters (21, 448 of them have Unicode
correspondences), each of which consists of a unique set of
radicals and basic components with distinctive semantic
meanings [4]. Therefore, the first objective in developing
deep learning (DL) based text line OCR for such data is
how to encode their semantic relationships embedded in
radicals and the huge character set. Then, the next target
is to have an appropriate DL architecture, together with
a suitable training strategy, to leverage the encoded data.

For the aforementioned demands and challenges, a huge
number of studies have emerged to exclusively tackle



Kanji-based OCR [5]–[16]. For Kanji encoding, a naive
method is to select a small subset of characters and
describe them using one-hot encoding. However, one-hot
encoding treats each character as an independent category
and ignores the fact that common radicals with the same
semantic meanings appear repeatedly among different
characters. Thus, several logographic encoding methods
such as Cangjie [5] and Ideographic Description Sequences
(IDS) [6] have been arisen to decompose logograms into
radicals and fundamental components. Figures 1 (b) and
(c) depict how Cangjie and IDS encode a Kanji, respec-
tively.

There are several limitations when using these encod-
ings. On one hand, Cangjie and IDS are not bijective
functions (1-to-1 mappings) and thus, they sometimes
create ambiguous and incorrect transcriptions. On the
other hand, IDS is too complicated in terms of encoding
length for DL training. Hence, as far as our knowledge
goes, DL-based studies in the literature have not adopted
IDS into their methods yet.

With respect to DL models for Kanji OCR, many impor-
tant methods have been developed to capture sequential
features of Kanji text lines [7], [13], [16]. Unfortunately, an
end-to-end DL-based method that well utilizes both orig-
inal and radical-based ground truth data is still missing.

For the aforementioned issues, we propose a holistic
method that offers an efficient encoding for both Chinese
and Japanese and a novel DL architecture, as well as
an end-to-end training scheme, for leveraging logographic,
syllabic, and radical data simultaneously. Firstly, our
method includes a decomposition method, called LOgo-
graphic DEComposition encoding (LODEC), which is a
compact version of IDS [6]. Instead of decomposing lo-
gograms ultimately to fundamental strokes, which are not
always visible in practical writings, as in IDS, we limit the
decomposition to a predefined set of radicals such that
LODEC can perform a 1-to-1 mapping overall logograms
(illustrated in Figure 1 (d)). In addition, syllabic Kana
characters are decomposed into unique tuples of voiced
consonants and pronunciation changes. Therefore, our
LODEC is not only a bijective function over logographic
and syllabic characters, but also has a smaller search space
compared to the well-known IDS [6].

The second component of our method is an end-to-
end OCR training scheme that leverages auxiliary data
produced by LODEC to improve the performance of the
recognition task. To achieve it, we develop a DL architec-
ture, called LODENet, consisting of a module to extract
radical-based features from input data and a conversion
network to decode logographic and syllabic characters
from the previous radical-based features. Thanks to our
conversion network, our architecture collaborates well with
any DL architecture for sequential recognition and an
arbitrary radical-based encoding method. Thus, our study
is the very firstly reported one that enables us to make
use of the IDS encoding method. On top of those, we

utilize a weighted sum of two Connectionist Temporal
Classification (CTC) losses [17] corresponding to radical
and original predictions to ensure an end-to-end training
manner. In summary, our contributions are as follows:

1) We propose the LODEC encoding method that can
fully represent all logograms and syllabic characters
of Chinese and Japanese scripts,

2) We propose an end-to-end training scheme that
can be plugged in any sequential architecture and
radical-based encoding method,

3) We propose the LODENet architecture equipped
with the conversion network that learns to transcribe
Japanese and Chinese contents from radical-based
features,

4) We systematically conducted experiments to assess
the effect of our components (with statistical tests),
the ability of our method to learn from extra gen-
erated text line images, and also show that our
method achieves state-of-the-art (SOTA) results on
two public offline handwritten Chinese datasets such
as CASIA [18] and SCUT-EPT [19], and one private
Japanese dataset.

II. Related Works

A. Logographic Encoding Methods
The Cangjie, invented in 1976, is the first Chinese input

method to be applied on the QWERTY keyboard [5]. It
is a shape-based encoding using 26 fundamental radicals
to represent components and auxiliary shapes in Chinese
characters. In its 5th version1, all characters are encoded
by at most 5 codes, making it feasible to generate fixed-
length labels for the recognition task [16]. However, with
such limited codes, it cannot describe all radicals and
auxiliary shapes. For instance, “aa”, “aaa”, and “aaam”
are the ambiguous encoding sequences of the sets (昌,昍),
(晶, 晿), and (曐, 曡, 㬪) respectively.

Chinese Japanese Korean (CJK) unified ideographs, the
common character scripts of the 3 countries, are well
presented by an encoding standard called Ideographic
Description Sequence (IDS) [6]. Each encoding sequence
is a composition of Ideographic Description Characters
(IDCs) and Description Characters (DCs)2, defined as a
Unicode block with 12 codes from “⿰” (U+2FF0) to “⿻”
(U+2FFB), which enables to describe logographic layouts.
DCs, the basic elements of the decomposition, are either
radicals, basic components decomposed from radicals, or
fundamental strokes (See Figure 1(c)). However, IDS does
not guarantee a 1-to-1 mapping over all logograms. One
counterexample is that both characters “土” (mud) and
“士” (man) are encoded as “⿱⼗⼀”. Additionally, IDS
encoding sequences massively vary in terms of encoding
length (as in Table I), and its fundamental strokes are

1https://github.com/Jackchows/Cangjie5
2https://github.com/cjkvi/cjkvi-ids
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not always available in Unicode or handwritten texts in
practice.

In this study, we aim to have both the bijection char-
acteristic and simplicity. We adopt the idea of IDS and
simplify its decomposition process. As such, we define
a set of radicals, which ones tend to write as single
strokes in reality. Subsequently, we merely perform the
IDS decomposition until reaching the predefined radicals.

B. OCR with One-hot Encoding
One of the primitive approaches in text line OCR is

to selectively choose a subset of logograms and utilize
one-hot scheme to encode them. Following that direction,
Sahu et al. [8] proposed an encoder-decoder architecture
that used Convolutional Neural Networks (CNN) as an
encoder to extract visual features. Several attention-based
encoder-decoder architectures were proposed for Japanese
historical document recognition and Chinese text line
image recognition [9], [10]. However, those methods could
only recognize fixed-length text lines.

Notably, Shi et al. [7] proposed a Convolutional Recur-
rent Neural Network (CRNN) architecture consisting of a
CNN-based feature extractor and a sequential component
using Recurrent Neural Network (RNN). CRNN could
handle text sequences with arbitrary length without char-
acter segmentation nor predefined lexicon. Based on this
architecture, many follow-up studies improved Chinese
text line OCR performance by replacing RNN with Long-
Short Term Memory (LSTM) or Bidirectional LSTM [11],
[12].

C. OCR with Decomposition Methods
1) Single Character Decomposition: Before the preva-

lence of DL models in offline handwritten logographic
text line OCR, Wang et al. [13] studied a decompo-
sition method for logogram recognition using radical
decomposition and hierarchical radical matching. T.Q.
Wang et al. [20] proposed using deep residual net-
work to recognize position-dependent radicals. Then,
Radical Analysis Network (RAN) series, proposed by
Zhang et al. [14], applied decomposition methods with an
encoder-decoder architecture for single Chinese character
recognition. Wang et al. [15] applied RAN with densely
connected architecture (DenseRAN).

2) Text Line Decomposition: Inspired by the Chinese
Cangjie input method, Bluche et al. [16] proposed the
Multi-Dimensional Long Short-Term Memory Recurrent
Neural Network (MDLSTM-RNN) for basic character-
level recognition. MDLSTM-RNN with CTC identified
sub-character radicals and subsequently reconstructed
characters using a post-processing step with a 3-gram
language model. In such a two-step manner, whereas the
inference is fast, the final performance was negatively
affected.

In this work, we propose an end-to-end training scheme
for offline handwritten Chinese and Japanese text line

Method No. of Bijective Encoding length
codes function Mean & Std.

One-hot 21448 Yes 21448±0
Cangjie 26 No 109±19
IDS 387 No 3618±1722
LODEC (Ours) 520 Yes 1856±691

TABLE I: The amounts of codes and encoding lengths to
represent 21,448 Kanji characters having Unicode corre-
spondences in different encoding methods.

recognition that includes a novel LODENet architecture
tailored to exploit the strength of both generated radical-
based and original logographic ground truth.

III. Proposed Methods
A. Logographic Decomposition Encoding

We propose an encoding method, called LODEC, that
is inspired by IDS [6] and based on an observation that
in reality, ones tend to write a radical, a combination of
glyphs, in a single stroke with a specific cursive pattern as
illustrated in Figure 1(a). Consequently, LODEC targets
to identify unique shapes of logographic characters rather
than fundamental glyphs or partial shapes as in IDS [6] or
Cangjie [5], respectively.

Let R denote the set of 214 Kangxi and 115 CJK
radicals corresponding to the Unicode characters from
U+2F00 to U+2FD5 and from U+2E80 to U+2EF3,
respectively. Unlike IDS [6], our LODEC method performs
a hierarchical decomposition until it reaches DCs that
belong to R. Thereby, we resolve a problem of IDS in
which not all glyphs are defined in the Unicode standard.

LODEC reduces 21, 448 Kanji Unicode blocks to the set
of 520 selective radicals and basic components. Although
LODEC has more fundamental elements than IDS, our
encoding method produces 33% more compact and over
2 times more stable encoded sequences with respect to
encoding length compared to the opponent (see Table I).

When applied to Japanese Kana, LODEC decreases the
number of characters from 189 to 108. It also isolates
the dakuten, indicating voiced consonants, and the han-
dakuten, indicating a specific change of pronunciation, as
unique components in its outputs (e.g.,ボ is a combination
of ホ and the dakuten ゙).

We eliminate the confusion of similar characters by map-
ping them to a single Unicode according to the Equivalent
Ideograph Dictionary (EID)3. In practice, we encode a se-
quence of logograms by consequently applying Algorithm
1 to replace each logogram with its LODEC encoding. We
use the notation {Y ′

t }
T ′

t=1 = LODEC({Yt}Tt=1) to denote
the encoding process from a sequence of T logograms to a
sequence of T ′ radicals (T ≥ T ). We concretely describe
the implementation of LODEC in Algorithm 1.

3http://www.unicode.org/review/pri344/
EquivalentUnifiedIdeograph-draft2.txt
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Algorithm 1 LODEC encoding generation
c: logogram, R: Radical set, EID: Equivalent Ideograph

Dictionary, IDS: IDS dictionary, IDC: IDC set, S: encoding
set
procedure ENCODE(c)

L← empty list
if c ∈ R then ▷ stop-at-radical

L.append(c)
end if
if c ∈ EID ∧ EID[c] ∈ R then ▷ stop-at-radical

L.append(EID[c])
end if
if L ̸= ∅ then ▷ reach leaf

return L
end if
for c in IDS[c] do ▷ decompose logogram

L← L + Encode(c)
end for
L← L - IDC ▷ remove IDCs
while L ∈ S do

L← L + duplicate_code ▷ ensure bijection
end while
S ← S ∪ L
return L

end procedure

B. End-to-end Training Scheme
Our training scheme leverages both characters and radi-

cals from data in an end-to-end manner. The center of the
scheme is our LODENet that consists of major components
such as a feature extractor, a sequential decoder, and a
conversion network. Specifically, LODENet firstly extracts
fine-grained features of input image and predicts radicals
at an intermediate layer. The prediction, together with
radical ground truth, forms the first loss. Subsequently,
our model learns to convert the intermediate output rep-
resenting radicals to original characters. Thus, we obtain
the second loss based on ground truth character labels (see
Figure 2). In the next sections, we present the components
of LODENet and its losses in detail.

1) Visual Feature Extractor and Sequential Decoder:
The input of our architecture is a 1-channel image with
a fixed height h and a flexible width w. We utilize a
CNN to extract fine-grained features of both radicals
and characters from text line images. This component
of LODENet is a customized version of the previously
developed network [7]. We aim to ultimately shrink the
shape of feature maps to h′ × w′ × c, where h′ = 4 in the
case of h = 64, w′ < w and c is the number of filters,
using convolutional blocks of a 3 × 3 convolutional layer
with a stride of 1, a rectified linear unit (ReLu) [21], batch
normalization [22], and 4 max-pooling layers.

Notably, we keep the height of the final feature map
as h′ > 1 to preserve different radical features at the
same horizontal position. Then, we reshape the tensor to
w′×h′c representing the input for the sequential decoder.
Table II presents the detailed description of this partial
architecture in the case that h is 64.

Layer name Output shape Layer structure

Input 64× w × 1
Conv1_1 64× w × 64 Conv 3× 3, 64, S = 1
Conv1_2 64× w × 64 Conv 3× 3, 64, S = 1
MaxPool_1 32× w/2× 64 MaxPooling 2× 2, S = (2, 2)
Conv2_1 32× w/2× 128 Conv 3× 3, 128, S = 1
Conv2_2 32× w/2× 128 Conv 3× 3, 128, S = 1
Conv2_3 32× w/2× 128 Conv 3× 3, 128, S = 1
MaxPool_2 16× w/2× 128 MaxPooling 2× 2, S = (2, 2)
Conv3_1 16× w/4× 256 Conv 3× 3, 256, S = 1
Conv3_2 16× w/4× 256 Conv 3× 3, 256, S = 1
Conv3_3 16× w/4× 256 Conv 3× 3, 256, S = 1
MaxPool_3 8× w/2× 256 MaxPooling 2× 2, S = (2, 2)
Conv4_1 8× w/8× 512 Conv 3× 3, 512, S = 1
Conv4_2 8× w/8× 512 Conv 3× 3, 512, S = 1
Conv4_3 8× w/8× 512 Conv 3× 3, 512, S = 1
MaxPool_4 4× w/8× 512 MaxPooling 2× 2, S = (2, 1)

Reshape w/8× 2048
BiGRU w/8×K Bidirectional GRU

TABLE II: The feature extractor and the sequential en-
coder architecture in LODENet with fixed input height of
64. S, w and K denote the stride of an operator, the input
width, and the size of radical set, respectively.

Subsequently, we target to predict the first output,
which is related to radicals instead of logographic charac-
ters as in [7]. We utilize a bidirectional Gated Recurrent
Unit (BGRU) [23] with a hidden size of 512 to exploit the
sequential relations of the extracted features. The output
of the BGRU is a tensor R ∈ Rw′×K representing radical
predictions, where K is the radical set size |R|.

2) Conversion Network: After obtaining logits of rad-
ical predictions R, we aim to convert them to original
character-level logits C. As such, we employ a conversion
network (CN) that is composed of convolutional and
sequential layers. The convolutional layers are inspired by
the Inception module [24], where we simultaneously use 4
1D convolutions with different kernel sizes of 1× 1, 1× 3,
1× 5, and 1× 7. By intuition, the 1× 1 kernel is suitable
for non-decomposable characters (e.g. symbols, Latin, and
numbers). The other larger kernels are designed to process
groups of radicals that form composable ones. We set the
number of filters to 256 for each 1D convolution. The
resulting feature maps of all the convolutional layers are
concatenated to a single feature map with the size of
1 × w′ × 1024, which can be interpreted as a sequence
of w′ 1024-dimensional vectors {Xt}w

′

t=1 = Inception (R).
To capture sequential relationships between radicals, we
utilize another Bidirectional GRU to the final feature map
as Ct = BGRU (Xt) resulting in the character-level logits
C ∈ Rw′×N , where N is the number of characters in
the vocabulary. The character-level logits are then used
to compute CTC loss [17] with the true labels of original
logographic characters:

CTClogo = CTC
(
{Ct}w

′

t=1 , {Yt}Tt=1

)
,

where {Yt}Tt=1 is the ground truth character sequence.
The existence of the intermediate radical representa-

tions indicates that the radical and original character
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Fig. 2: The architecture of LODENet includes a CRNN
network for predicting radicals (left branch) and a con-
version network for predicting logograms (right branch).
The weighted sum of the 2 CTC losses allows for an end-
to-end training manner.

spaces are sharing common visual features. The conversion
network plays an important role in mapping features from
the K-d radical space to the N -d character space, where
K ≪ N .

3) Losses: To enforce LODENet to learn good radical
representations, we directly apply another CTC loss to
radical representations before it is fed to the conversion
network. This results in an additional radical-based CTC
loss, which is computed using the radical-level logits and
the decomposed encoding of the ground truth characters
as follows,

CTCradi = CTC
(
{Rt}w

′

t=1 , {Y
′
t }

T ′

t=1

)
,

where {Y ′
t }

T ′

t=1 is the decomposed ground truth sequence
such that {Y ′

t }
T ′

t=1 = LODEC({Yt}Tt=1). The radical-
based loss fully utilizes the advantage of our decomposed
encoding. It encourages the feature extractor and the
sequential decoder to capture radical details in the input
image, which facilitates faster learning as radicals are often
abundant in the training data.

The radical-based loss is simply combined with the
character-based loss as follows,

L = αCTCradi + βCTClogo.

In our implementation, α = β = 1. During training,
the two branch losses are computed in parallel as shown
in Figure 2. They are summed up to form the final
loss L for back-propagation. During inference, we used
standard CTC greedy decoding to get the character-based
and radical-based texts from character and radical logits,
respectively.

CASIA SCUT-EPT Private

Language Chinese Chinese Japanese
Writers 1,080 2,986 -
Input height h 128 64 64
Classes 7,355 4,251 2,227

Amount of data (lines/characters)

Train 52,229/1.4M 40,000/1.0M 14,595/248K
Synthesis-Random texts 120,000/1.9M 120,000/1.9M -
Synthesis-Wikipedia texts 120,000/1.9M 120,000/1.9M -

Test 3,432/92K 10,000/249K 2,941/50K

TABLE III: Description of 3 datasets used in this study.
The two sets of synthesized data for experiments on both
CASIA and SCUT-EPT are the same.

IV. Experiments
A. Experimental Setups

1) Datasets: We conducted experiments on 3 offline
handwriting datasets, two of which include public data
in Chinese such as CASIA [25] and SCUT-EPT [19], and
the another contains private Japanese data from [26].
Although the CASIA dataset has both online and offline
data, we only used its offline data from CASIA-HWDB in
this study. In addition, we utilized all images in SCUT-
EPT without cleaning challenging cases such as character
erasure, text line supplement, and noised background [19].
The descriptions of the 3 datasets are summarized in
Table III.

2) Experimental Protocols: As our method comprises
several components such as the LODEC encoding in Sec-
tion III-A, the LODENet architecture with the conversion
network in Sections III-B and III-B2, and the two CTC
losses in Section III-B3, we systematically conducted a
sequence of experiments to demonstrate their effects in-
dividually and compoundly.

We utilized accurate rate (AR) and correct rate (CR),
which were used in the ICDAR2013 competition [25], for
evaluation on the Chinese datasets. Following [26], we used
character error rate (CER) as the performance metric on
the Japanese dataset.

To emphasize the need for binding LODEC and LO-
DENet, we performed an ablation experiment on the
SCUT-EPT dataset [19], in which LODENet was in turn
combined with Cangjie [5], IDS [6], or LODEC. For a
significance test, we performed the one-sided Wilcoxon
signed-rank test [27] to compared the collaboration of
LODENet and LODEC to the other combinations. Results
of this experiment are presented in Section IV-B1.

The conversion network and the two losses correspond-
ing to the two prediction branches allow for the end-to-end
training scheme. To assess the effects of the conversion
network and the losses in our LODENet, we did ablation
studies on the SCUT-EPT dataset. We dedicate Section
IV-B2 to discuss results of the experiments.

Following [28], we assessed the ability of learning from
synthesized data of our model. For that purpose, we
collected text contents from 2 sources that were randomly
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Fig. 3: Ablation studies on different components of our
method. The charts shown ARs and 95% confidence inter-
vals of the training settings. The green bars are our com-
bination of LODENet and LODEC. The arrows indicate
one-sided Wilcoxon signed-rank tests between our method
and other settings.

generated or crawled from Wikipedia pages, which is
detailedly presented in Section IV-A3. As such, we in
turn trained our model on data from the CASIA with
or without each extra set generated above. The results of
those trained models were also compared to the baseline
[28]. We present the detailed results in Section IV-C.

Finally, we compared our entire method to a variety
of baselines. For the Chinese datasets, our baselines were
CNN + MDLSTM + CTC [11], CNN + MDirLSTM
+ CTC [29], CNN + LSTM + CTC [7] [30] [31] [19],
and CMAM [26]. For the Japanese dataset, we chose the
state-of-the-art [26] to compete with. Detailed results are
presented in Section IV-D.

3) Implementation Details: We implemented a tradi-
tional CRNN baseline model using the same feature ex-
tractor and sequential decoder as LODENet for a fair
comparison. By default for LODENet, we used our pro-
posed LODEC to encode Chinese and Japanese to radical
encodings. Input images were converted to gray-scale (1
channel) and proportionally re-scaled to a fixed height h.
All images in a batch were padded to the same width
according to the longest one.

For efficient training, we derived a training procedure
based on Curriculum Learning [32]. To be specific, we
sorted the text line images ascendingly by the number of
characters. Each model was trained with the data sorted
in that order for the first 5 epochs. From the 6-th epoch,
we shuffled the training data and the model was fed with a
random batch of data. We used Adam optimizer [33] with
a base learning rate of 1e−4, and a weight decay of 1e−5.
The batch size was set at 8 across all experiments.

To compute confidence intervals, we applied the boot-
strap method that resampled 1, 000 times with replace-
ment. To prepare data for Wilcoxon tests, we split the
test set of SCUT-EPT to 40 folds, each of which had 250
samples, and computed the AR for each fold.
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Fig. 4: Learning curves of LODENet with different encod-
ing methods on the SCUT-EPT dataset.

Model Character (%) Radical (%)
AR ↑ CR ↑ AR ↑ CR ↑

CNN + MDLSTM + CTC [11] 73.26 78.30
CNN + MDirLSTM + CTC [29] 73.65 78.53
CNN + LSTM + CTC [7] [30] [31] [19] 75.97 80.26
CMAM [26] 74.45 82.14

LODENet (Ours) 76.61 82.91 77.81 85.40
LODENet + Random texts (Ours) 77.36 84.64 79.27 87.47
LODENet + Wikipedia texts (Ours) 77.61 83.74 79.25 86.33

TABLE IV: Testing results on SCUT-EPT. The ”LO-
DENet” indicates our model only training on standard
SCUT-EPT train set (40K text lines) without any aug-
mentation. ”LODENet + Random texts” and ”LODENet
+ Wikipedia texts” are the results of our models when
training with additional synthesized data.

To generate auxiliary text line images from Wikipedia
contents, we randomly selected 12 writers from 1, 020
indexes of writers of the CASIA-HWDB 1.0-1.2 dataset,
which consists of isolated characters, gathered character
images, and finally concatenated ones with the same write
index. Following this synthesis scheme, we created addi-
tional 120, 000 training samples to expand the CASIA-
HWDB 2.0-2.2. For the second source, we randomly
crawled data from more than 6, 000 pages of Simplified
Chinese Wikipedia. Then, we randomly split each para-
graph into 21, 000 sentences and sorted them by length.
Subsequently, we chose 10, 000 sentences with around 15
characters per text. Finally, we used these selected to
generate another extra set of 120, 000 training images in
the same manner as for the first source.

B. Ablation Studies
1) The Binding of LODEC and LODENet: Figure 4

shows that Cangjie [5] or LODEC required less itera-
tions to converge and gained better ARs compared to
the original IDS [6]. Moreover, the results of the one-
sided Wilcoxon signed-rank test in Figure 3a indicate
that the combination of LODEC and LODENet signif-
icantly outperformed the combinations with Cangjie or
IDS (p < 1e−7 in all the cases) with respect to AR. The
IDS’ drawbacks in terms of long encoding length and high
variance substantially affected its performance.



2) The End-to-end Training Scheme: We observed sig-
nificant performance drops when removing either the con-
version network or the radical branch. The statistical tests
in Figure 3b empirically proved the importance the end-to-
end training scheme as p-values in both the comparisons
are less than 1e−7.

C. Learning from Synthesized Data
Results on both the handwritten Chinese datasets in

Tables IV and V show that our LODENet gained sub-
stantial improvements when trained with auxiliary set of
synthesized data. It is worth noting that extra data from
either of the data sources helped our model to increase
both its AR and CR by at least 5% on CASIA data.

Experimental results reveal that meaningful content
from Wikipedia pages did not result in a significant im-
provement compared to random contents. As such, the
AR confidence intervals of the two models with random
texts and Wikipedia contents are [91.89%, 92.41%] and
[91.71%, 92.24%], respectively. Moreover, the two-sided
Wilcoxon test comparing them results in p = 0.179.

Model Character (%) Radical (%)
AR ↑ CR ↑ AR ↑ CR ↑

HIT-1 [25] 83.58 86.15
HIT-2 [25] 86.73 88.76
Wang et al. [34] 88.79 90.67
CNN + SMDLSTM + CTC [28] 86.64 87.43

LODENet (Ours) 86.82 87.83 88.51 91.09
LODENet + Random texts (Ours) 92.00 92.89 92.79 95.25
LODENet + Wikipedia texts (Ours) 92.16 93.04 92.77 94.65

TABLE V: Testing results on CASIA. The ”LODENet”
indicates model only training on standard CASIA-HWDB
2.0-2.2 dataset (52,2K text lines) without any augmen-
tation, while CNN + SMDLSTM + CTC [28] used 1M
training lines. HIT-1, HIT-2, and [34] were trained on
both isolated characters CASIA-HWDB 1.0-1.2 and un-
constrained text lines from CASIA-HWDB 2.0-2.2.

D. Comparison with the Baselines
As demonstrated in Table IV, among many strong base-

lines from the literature, our LODENet (with LODEC)
achieved an AR of 76.61% and a CR of 82.91%, claiming
SOTA on SCUT-EPT. It is noteworthy that LODENet
outperformed the best prior model (CNN+LSTM+CTC)
[19] by an AR of 0.64% and a CR of 2.65% without using
any augmentation and only applying greedy decoding. In
addition, we picked several samples to show LODENet’s
robustness in challenging cases in Figure 5. The collabora-
tion of radical and character predictions helped our model
work well with erased texts with supplements, missing
strokes, and connected characters. Although the radical
output predictions are not exactly correct, LODENet
showed the capability to transforms the radical feature
composition to correct characters with the conversion
network.

Ground truth   与其城市文化有很大相关性

CRNN   与其城市菊 (8)

LODENet (Ours)   与其城市文化有有大相关性 (1)

Radical output       ⼀     ⼀⼋⼟戊㇆⼇     ⺅⼔⺅⽊⽉丷⼀⼤⼈⺖⻘

Ground truth   责任在肩头   善假于物也

CRNN   责近"寿高头 (4)   苦物也 (3)

LODENet (Ours)   责任"在肩头 (1)   善假于物也 (0)

Radical output   龶⻉⺅⼀⼠"⼟⼀⼫⽉头   ⼀      ⼝⺅⼗     コ⽇⼜于⽜⼓⼃⼃也

Fig. 5: Picked samples from the test set of SCUT-EPT and
their outputs by LODENet and CRNN [7]. Character and
radical-based outputs of LODENet are shown in purple
and white, respectively. The values in parentheses are
corresponding Levenshtein distances.

On the CASIA dataset, without any extra data, our
model achieved comparable results to the baseline [28],
which added 1 million generated samples. Furthermore,
when we added 120, 000 auxiliary text lines, which is over
8 times less than the amount in [28], our method surpassed
the baseline more than 5% with respect to both AR and
CR.

Model Private Japanese data

Validation ↓ Test ↓

CMAM [26] 17.55 12.99

LODENet w/o conversion network (Ours) 12.36 6.25
LODENet (Ours) 11.70 5.47

TABLE VI: CERs on the Japanese dataset.

LODENet demonstrates significant improvements in
this Japanese dataset. Concretely, we outperformed
CMAM by huge margins, thereby achieving SOTA results
on this dataset. Compared to our implemented CRNN
with the same feature extractor and sequential decoder,
LODENet again outperformed by CERs of 0.66% and
0.78% on the validation and the test set, respectively.

V. Conclusion

We presented a holistic method for offline handwritten
Chinese and Japanese text line recognition. Firstly, we
proposed LODEC as an alternative for logographic encod-
ing methods when it can perform 1-to-1 mapping overall
logographic and syllabic characters in a compact fashion.
Then, we proposed an end-to-end training scheme that can
well utilize character and radical labels simultaneously. To
achieve that, we have the LODENet architecture with CN
and a pair of losses for its two prediction branches. Our
training scheme is general and allows for plugging any deep
CNN architecture and radical encoding method. As far as
our knowledge, our method is the first one that can cope
with the complex encoding method IDS [6].



We performed systematic experiments and empirical
evidence via statistical tests showed that the combination
of our components brings significant improvements. Addi-
tionally, our method gained improvement leaps when we
added synthesized text lines that are merged from single
character images with random contents, which do not need
domain knowledge.

The idea of our decomposition method can be extended
to other applications such as natural language processing
and speech-to-text systems for logographic language. It
can also be used for a few-shot OCR by identifying the
elemental radicals in unseen characters, which will be
investigated in our future works.
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