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A Bayesian Approach to Reinforcement Learning of
Vision-Based Vehicular Control

Zahra Gharaee*! Karl Holmquist!

Abstract—In this paper, we present a state-of-the-art reinforce-
ment learning method for autonomous driving. Our approach
employs temporal difference learning in a Bayesian framework
to learn vehicle control signals from sensor data. The agent has
access to images from a forward facing camera, which are pre-
processed to generate semantic segmentation maps. We trained
our system using both ground truth and estimated semantic
segmentation input.

Based on our observations from a large set of experiments,
we conclude that training the system on ground truth input data
leads to better performance than training the system on estimated
input even if estimated input is used for evaluation.

The system is trained and evaluated in a realistic simulated
urban environment using the CARLA simulator. The simulator
also contains a benchmark that allows for comparing to other
systems and methods. The required training time of the system
is shown to be lower and the performance on the benchmark
superior to competing approaches.

Index Terms—Reinforcement Learning, Semantic Segmenta-
tion, Autonomous Driving, Bayesian method

I. INTRODUCTION

Autonomous driving is a complex problem with enormous
application value. In this paper we address the essential
functionality of road following by a reinforcement learning
(RL) based approach.

Systems learning in an end-to-end manner have shown their
ability to accurately predict steering signals of the vehicle
[2]]. However, in particular deep networks inherently require a
large amount of training data. This problem can be somewhat
mitigated by the use of simulators, which also allows safe
exploration of policies without the risk of harming the agent or
other entities in the environment. Furthermore, the increasingly
more realistic simulators facilitates moving from the virtual to
the real environments.

We use the CARLA simulator [3]] for training and evaluating
our system in a realistic driving environment. The system is
trained using two different settings for the inputs, (a) ground-
truth and (b) estimated semantic segmentation to generate
two sets of models. The estimated semantic segmentation is
generated by a pre-trained Context Encoding Network (EncNet
[1]). We evaluate our two model sets using both ground-truth
and estimated input, creating a total of four evaluation results
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reaching state-of-the-art performance. We show that keeping
the preprocessing frozen facilitates efficient training of our
agent in online mode. However, the most interesting result
is that the trained system with ground-truth input performs
superior to the trained system with estimated input data.

The main contributions of this paper are:
(1) We propose a method for learning realistic autonomous
driving in the CARLA simulator based on a Bayesian
approach to Reinforcement Learning [4]. Our proposed
method splits learning into offline preprocessing of the raw
data and online reinforcement learning of the control.
(2) We implement an algorithm based on this method that
reaches state-of-the-art performance, which shows that the
proposed method can learn the driving task efficiently.
(3) We suggest training the system using ground-truth
data available from the CARLA simulator since the test
performance is better than when trained on estimated data.

II. RELATED WORK

The problem of autonomous driving constitutes of multiple
levels, from the top-level route planning [5]] to the low-level
control. In this paper we focus on learning the mapping from
perception to control signals.

There has been a large success in complex tasks, from
games [6]], [[7] to continuous control problems [8]], [9], with the
introduction of model-free deep RL. Q-learning approaches are
popular for discrete action spaces either in their tabular form
or in their deep formulation using neural networks as function
approximators [[6], [10]. On the other hand, the majority of
deep RL approaches for continuous control problems are based
on the actor-critic family [11f], [12].

Using neural networks for function approximation faces
two main challenges. First, these methods are expensive in
terms of their sample complexity for data collection in high
dimensional input space. Second, they are sensitive to the
model hyper-parameters such as learning rates and exploration
constants.

Since deep RL methods usually require excessive data
collection through interaction with the environment, they can
be prohibitively expensive in real-world scenarios and also
constraining the acceptable exploratory behavior. As such,
there has been a large increase in available realistic simulators,
such as CARLA [3]]. These often provide simulated raw mea-
surements from different sensors, e.g. RGB-cameras, semantic
information, LiDARSs, positioning and dense-depth measures.



Fig. 1: Example images from the CARLA simulator, RGB-image (left), ground-truth semantic segmentation from simulator
(center) and estimated semantic segmentation from EncNet (right). Top row shows driving during raining and the bottom
row shows the sunny noon weather condition.

However, a major problem when using simulated data is the
domain shift when moving from the virtual to the real world.
This problem can be addressed by adapting the simulated data
to a format closer to the real data or generating simulated
data from real [14]]. A commonly applied approach is to map
the input space to a semantic representation [[15]. However,
while this work suggests to only segment the world into road
and non-road, we additionally introduce obstacles and road
line in our semantic representation. Another difference is that
we directly predict the control signals rather than way-points
used for navigation. A comparison to is not feasible since
the code is not publicly available.

To address the complexity and uncertainty in a realistic
environment, probabilistic methods have been shown to be
useful for many types of problems [16]. Recent probabilistic
approaches to reinforcement learning have been formulated in
terms of maximum entropy RL. These methods add an entropy
cost to the predicted policy to avoid fast convergence to a
single action and encouraging more robust and exploratory
policies during training [[17]. However, these approaches be-
come highly unstable if the relative scaling between reward
and entropy is incorrectly set [L8].

Instead, we based our method on a Bayesian approach to
reinforcement learning [4]]. In this approach, we use an online
reinforcement-based clustering of the agent’s perceptual space
by a Gaussian mixture model (GMM). These mixture compo-
nents are matched with a Bayesian formulation to benefit the
approach in terms of generalization and adaptability. Rather
than adapting to a simulated robotic platform [19]], we test
our method in a realistic driving scenario using the CARLA
simulator. We use a learned preprocessing module based on
the semantic segmentation to facilitate efficient online training
of the method. Furthermore, we study the impact of the
noise introduced by the estimation errors in the preprocessing
module for both training and the deployment of the trained
system.

Besides other RL-based algorithms, we also compare our
method to a supervised Imitation Learning approach [20].
The imitation learning approaches are however limited to that
expert demonstrations exist for the relevant scenarios. This is

problematic in dangerous and rare situations, which are often
avoided before occurring. Therefore, it is difficult to rely solely
on the expert demonstrations.

III. METHOD

The problem of driving in a city environment is a complex
task composed of a prediction problem (estimating the state-
action value function for a given policy) as well as a control
problem (finding the optimal policy). Therefore, the target
value to be estimated for the agent is the probability of a
specific action given the input state. These probabilities are
used for decision making.

A. Bayesian approach to Reinforcement Learning

In this section we present the Bayesian approach to Rein-
forcement Learning introduced by [4]. This framework inte-
grates a Gaussian Mixture Model (GMM) with a reinforcement
learning approach. We assume that at each time step ¢, the
agent perceives the world through the state s; and models
the action-conditioned state probability by a GMM with a set
of mixture components M. Based on the perceived state, the
agent makes a decision and performs an action a; from the
action set A. The agent’s decision is evaluated by a reward
signal r;, which is used to train the system.

We assume stochastic variables a € A and m € M to cal-
culate the conditional probability p(a|s;). These probabilities
are used to select the best decision at a given state and are
estimated as:

plals) < pla) 3 plsim)p(mla). (1)
meM

Due to the unknown parameters of the GMM we are using
the multi-variate t-distribution as proposed by to estimate
p(s¢/m), the likelihood of the state s; given the mixture
component m.

Next term to be estimated in (1)) is p(m|a), the probability
of mixture component m given the action a. As suggested by
[4]l, this probability is parameterized by a state-action value
function Q@ = [gm.a] : (M| x |A]|) (| - | represents the
cardinality of the respective set), and learned by reinforcement



learning. To calculate the probabilities p(m|a) and p(a), the
elements of @) have to be non-negative, thus [4] proposed to
use the offset:

5 _min(0)]
1+ | min{Q}|

The expressions for the probabilities p(m|a) and p(a) read
as follows:

— min{Q}. )

p(mla) < (¢m,a + 4)- 3)
p(a) < > (Gma +4)- “
meM

To train the system, a temporal difference learning (TD)
approach is used with the loss:

T Derror = 7t +7Q(at 11, mey1) — Q(ag, my), ()

where r; is the reward signal and + is the forgetting factor.
Term a,; shows the action performed at time step ¢ and m,
is the most similar component to the state s; given by /.
norm between the state s; and the mean vectors of the existing
mixture components. Term a;;; shows the most probable
action in the next time step ¢ + 1:

arr1 = argmax p(a|sey1). (6)
a

The most likely component is m;1, based on the proba-
bility:

p(mlagy1, si41) < p(seg1|m)p(mlais1). (7

Finally the system parameters are learned by Q-Learning
using (8), where a corresponds to a decaying learning rate
and w allows for a soft updates despite the greedy choice of
component M4 q:

Q(mt7 at) — Q(mt> (lt) + 0wWT Derror. (8)

To calculate w, the T Deyor is evaluated using two bound-
aries: a lower threshold, 7;, showing a bad decision and an
upper threshold, 7T;,, to show a good one:

p(mt|ata 5t)> if T Derror > T,
w = p(mt|_‘at7 St)a else if T Depror < T} )
p(mylse), else,

where p(m|—a, s;) is the probability for component m given
not performing action a at state s;:

p(m|—a, s¢) x p(sem)(1 — p(m]a)). (10)

To update the parameters, two criteria are used:
1) Similarity measure d; given by the /., norm between the
state s; and the mean vectors of m.

2) Evaluation criterion given by T Degor < 17, to determine
if the action was a bad choice.

If the observed state is not similar to any of the existing
components m and the action a is a bad choice, then a
new component centered at s;y; is created otherwise the
parameters of m, are updated, see Algorithm [I]

B. Reinforcement Learning method for vehicular control

In this section we propose a method that applies the RL
approach introduced in Section [[II-B|to learn a realistic driving
task using the CARLA simulator. This includes design and
implementation of the input and the reward signals as well
as a policy for decision making. The system is constituted
by one agent, which receives a continuous state-vector as the
input and predicts discrete actions. The overview of our RL
method is described by Algorithm. [T}

Algorithm 1 Overview of RL method according to [4]

Input: Initialized model.

Output: Trained model.

tmax: Total number of time-steps.
t: Current time-step.

1: Calculated initial state — sg.

2: for t € [0,t14,] do

3:  Calculate action probabilities — p(als;)
4:  Make decision — ay.

5:  Perform a;.

6 Calculated next state — Sy41.

7 Calculate reward — 7

8 Calculate error — T Depror.

9:  Find closest component to s; — my.

10:  Calculate similarity between s; and m; — d;.
11:  if dy < py OR T'Deyoy > 1 then

12: Calculate weights w

13: Update m;

14:  else

15: Create a new component.
16:  end if

17: St < St41.-

18: end for

1) Input description: We base our input on the semantic
segmented input image. The image of the segmentation map
is separated into six different regions, for each we calculate a
weighted histogram of the class distribution. The number of
regions represents basic directional information (three vertical
divisions) and distance information (two horizontal divisions)
of the scene [19]]. This approach can facilitate further studies
of how agent learns to control its attention to each region and
if an attention mechanism could improve the performance of
the task [21], [22]]. To further reduce the dimensionality of the
input, the semantic labels are clustered into five categories as:
Road, Road-line, Off-road, Static object and Dynamic object.

The feature vector of each patch is concatenated into a
single state-vector. The state-vector is normalized by its ;-
norm. Due to the low density of road lines in the semantic
segmentation input image, we weighted the class, road lines,
by 20 for the histogram calculations.



In reality, ground-truth is obviously not available and as a
result we need to estimate the semantic segmentation from
available input, such as RGB. For our investigation, we utilize
two different types of input data in our experimental setup,
the ground truth semantic segmentation input directly from the
simulator and the estimated semantic segmentation generated
from RGB-images by EncNet [ 1]]. The EncNet model is trained
offline on images collected from the CARLA simulator.

EncNet We use an EncNet with the Resnet-101 as back-
bone architecture on top of which a special module named
Context Encoding Module is stacked. The main reason behind
the selection of EncNet over other powerful CNNs is because
of the availability of pre-trained EncNet weights on the large
and diverse ADE20K [23]]. In addition, EncNet has low
computation complexity compared to CNNs such as PSPNet
and DeepLabv3 and provides better inference speed at run
time.

2) Decision making: During training the agent applies an
epsilon greedy policy to explore the world and to develop its
learned concepts. Our decision making strategy is designed
in a way to increase the exploration in the beginning of
learning and to diminish as it progresses. Therefore the policy
is gradually shifting from an epsilon greedy to a greedy one.
When the learning is converged, the agent primarily exploits
its learned concepts for decision making rather than exploring
the world.

Our behavior policy is implemented in two steps. First, we
use a greedy approach to select the greedy action agq =
argmax, (p(als:)). Second, we sample an action from the
distribution:

TTlTJrT, if a =a4q

Y

pr(alsi) =
1-r
Al
where 7 € [0, 1] is an increasing temperature to increase the
probability of the greedy action as the learning progresses.
3) Reward design: We select four different reward signals
representing important types of failures. These are Collision,
Off-road, Opposite-lane and Low-speed. These failures gener-
ate the reward signal but only one of them is applied at a time
based on its importance:

else,

if Collision

—Tk, *To, else if Off-road
"= ‘ . (12)
—Tks 71, else if Opposite-lane

—Tky

Tspeed else,

where r, is calculated as the percentage of the car being off
road and r; is the percentage of the car not being in the correct
lane. The values of r, and r; are received from the CARLA
simulator. Finally, rgyeeq rewards the agent when it drives with
a speed v; relative to the target speed Vyyge at time step ¢:

_ . (Yt~ Viarget \ 2 .
Tha -~ )4, ifu <0
_ Vt — Vtarget \ 2 o
Tspeed = § —Tks ° ( Vrarget ) , M0 <o < Utarget (13)
0, else.

Additionally, a reward based on the road view, the percent-
age of the road visible in the image input to the agent, is
always applied to align the agent with the road as:

(14)

Tt = T + Troad-view-

4) Control signals: The control signal that the simulator
receives are, similarly to a real car, steering, throttle, brake
and a flag for the reverse gear. Our actions are chosen to
correspond to four action primitives that are able to fully
control the vehicle velocity and direction, which are: Drive
forward, Turn to the right, Turn to the left and Drive backward,
each corresponds to a certain control signal.

C. Experimental setup

We train our system in a single simulated town, TownOl
in CARLA. The training is done in the sunny noon weather
condition and it contains three different types of scenarios.
The first scenario is driving along a road going straight
forward and the other two are following the road through a
right, respectively a left turn. None of the scenarios include
intersections or dynamic obstacles, e.g. other vehicles and
pedestrians. The intersections are excluded from the training
since our current system does not explicitly handle the multi-
modality that arises from different possible choices of where
to drive.

The CARLA simulator is able to simulate multiple sensor
input types, RGB, depth and semantic segmentation images as
well as Lidar point-clouds. For our system we are using either
the semantic segmentation input directly or by estimating
it from the RGB image using EncNet. The simulator also
provides the measure necessary for calculating the reward
signal, the exception being the road view that is based on
the input state-vector.

The system is trained for a total number of time-steps, ¢4z,
in order to allow it to converge. Each time-step is a single
frame, but in order to get a reasonable state difference between
time-steps only every seventh frame is used for training and
decision making. The simulator itself is running at a frame
rate of 7Hz.

We designed our experiments using three different sce-
narios, training, validation and test sets. The parameters of
the system are set based on the training set and tuned on
the validation set. The corresponding settings to run our
experiments are presented by table [ Based on the values
shown in table [I], parameters, o, 7 and p are being calculated
at each time step:

Xt <~ XRate(XFinal - Xt) + Xta (15)

where X; shows the values of the changing parameters, «,
7 and p, at the current time step ¢.

IV. RESULTS

We use four different settings combining training and
deployment, each contains nine models and we name them
according to the following schedule:



Parameters Settings
Tk, 50 PInit 0.1 AInit 0.99
Tko 40 PRate 3e-7 X Rate le-5
Tks 30 PFinal 0.01 QFinal 0.01
Thy 15 TInit 0.5 T, -10
Thy 10 TRate 7e-3 T -5
o 0.9 TFinal 0.99 trmax 4500

TABLE I: The table shows the settings of the parameters of
BRL used for the experiments of this article:

tmaz: Total number of time steps to train a model.

~: Forgetting factor.

[T}, T,]: Lower/upper thresholds for T Desor-

[Tkys---,Tis]: Reward coefficients.

«: Learning rate.

7: Exploration temperature.

p: Similarity measure for updates.

The parameters o, 7 and p are initialized according to the
initial value and updated according to .

TGDG: Training and Deployment w/ Ground-truth.

TEDE: Training and Deployment w/ Estimate.

TGDE: Training w/ Ground-truth, Deployment w/ Estimate.
TEDG: Training w/ Estimate, Deployment w/ Ground-truth.

We design the first set of experiments to test the basic func-
tionalities of our system according to the methodology in the
experimental setup section In these experiments we also
compare our system performance with conditional Imitation
Learning (IL) [24]] and deep Reinforcement Learning (RL) [3]]
by using the provided pre-trained models and evaluating them
in our validation settings. The results of the corresponding
experiments are presented in section

In the second set of experiments, we used test settings of the
benchmark presented at CoRL 2017 [3]] in order to compare it
to IL, RL and a Modular Pipeline (MP) [3]]. We select the best
performing model for each setup in the first set of experiments
and use these for evaluation in the second set. The results are
presented in the section [[V-B

It is important to mention that similarly to RL and IL our
TEDE models are trained and deployed using the raw RGB
input. Unfortunately, we cannot evaluate the potential benefit
of training the compared models using semantic segmentation
since the training codes of these methods are not provided
and a comparison without training would not be fair. At the
same time, the compared methods did only provide their best
models, as such, we compare both to our best model as well
as the average performance.

Convergence plots showing the reward signal and the T D.,.,.
for the best respectively the worst models trained with ground
truth and estimated semantic segmentation are depicted in the

figure [3]
A. Test results

In this section, we present the results of the models evalu-
ated according to the following metrics:

Offroad Being off-road (e.g, sidewalks).

Otherlane Being in the meeting lane.

Either Being off-road or in the meeting lane.
Success Accomplished tasks.

No Collision Tasks without collisions.

Score Average of Either, Success and No Collision.
Dist Total distance driven in meter.

A successful task is counted when the agent reaches its
end within a certain amount of time. For each model set we
calculate and report the average values of all metrics in Table
We also determine the best performing models according
to the Score and report their performance. We compare these
results to the RL and IL methods for the same test setting.

Since classifying the vehicle as outside of the lane using a
fixed threshold does not illustrate the gravity of the error we
also illustrate the underlying distribution in figure [2al The left-
part of the figure corresponds to other-lane and the right-part
to off-road.

Figure [2b] and [2c| show the PDF (related to certainty) of our
estimated success and collision rate using the beta distribution
and Bayesian inference. As a uninformed prior, we select the
Jeffrey prior of 5(0.5,0.5) [25]], which puts a higher prior on
either success, s, or failure, f, than a uniform (0, 0) prior:

1.370.5(1 _ I)f70.5
B(s+05,f+05)

In figure [2| bottom row, the different training and deploy-
ment models are evaluated. Instead of estimating the probabil-
ity distribution parameters and calculating the histogram from
the results of a single model the entire set of models is used.
The estimated distributions show the performance with respect
to the set of models rather than a single model.

p(zls, f) =

(16)

B. Benchmark results

The benchmark proposed in [3] is comprised by four differ-
ent tasks, driving straight forward, one-turn (left or right), and
two navigation tasks with multiple turns, each of them using
the full road-network including intersections. All tasks except
for the final navigation task are set in a static environment
without vehicle and pedestrians while the last one contains
multiple instances of each kind. The reported metrics is the
average kilometers driven between each type of infraction.

A comparison between our method and the three approaches
presented in [3[] is shown in table Neither our nor the other
methods have been trained on the environment in Town02 from
the CARLA benchmark.

V. DISCUSSION

According to the results, our system outperforms the com-
pared methods on tasks without intersections. Our system also
shows good performance on the benchmark settings.

Test results According to table the best performing
model out of nine, outperforms both RL and IL in terms of
the scoring. We also see that the average score outperforms
the RL-method.

Even though the average score of the TG* and TE* models
differs, the results in figure |2} top row, show that the best
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Fig. 2: The results of the Best models are illustrated in the top row panels and the results from each of the model sets are
illustrated in the bottom row panels. Histogram of the percentage of the car being other-lane/off-road shown in left column.
Posterior probabilities of success rate in the middle column and collision avoidance in the right column are calculated using

(T6). b-c) shows all four T*D* models overlapping.

Model Offroad  Otherlane  Either  Success  No collision Score Dist[m]
TGDG average 0.0% 11.1% 11.1% 96.8% 84.1% 0.90 (£0.07) 11132 (£703)
best model 0.0% 2.4% 2.4% 100.0% 100.0% 0.99 11168
TGDE average 0.1% 11.6% 11.7% 89.0% 80.8% 0.86 (+0.073) 11392 (£232)
best model 0.0% 2.5% 2.5% 100.0% 100.0% 0.99 11119
TEDE average 11.4% 29.8% 37.9% 34.5% 73.4% 0.57 (£0.3) 10209 (4+1950)
best model 0.0% 17.5% 17.5%  100.0% 100.0% 0.94 11227
TEDG average 11.5% 25.8% 36.3% 33.3% 78.3% 0.58 (£0.3) 11437 (4£2201)
best model 0.0% 22.7% 22.7%  100.0% 100.0% 0.92 11238
RL 42.4% 21.0% 52.4% 41.7% 50.0% 0.46 8787
1L 8.3% 0.7% 8.4% 86.9% 90.5% 0.90 11293

TABLE II: Table shows the performance of the best model w.r.t score and allows a comparison between T*D*, IL and RL.
The average is calculated per metric and shows the stability of the training for each of the T*D* settings. The values shown
in the parenthesis for Score and Dist are the standard deviations of the models. Offroad, Otherlane and Either are calculated

with a threshold of 20% for each time-step.

model in each of the cases outperforms the best models of RL
and IL. Figure [2aalso gives insight in how the lane positioning
of the models compare. The RL model seems to either drive
well inside of the lane or drive completely off-road while most
of the other models stay close to the middle of the lane and
slightly crosses over to the meeting lane. Figures [2c| and [2b]
show that the performance difference between our models is
small while RL and IL has a much lower probability of success
respectively not colliding.

The results in table [[l] also clearly show that training on the
ground truth semantic segmentation is beneficial even during
deployment using the estimated semantic images (TGDE).

TGDE significantly outperforms training and deploying using
estimated input (TEDE). This result is somewhat surprising
since much earlier work has indicated that using the same
type of data for training and deployment is beneficial [26]-
[28]. However, we further support these results in figure 2]
bottom row, which shows a clear difference in success rate
between TGDE- and TEDE-models. The figure also shows that
the performance degradation of changing input is relatively
small.

We hypothesize that the degradation of performance from
changing input for training might be partly because of the over-
segmentation of small details, which introduces a systematic



\ New Town New Town & new weather
Infraction type \ MP IL RL TGDG TEDE TEDG TGDE \ MP 1L RL TGDG TEDE TEDG TGDE
Opposite lane 045 1.12 023 2.14 0.18 0.24 4.10 040 0.78 0.21 2.13 0.18 0.25 2.93
Sidewalk 046 076 043 0.40 10.24 9.80 0.11 043 0.81 048 0.39 6.64 9.80 0.10
Collision-static 044 040 023 2.52 2.16 2.18 0.55 045 028 0.25 3.55 1.53 3.27 0.79
Collision-vehicle 051 059 041 0.34 0.22 0.27 0.38 047 044 037 0.33 0.26 0.24 0.34
Collision-pedestrian | 1.40 1.88 2.55 14 1.20 1.35 0.53 146 141 299 1.39 0.69 1.13 1.31

TABLE III: Performance evaluation in the (CoRL2017) Carla benchmark for Town02, the table shows average km driven
between infractions per class (MP, IL and RL are evaluated in [3]]). The total number of km might differ.
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Fig. 3: The reward signal convergence plots shown in (a) and
the T'D.,, signal convergence plots are shown in (b).

0 1000

noise in the feature extraction. If the system tries to over-fit
to this noise it might struggle to learn the important concepts
in the scene, and does lead to the inferior performance as
observed in the experiments. This is also supported by the
TDerror in figure [3] which shows that the TG models are
more stable after convergance than the TE-models.

This result opens an interesting path in which a system could
be trained from perfect, simulated data and then be applied
outside of the simulator, possibly on real-world vehicles with
minimal or no fine-tuning to adapt to the new environment.

Benchmark Table [[TI] shows the results in a testing town
in two distinct sets of weather conditions. For each column a
higher average km between infractions is better and we see

that our methods compare similarly to the other models.

The total training time for the system (based on 4500 time-
steps) is in the order of 2-3h but using fewer time-steps or
speeding up simulator clock are both possible approaches to
reduce this time further. This can be compared to the training
times mentioned in [3]. The imitation learning approach is
using 14h of recorded data while the reinforcement learning
used roughly 12 days of non-stop driving at 10fps. The Mod-
ular pipeline is using a local planner and a PID controller both
not requiring training. However, the perception component is
based on a semantic segmentation model and trained using
2500 images from the CARLA simulator.

As shown in Table there are four infractions to evaluate
the performance in the test settings. Among these infractions,
opposite-lane and side-walk are highly anti-correlated, which
means that a large improvement of the latter comes with a
small degradation of the former. As a consequence we observe
that in some cases, for example; side-walk, TE* models
performs better than TG* models.

VI. CONCLUSION

In this paper we presented a state-of-the-art performing
reinforcement learning system for autonomous driving. The
method is simultaneously clustering the agent’s perceptual
space based on its performed actions. The learning algorithm
is developed based on a probabilistic Bayesian model, which
enables the agent to deal with the uncertainty of its perception
as well as the surrounding environment. Using a Gaussian
Mixture Model with adaptive number of components, en-
ables the agent to learn the action probabilities in the noisy
environments. We have shown that by separating the input
preprocessing learned offline from the online reinforcement
learning method using semantic segmentation, the system
efficiently learns the driving task.

The experiments results also show that by training our
system using noise-free semantic segmentation input available
from the ground-truth information in the CARLA simulator,
we improve the training robustness as well as the test perfor-
mance compared to estimating the semantic information from
RGB-images. This result has also been shown to be the case
when applying estimated input to the system trained with the
ground-truth information.
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