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Abstract—Morphological hierarchies form a popular frame-
work aiming at emphasizing the multiscale structure of digital
image by performing an unsupervised spatial partitioning of the
data. These hierarchies have been recently extended to cope with
image sequences, and different strategies have been proposed to
allow their construction from spatio-temporal data. In this paper,
we compare these hierarchical representation strategies for image
sequences according to their structural properties. We introduce
a projection method to make these representations comparable.
Furthermore, we extend one of these recent strategies in order
to obtain more efficient hierarchical representations for image
sequences. Experiments were conducted on both synthetic and
real datasets, the latter being made of satellite image time
series. We show that building one hierarchy by using spatial
and temporal information together is more efficient comparing
to other existing strategies.

I. INTRODUCTION

Hierarchical methods in mathematical morphology, a.k.a.
morphological hierarchies represented in tree-based structures,
offer an efficient framework for multiscale image analysis [1].
Tree representations have been used for various tasks, includ-
ing image filtering [2], image segmentation [3] and object
detection [4], etc. during last decade. Due to the increasing
amount and availability of temporal data, efficient processing
of image sequences is now a strong requirement in several
fields. Lately, hierarchical representations have been used for
the analysis of multimodal data [5] and image sequences [6].

In a previous work [6], we have introduced 3 different
strategies to build hierarchical representations for image se-
quences: spatial hierarchy, temporal hierarchy and spatio-
temporal hierarchy. Each of these strategies offers a specific
insight on the spatio-temporal data that is useful for some
tailored applications. Still, comparing the hierarchies built
from these strategies, and especially their intrinsic structures,
remains necessary to provide this novel framework with proper
analytical studies. However, evaluation and comparison of
morphological hierarchies remains limited to practical com-
parisons in the literature.

Indeed, evaluation of morphological hierarchies has been
performed in [7] in an application-oriented scenario focused
on image segmentation. Similarly, strategies to build binary
partition trees were evaluated according to their segmentation
capability in [8]. Tree representations were also compared
when used in a filtering process [9], and in the context of tree
matching [10] when searching for similar objects. This latter
approach requires a reference tree structure. In this paper, we

aim to compare morphological hierarchies according to their
structures rather than based on some practical applications.
To the best of our knowledge, structure-based comparison of
morphological hierarchies is not common in literature.

We remind that morphological hierarchies can be seen as
the result of a hierarchical clustering (HC) conducted on the
image. Evaluation of hierarchical clustering (HC) quality has
been studied by data analysis community. The Rand Index [11]
is one of the aged quality metric and it is still in use to find
better HC [12]. Unfortunately, this index is not appropriate for
morphological hierarchies due to the unavailability of ground
truth clusters. Recently, Dasgupta proposed an unsupervised
cost function [13] aiming to determine the quality of hierar-
chical structures. This cost function is receiving an increasing
interest in the HC community [14], [15], [16]. In this paper,
we will adapt this metric to morphological hierarchies in order
to compare spatial, temporal and spatio-temporal hierarchies
according their structural cost. Besides, we will also compare
the hierarchies based on their number of nodes and their
filtering capability.

Our contributions in this paper are three-fold. First, we
show how to project a spatio-temporal tree structure along
temporal or spatial dimensions. This is required to map
different hierarchies in a common space and to allow their
comparison. Second, we review different criteria to assess and
compare the structural properties of the hierarchies built from
the different strategies introduced in [6]. Finally, we show
the superiority of the spatio-temporal hierarchy, for which we
propose a new connectivity rule in order to fully exploit the
available temporal information. We support our claims and
conclusions using synthetic and real datasets, the latter being
made of satellite image time series (SITS).

This paper is organized as follows. In Sec. II, we provide
mathematical background on hierarchies for still images as
well as image sequences. We address in Sec. III the projection
of the spatio-temporal hierarchy along the temporal or spatial
dimensions. We present the structure assessment criteria used
in our study in Sec. IV, and the synthetic and real datasets
we are using in Sec. V. We report our experimental results in
Sec. VI, before concluding our paper in Sec. VII.

II. BACKGROUND ON MORPHOLOGICAL HIERARCHIES

According to the literature [17], there are several ways to
build a morphological hierarchy (a.k.a tree) from an image.



Trees have different building rules and they are named accord-
ing to their building rule. For instance, maximum values of the
image are placed in the leaves of the max-tree [18], while a
min-tree has leaves consisting in local minima. We will apply
max and min-tree here, but for the sake of simplicity, we will
consider only the max-tree notation in this paper. Let us recall
that the min-tree is the dual representation of the max-tree,
and can be built from the max-tree of the image complement
(or negative, invert). However, it should be noted that our
proposed comparison methodology can be implemented with
other tree-based representations such as tree of shape [19],
α-tree [20], or binary partition tree [21].

A. Definition for a Single Image

Let us define I as a gray scale image, Ω as non empty
finite set, x as the coordinates of this image and I(x) as the
intensity value of this location. First, the upper threshold set is
defined as Lλ(I) = {x ∈ Ω | I(x) ≥ λ} according to level λ.
This λ varies between maximum (in leaves) and minimum (in
root) intensity levels of the image. Ω can be seen as a graph
built according to a standard 4- or 8-adjacency relation on the
2D grid. Within each level set, neighboring pixels are grouped
together in connected components according to their location
and intensities. We consider the set of nodes V gathering all
connected components,

V (I) =
⋃
∀k,λ

Ckλ(I) (1)

where C denotes a connected component, k its index in the
Lλ of the image I . For the sake of concision, we will omit
I from C and V notations in the rest of this paper. Any two
nodes are either disjoint or nested. Nodes at the same level
have no intersection;

∀k 6= k′, Ckλ ∩ Ck
′

λ = ∅. (2)

We will omit k when only one node is enough for the relevant
expression. Connected components become nodes of the tree.
A tree T consists of set of nodes V and a set of edges E,
i.e. T = (V,E). A tree is an acyclic, directed graph from
its unique root to the leaves. An edge E exists between two
nodes Cλ and Cλ′ if for λ < λ′ we have Cλ′ ⊂ Cλ and there
is no other node in between, i.e. @ Cλ′′ : Cλ′ ⊂ Cλ′′ ⊂ Cλ.
The difference between the parent and child nodes is the set
of additional pixels which appear and become connected to
the parent node at its level λ:

Cλ \ Cλ′ = {x ∈ Ω | I(x) = λ}. (3)

The additional pixels with value I(x) = λ do not belong to any
child node of Cλ. They are called ghost pixels and discussed
in details in [17]. Each pixel of the image is pretended to
have one additional pixel in the same gray level, and these
additional ghost pixels are only connected to their original
versions. The goal is to avoid information loss and to consider
these level set-based trees as possible results of a hierarchical
clustering. We will denote ghost nodes as C ′. Let C ′

λ is a

(a) Spatial hierarchy (b) Temporal hierarchy

(c) Spatio-temporal hierarchy

Fig. 1: Morphological hierarchies for image sequences (taken
from [6]).

ghost node and Cλ′ is the only child of its parent. Then, the
parent node of Cλ′ can be defined as

Cλ = Cλ′ ∪ C ′
λ. (4)

Ghost nodes can be defined also as a leaf nodes because they
do not have any child by definition.

B. Extension to Image Sequences

We reuse here notations from [6] where morphological
hierarchies for image sequences were addressed as illustrated
in Fig. 1. We will use the τ subscript to denote the presence
of temporal information (i.e. temporal support), i.e. writing Iτ
an image sequence instead of the single image I , and Cλ,τ
the spatio-temporal connected components. Conversely, the ς
subscript will be used to emphasize timeless information. We
recall here the three different strategies introduced in [6].

1) Spatial hierarchy: According to the literature on multi-
variate morphology [22], ordering and projection are the two
main ways to build a tree from vectorial data. The spatial
hierarchy (SH) strategy requires converting each pixel vector
to one scalar value. In the case of ordering, first we order
all pixel time series, e.g. according to their distance from a
reference vector. Then we can rank them and use the rank
information to build the hierarchy. As far as projection is
concerned, the idea is to project each pixel time series into
a single scalar, timeless spatial value using a given function.
Examples of such functions f : Iτ (x) 7→ Iς(x) include
mean or median. In our experiments, we will consider the
distance-based ranking method to build the rank image and
the subsequent spatial tree (noted Tς in the sequel). The
methodology proposed in this paper can be straightforwardly
followed with other SH-related approaches.

2) Temporal hierarchy: Alternatively, the temporal hierar-
chy (TH) aims to provide a temporal set of trees instead of a
single, timeless one as with SH. For a given image sequence
Iτ , every single image It of the series leads to a given tree
Tt. The final set is defined as

Tτ = {Tt}t=[1,n] (5)



where n represent the amount of images in the set. This
strategy relates to the marginal approach in the literature [23]
where trees are built and subsequently processed separately.

3) Spatio-temporal hierarchy: The last strategy (a.k.a.
known as spatio-temporal hierarchy, STH) stacks all frames of
the sequence in a spatio-temporal cube, and builds one single
tree from the whole set of data. While the trees built with
the two previous strategies SH and TH have only a spatial
support (shall it be timeless Tς or related to a single frame Tt),
here the tree intrinsically combines both spatial and temporal
dimensions. We call this representation a space-time tree. It is
made of nodes with a spatio-temporal support Cλ,τ , combined
in a set V as defined in (1). Furthermore, we can split a
spatio-temporal connected component C into its spatial slices
extracted at each time stamp t:

Ckλ,τ = Ckλ,1 ∪ Ckλ,2 ∪ . . . ∪ Ckλ,n. (6)

As already indicated, the connected components are built
by gathering neighboring pixels following a given spatial adja-
cency relation, e.g. 4- or 8-connectivity. As we now deal with
spatial-temporal connected components and not spatial-only
connected components, connectivity rules should be revised
accordingly. To illustrate, let us consider the 8-connectivity.
The corresponding neighbour set N8 for a given location
x = (i, j) can be defined as

N8(x) = {(i′, j′) 6= (i, j) | max(|i− i′|, |j − j′|) = 1}. (7)

It can be extended to time using 26-connectivity, where a
location (x, t) = (i, j, t) has a neighbour set N26:

N26(i, j, t) = {(i′, j′, t′) 6= (i, j, t)

| max(|i− i′|, |j − j′|, |t− t′|) = 1}. (8)

In this paper, we also consider another connectivity rule,
called continuous connectivity since the neighbours along the
time dimension are not limited to previous and next images.
It considers a set Nτ of 3× 3× n− 1 neighbours:

Nτ (i, j, t) = {(i′, j′, t′) 6= (i, j, t)

| max(|i− i′|, |j − j′|) = 1}. (9)

Let us observe that this continuous connectivity can even be
applied on the temporal dimension only, thus leading to a
purely temporal neighbour set of size n− 1

Nτ∗(x, t) = {(x, t′) 6= (x, t)}, (10)

and we will also use these different definitions in our projec-
tions that will be presented in the next section.

III. TREE PROJECTION

The different strategies reviewed in the previous sections
provide trees lying in different domains. Comparing the dif-
ferent trees produced with TH, SH and STH is then not trivial,
and requires a common domain in which the comparison
could be performed. Once a space-time tree has been built,
it can be projected to temporal domain for comparison with

TH, or spatial domain for comparison with SH. But structural
differences will be observable among the different trees thanks
to the spatial-temporal connectivity rule considered with the
space-time tree.

A. Projection in temporal domain

We define the projection of the space-time tree Tτ = (V,E)
in the temporal domain as the operator Γ that returns a tree
defined with a spatial support only, given a specific time stamp
t = [1, n]:

Γt : Tτ 7→ T t. (11)

The new tree T t will retain nodes and pixels from the given
time stamp t. To do so, the operator first removes the nodes
which do not contain any pixels from t;

V 7→ V ′ = V \ {Ckλ | Ckλ,t = ∅}, (12)

thus leading to an intermediate tree T ′ = (V ′, E′) where E′ ⊆
E only contains edges connecting nodes from V ′.

Let us consider a leaf node containing pixels (x, t) present
in It. Since parent nodes are defined as supersets of their
children (see (4)), all the ancestors of the leaf also have support
including It. However, nodes of T ′ may have a spatial support
that goes beyond the selected time stamp t. We should then
shrink the nodes in V ′ in the temporal dimension to limit their
support to It:

V ′ 7→ V ′′ = {Ckλ,t | Ckλ ∈ V ′}. (13)

Again, we can define a new tree T ′′ = (V ′′, E′). Let us
observe that since we have not removed any nodes from V ′ but
have instead reduced their spatial support, there is no change
in the set of edges E′.

The last operation consists in filtering the tree to remove
the nodes that provide duplicate information. These nodes C
are those for which there is no associate ghost nodes C ′ in
the selected frame It, and whose added-value in the hierarchy
was noticeable for some other time stamps. More formally,

V ′′ 7→ V ′′′ = V ′′ \ {Ckλ | C ′k
λ,t = ∅}

= V ′′ \ {Ckλ | @ x : It(x) = λ},
(14)

i.e. we remove the nodes with a level that is not corresponding
to a visible gray scale in the image It. The resulting tree
is then defined as T t = (V ′′′, E′′) where the edge set E′′

has been updated according to the retained nodes in V ′′′. Let
us observe that although V ′′′ ⊂ V ′′, the inclusion relation
between edge sets is not kept, i.e. E′′ 6⊂ E′. Indeed, since
some internal nodes have been removed, there are now new
edges to connect their parent and children nodes. These edges
are built as defined in Sec. II-A.

B. Projection in spatial domain

In order to allow comparison with SH, we consider to
project the space-time tree in the spatial domain:

Γς : T 7→ T ς . (15)



Similarly to the previous projection, we rely on successive
steps to build Γς . But the main difference is that the resulting
tree T ς is timeless and thus does not require any time stamp
parameter t.

First, we filter out nodes for which timeless information
cannot be extracted due to a limited temporal domain. These
nodes are identified as those that do not appear in all time
stamps of the series, leading to

V 7→ V ′ = V \ {Ckλ | ∃t : Ckλ,t = ∅}. (16)

This leads to a new tree T ′ = (V ′, E′) with E′ the updated
set of edges limited to those connecting the nodes from V ′.
Similarly to the temporal projection, this first step is not
enough since here T ′ is not timeless yet. To do so, a second
operation is required to remove the spatial locations for which
the time series has missing values. In other words, we spatially
shrink each node to its locations that cover the full time series.

V ′ 7→ V ′′ = V ′ \ {Ckλ |
∃x, ∃t, ∃t′ 6= t : x ∈ Ckλ,t, x /∈ Ckλ,t′}. (17)

Since this step only reduces the spatial support of the nodes,
it does not modify the edge set, thus we have T ′′ = (V ′′, E′).

Similarly to what has been proposed for SH, we need to
finally apply a projection function on the pixel time series
for the timeless nodes. Since we consider here the max-tree,
the proposed operation consists in finding the maximum value
of each location, or equivalently removing the non-maximum
pixels:

V ′′ 7→ V ′′′ = V ′′ \ {(x, t) | (x, t) ∈ Ckλ ,
∃t′ 6= t,∃λ′ > λ : (x, t) ∈ Ckλ,t, (x, t′) ∈ Ck

′

λ′,t′} (18)

Finally, the tree resulting from the projection Γς can be defined
as T ς = (V ′′′, E′).

C. Properties of projected trees

Having defined the two projection methods Γt and Γς ,
we know discuss some properties of the projected trees they
return. Let us recall that T ς is the only possible projection
of the space-time tree in the spatial domain. Conversely,
n different T t trees can be built from Γt(T τ ). As shown
previously, both projections provides only subsets of the initial
node sets and do not create new nodes (but this property does
not hold for the edge sets with the temporal projection).

Furthermore, we can study the trees in terms of isomor-
phism. Two trees are isomorphic one to each other if there
is a one-to-one mapping from the vertices of one tree to the
vertices of the other tree that preserves vertex, edges and labels
[24]. We consider here that the label of the nodes is simply
the level (λ) and it is preserved when the tree is projected. Let
T = (E, V ) be a tree, T ′ = (E′, V ′) its sub-tree. There are
three types of sub-trees according to the literature [24];

1) bottom-up sub-trees if the following three conditions
hold: V ′ ⊆ V , E′ ⊆ E, and if any node C ∈ V and
C ∈ V ′, all descendants of C are in V ′;

2) induced sub-trees require V ′ ⊆ V and E′ ⊆ E;
3) and embedded sub-trees for which we have V ′ ⊆ V ,

and the ordering of nodes (ancestor and descendant
relationship) is preserved.

According to the definition of sub-trees, T ς is the induced
sub-tree of Tτ and T t is the embedded sub-tree of Tτ . The
parent-child relationship is changing for T t because of (14).

IV. COMPARISON OF TREE REPRESENTATIONS

Thanks to the projections introduced in the previous sec-
tion, we can now compare a space-time tree with the other
hierarchies. We show here three different methods to ensure
such a comparison, respectively based on node analysis, cost
function and filtering capability.

A. Node analysis

Measuring the number of nodes or connected components
contained in a tree provides a simple way to assess its
structure. For instance, the number of parent nodes has been
suggested in [7]. The number of nodes or vertices refers to
the complexity of a tree and it is denoted as | T |. If this
value is high, the tree is considered having a complex structure
[25]. Such a complexity can also be observed with attribute
analysis from leaves to root such as in [26], where the node
attribute path from leaves to root is analysed through a so-
called leaf attribute function (LAF). Every leaf has one path
to root and the attribute value is changing from leaves to root.
When the attribute value changes dramatically from one node
to its parent, this node can be used as a significant feature. In
order to find such elements, the LAF gradient is computed.

B. Dasgupta’s Cost

Dasgupta’s cost is an unsupervised measure of the quality
of a hierarchical clustering [13]. In a component tree, each
internal node can have a leaf node thanks to the modeling with
ghost nodes [17]. A morphological hierarchy acts as a hier-
archical clustering when ghost nodes are taken into account.
Therefore, we adapt here this cost function to component trees
in order to compare the cost of different tree representations.
The cost of a tree is calculated as a weighted sum of a function
involving each leaves’ pair:

Cost(T ) =
∑
a,b∈T

wa,b· | leaves(T [a ∨ b]) | (19)

where T [a∨ b] is the bottom-up sub-tree rooted at the lowest
common ancestor (lca) of a and b leaf nodes and wa,b is the
edge weight between nodes a and b. The interpretation of the
cost function is to split data to each leaf by cutting edges from
the lowest common ancestor. The cost of a tree T is the sum
of the splitting costs from the leaves. A lower cost means
a preferable tree. If an edge cut the tree close to the root,
it will cause a high cost. It also means that similar objects
should be penalized if they are merged in the higher nodes
of the tree [27]. Here, each pair of leaf nodes is processed
separately. Minimizing this cost provides an optimal tree for
the associated graph.



Adapting this cost to morphological hierarchies requires
finding edges between connected pixels. In (19), the edge
weight information is calculated according to the underlying
graph structure from which the tree was built. Gray scale
images are vertex or edge weighted graphs [3] and component
trees are built from these weighted graphs [28]. The edge
weight can then be measured as the absolute difference of
intensities in the image [29]. We have defined here the edge
weight as the level (λ) difference between leaf pairs. Con-
nected leaf pairs have been determined according to neighbour
sets of each location with standard spatial-connectivity (7).
Although space-time trees are built with different neighbour
sets ((8), (9)), their projected versions lie in the spatial domain
and as such they come with a neighbour set definition such
as (7). When the trees to be compared come from the same
initial image, their graph and edge weights are the same but
the amount of leaves of their lca node might differ.

Let Cλ be a leaf node and C ′
λ′ is a ghost node. Their lca

node could be Cλ′ . Cost for this leaves pair is calculated as
Cost = (λ′ − λ) · | Cλ′ |. This calculation is repeated for
each leaves pair. The amount of leaves is equal to the amount
of nodes including the ghost nodes.

C. Attribute Filtering

Tree filtering is a common operation used mainly for
smoothing and feature extraction (e.g., attribute profiles [30]).
The main advantage of tree filtering is to output a non-
blurred image where edges between connected components
are preserved. When a filtered tree is obtained, the associate
image can be reconstructed by assigning new values to the
pixels that belong to the pruned nodes. There are three steps
in the filtering process: tree building, tree pruning and image
reconstruction from the filtered tree;

I 7→ T (20)

T 7→ T ′ = γh(T ) (21)
T ′ 7→ I ′ (22)

where I ′ is the filtered image obtained after filtering the tree
with the γ filtering operator and the criteria h.

V. DATA

A. Synthetic dataset

In order to compare tree representation strategies, we first
consider synthetic images. Fig. 2 illustrates our synthetic
image experiments. We describe every image and their corre-
sponding values in the tree with different colors. The structure
of projected trees considering the blue and black time stamps
are different from their single frame trees. There is only one
C1 for T 3 and it causes a structural difference between T3
and T 3. Leaves of T3 and T 3 can be listed as;

leaves(T3) = C ′
0, C

1
1 , C

′2
1 , C

1
2 , C

′2
2 , C3 (23)

leaves(T 3) = C ′
0, C

′
1, C

1
2 , C

′2
2 , C3 (24)

We also show Tς and T ς trees. In order to obtain Tς , we have
considered the mean of each pixel time series. Projected trees
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Fig. 2: Illustration of trees built using the different strategies
and the projected trees.

for both temporal and spatial domains have a lower or equal
amount of nodes. Less leaves pair provide less complexity for
the corresponding tree. Since T2 and T 2 are identical, their
properties are the same. While the cost of T1 and T 1 is 108
and 80 respectively, the costs of T3 and T 3 is 142 and 122
respectively. Namely, the projected trees have a lower or equal
cost and a lower or equal amount of nodes for our synthetic
image experiment.



(a) I1 (b) I2 (c) I3 (d) I4 (e) I5 (f) I6

Fig. 3: Sentinel-2 Satellite image time series dataset.

B. Real dataset

In addition to the experiments conducted with a synthetic
dataset, we have also considered a real use case with the
analysis of Satellite Image Time Series (SITS) on Morbihan,
France. The images were acquired with Sentinel-2 Copernicus
mission, and the multispectral images were converted as gray
scales ones by computing the normalized difference vegetation
index (NDVI). We used a sample SITS made of small extracts
(300 × 300px) from 6 observations which were performed
in 2018 with a spatial resolution of 10m, and as illustrated
in Fig. 3. Sentinel-2 imagery is mainly used for land cover
mapping because of its stable viewing angle and short revisit
time [31]. Alternatively, we used 50cm panchromatic Pleiades
images extracted from Kalideos1 (300 pixels × 300 pixels)
located at Pontorson, also in Brittany, France. The Pleiades
time series is also composed of six images acquired between
May 2018 and April 2019. Pleiades offers a very high spatial
resolution and it is used to observe small details of Earth.
We use the Pleiades dataset for qualitative assessment of the
filtering experiments because of their visual superiority, and
rely on the Sentinel-2 for LAF and cost experiments.

VI. EXPERIMENTS

One of the challenges faced when analyzing SITS is the
intensity change over time. Different structures of hierarchi-
cal representations are caused by shape and intensity-based
changes. We discuss here these changes according to the three
criteria was explained in section IV.

A. Number of node analysis

First, we measured the number of nodes for each Tt and
their corresponding temporal projection of Tτ , i.e.T t. We
reported the values in Tab. I. We have considered both 26 and
continuous connectivity, and denote the corresponding trees by
T t and T ′t, respectively. We report results for both max and
min-tree separately. The last three rows provide the standard
deviation, the average and the total of number of nodes. The
numbers of nodes for TH strategy are regular in comparison
to the projected trees. Indeed, the number of nodes is variable
for both projected trees. When the number of nodes increases
for max-tree, it is generally decreasing with min-tree for both
projected trees.

1https://bretagne.kalideos.fr

TABLE I: Amount of nodes with the SITS dataset.

Tt T t T ′t

Max Min Max Min Max Min
t = 1 13640 14274 6377 5874 4917 3481
t = 2 13577 14231 4471 4523 3688 4007
t = 3 14268 14002 2418 5726 2099 2924
t = 4 13883 14178 5111 3067 3469 2626
t = 5 12495 11592 6726 2966 6178 2862
t = 6 15176 13943 4106 6789 1614 5838
std. 804 951 1445 1438 1558 1090
avg. 13839 13703 4818 4824 3631 3623
total 83039 82220 28909 28945 21789 21738

All projected trees have fewer nodes than the corresponding
single frame tree built from the same time stamp. Namely, the
space-time tree provides a less complex structure. Besides, T ′t

has less nodes than T t consistently.
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Fig. 4: Area attribute signatures of the same location with TH
strategy, projected trees and their gradient curve.

Fig. 4 illustrates the average area attribute signature for
leaves of T4, T 4 and T ′4. The maximum area is obtained
for the root node and corresponds to image size 300× 300 =
90, 000. The gradient curve demonstrates abrupt changes in
the node attribute. This curve generally overlaps for T 4 and
T ′4. The abrupt change for T4 appears at a low level which
may cause information loss if a filtering or any other process
is applied at that level.

B. Cost Analysis

In order to evaluate the usability of the cost function for
morphological hierarchies, we first evaluated it with a single
frame image and its noise added versions. We added Gaussian
noise to an image three times to obtain 3 noisy images. Then,

https://bretagne.kalideos.fr


TABLE II: Cost values for T4 and trees with noisy images.

Cost
I4 1.00

I4 + noise 11.81
I4 + (2 * noise) 15.19
I4 + (3 * noise) 18.65

TABLE III: Cost values for Temporal Hierarchy and Temporal
Projection.

Tt T t T ′t

Max Min Max Min Max Min
t = 1 57.2 93.5 23.8 10.4 6.4 5.8
t = 2 41.7 82.2 4.4 12.8 3.2 9.9
t = 3 54.7 86.5 2.1 10.9 1.00 4.4
t = 4 58.6 86.0 12.8 4.5 5.2 2.42
t = 5 66.9 70.2 25.6 1.2 23.1 1.00
t = 6 70.6 98.4 7.2 20.6 1.3 14.1

TABLE IV: Cost values for Spatial Hierarchy and Spatial
Projection.

Max Min
Tς 500.00 1000.00
T ς 1.5.00 3.00
T ′ς 1.00 1.00

we observed that the cost was increasing w.r.t the noise level.
We have used I4 image for this experiment and report the cost
values in Tab. II.

Table III reports the cost values for the temporal projection
and temporal hierarchy. We normalized the cost values accord-
ing to the lowest values which are T ′3 for max-tree and T ′5

for min-tree.
Since Morbihan is affected by tide, the amount and value

of pixels on the sea is changing. While I1, I3, I5 and I6
have similar colors on the sea, I2, I4 are different from them
because of the bathymetry. The cost value of T ′3 min-tree is
much lower than for T 3, since the continuous connectivity is
providing connectivity with I1 and I5. Similarly, the projected
max-tree T ′4 has a much lower cost than T 4 because it
connects I2 to I4 and sand pixels are becoming more compact
in T ′4.

Table IV shows the cost values for Tς , T ς and T ′ς as in
Table III. We used the distance based ordering with Euclidean
distance. According to the Dasgupta’s cost, the space-time tree
is better than both TH and SH strategies.

C. Filtering

Fig. 5 illustrates our filtering experiments with one of the
Pleiades images. We have used all 6 images but we illustrate
only one of them which we select for filtering. We have filtered
trees with area attribute and the same threshold (h = 20)
for the sake of comparison. The second row of the figure
represents filtered images and its third row their difference
with the original image respectively. Filtering removes the
small objects such as cars or noises of the images. The amount
of changed pixels for Tt, T t and T ′t is 13,891, 3682 and 2243
respectively. More precisely, filtering with the TH strategy
changes many pixels comparing to the projected tree although

(a) I

(b) γ20(Tt) (c) γ20(T t) (d) γ20(T ′t)

(e) | I − (b) | (f) | I − (c) | (g) | I − (d) |

Fig. 5: Filtering results of one image of the Pleiades time
series with Tt and projected trees, along with their residues
that highlight changes.

a small threshold is used. Much changes are not desired with
such a small threshold. Changes are less for T ′t comparing to
T t. These results show that the compactness of a tree leads
to an efficient filtering process.

VII. CONCLUSION

In a previous work [6], we have proposed different hierar-
chical representation strategies for image sequences. We have
pursued this study in this paper, where we have compared
morphological hierarchies to determine the better tree repre-
sentation for image sequence analysis. Our goal is to select
the most relevant and efficient hierarchical representation for
subsequent studies.

Comparison of trees requires them to lie in the same
domain. To do so, we have proposed projection methods for
space-time trees in order to make them comparable with the
trees obtained with spatial and temporal hierarchy. We also
proposed a continuous connectivity rule to build a space-time
tree with lower complexity, lower cost according to [13] and
providing interesting filtering capabilities. In our experiments,
we have used some gray-scale satellite images and shown that
the temporal information provides a less complex hierarchical
structure when projected in space or in time.



Among future works, we aim to explore capability of trees
with continuous connectivity for real remote sensing based
applications such as land-cover mapping, pattern recognition
and change detection.
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