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Abstract—COVID-19 emerged towards the end of 2019 which
was identified as a global pandemic by the world heath organiza-
tion (WHO). With the rapid spread of COVID-19, the number of
infected and suspected patients has increased dramatically. Chest
computed tomography (CT) has been recognized as an efficient
tool for the diagnosis of COVID-19. However, the huge CT data
make it difficult for radiologist to fully exploit them on the
diagnosis. In this paper, we propose a computer-aided diagnosis
system that can automatically analyze CT images to distinguish
the COVID-19 against to community-acquired pneumonia (CAP).
The proposed system is based on an unsupervised pulmonary
opacity detection method that locates opacity regions by a de-
tector unsupervisedly trained from CT images with normal lung
tissues. Radiomics based features are extracted insides the opacity
regions, and fed into classifiers for classification. We evaluate the
proposed CAD system by using 200 CT images collected from
different patients in several hospitals. The accuracy, precision,
recall, f1-score and AUC achieved are 95.5%, 100%, 91%, 95.1%
and 95.9% respectively, exhibiting the promising capacity on the
differential diagnosis of COVID-19 from CT images.

Index Terms—COVID-19, CT images, Unsupervised detection
of pulmonary opacities, Computer-aided diagnosis

I. INTRODUCTION

Since December 2019, the outbreak of severe acute respi-
ratory syndrome coronavirus (SARS-COV-2) [1] has caused
millions of cases of Corona Virus Disease (COVID-19) in the
world. The world health organization (WHO) has announced
that the COVID-19 as a global healthy emergency on January
30, 2020. [2]. As a form of pneumonia, COVID-19 causes
fever, cough or respiratory symptoms, making the patient
difficult to breathe. Other symptoms are vomiting, diarrhea,
myalgia pleurisy, etc. Currently, the diagnosis of COVID-19
is mainly based on the test of real-time poly-merase chain
reaction (RT-PCR). However, recent studies show that RT-
PCR has a low positive and sensitivity rate in the early stage
of COVID-19 [3] [4] which may miss the early diagnosis
of COVID-19. On the other hand, using RT-PCR to confirm
COVID-19 patients is time-consuming and is limited by the

lack of supply test kits. The computed tomography (CT)
imaging, as a routine diagnostic tool for pneumonia, plays a
critical role in the diagnosis of COVID-19 [5]. Compared with
the RT-PCR, it is easier and faster to take a chest CT scanning,
which makes the diagnosis of COVID-19 more available and
economic. However, a chest CT image usually contains several
hundred of CT slices in lung regions, which takes radiologists
a lot of time to review all slices. Besides, the fast growth
of COVID-19 patients further make it hard to carefully check
huge amounts of CT images, which could cause mis-diagnosis.
Therefore, it is required to develop a computer-aided diagnosis
system that can automatically analyze CT images to help
radiologists for the COVID-19 diagnosis.

There have been some works related to the CAD system
of COVID-19 on CT images. For example, the works [6]
[7] [8] [9] [10] utilize deep learning based techniques to
automatically analyze CT images for differential diagnosis of
COVID-19 against to community-acquired pneumonia (CAP).
These methods have demonstrated the potential ability of
deep learning in the diagnosis of COVID-19, but they extract
features from the entire CT images rather than focusing on the
regions of pulmonary opacities caused by pneumonia, which
limits their performances. Other works present opacity-awared
methods [11] [12] [13], which make the feature extraction to
be restricted inside the regions of pulmonary opacities. The ex-
perimental results demonstrate that the capacity of COVID-19
diagnosis can be improved by leveraging the location-specific
features. The opacity regions can be obtained by supervisedly
training a deep network for opacity region segmentation [13],
which requires the human annotation of these regions on a lot
of CT images. This not only costs too much time and human
labors, but also make it hard for researches in academics to
develop self-motivated tools for their study of COVID-19.

In this study, we propose an unsupervised learning method
that can easily train a detector to locate regions of pulmonary
opacities on CT images. We exploit an anomaly detection
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based framework [14] to train the opacity detector by using
several tens of CT images with normal lung tissues. Since the
detector only sees normal CT images during the training, it is
able to detect abnormality (pulmonary opacities) when a CT
image exhibits radiological features of COVID-19 or CAP.
Besides, we apply the unsupervised detection of pulmonary
opacity to develop a CAD system for differential diagnosis
of COVID-19. Radiomics-based features are extracted inside
the detected opacity regions on CT images and LASSO-
based feature selection [15] is carried out to choose a few
number of optimal features. Several widely-used classifiers are
trained and compared to distinguish COVID-19 and CAP. We
evaluate the developed CAD system by using 200 CT images
collected from different patients in several hospitals. The main
contributions of this paper are as follows:

• We present an unsupervised learning method to detect
pulmonary opacities on CT images, which saves huge
labors of manual annotation of opacity regions.

• We apply the unsupervised detection of pulmonary opac-
ity to develop a CAD system to distinguish COVID-19
and CAP on CT images.

II. RELATED WORK

A. Deep learning based diagnosis of COVID-19

Since the outbreak of COVID-19, there are several deep
learning based methods that have been proposed for diagnosis
of COVID-19 and achieved very promising classification ac-
curacy. Zheng et al. [6] established a 3D CNN (DeCoVNet)
to predict the probability of COVID-19 infectious. Wang et
al. [7] modified the Inception network and make use of transfer
learning to distinguish COVID-19 and typical pneumonia in
chest CT scans. Ozkaya et al. [8] use pre-trained CNN models
to extract features from CT scans and propose a feature fusion
and ranking method to improve the performance. Kassani et
al. [9] choose a pool of CNN models to extract features from
X-ray and CT images and feed them into several machine
learning classifiers to classify COVID-19 cases. Farooq et
al. [10] propose a pre-trained ResNet-50 architecture, called
COVID-ResNet for differentiating COVID-19 cases from other
pneumonia cases. Different data augmentation methods are
used to improve the generalization of the training model.
Sun et al. [11] propose a feature selection method and is
incorporated with a deep forest model for COVID-19 vs. CAP
classification by using the chest CT images. Experimental
results show that the proposed approach can achieve supe-
rior performance compared with other widely used machine
learning methods. Ouyang et al. [12] develop a 3D CNN
model combined with a novel attention module to automat-
ically diagnose COVID-19 from CAP. By focusing on the
infection regions in lungs, the proposed algorithm achieves
generalization performance on multi-center CT data. Shi et
al. [13] leverage VB-Net to obtain the segmentation results
of infection and lung regions which are used for feature
extraction. A series of handcrafted features are designed for
random forest to screen COVID-19 from CAP.

B. Anomaly detection

Anomaly detection aims at identifying abnormal cases by
training only on normal data which is widely used in computer
vision [14] and medical field. With the development of deep
learning, recent works mainly based on auto-encoders (AEs)
and generative adversarial network (GAN). The main idea
is to use these generative models to learn the distribution
of normal data and identify anomalies as samples with high
reconstruction errors. Based on related ideas, there are a
number of works proposed in medical field. Pawlowski et
al. [16] explore the use of Bayesian AEs to detect lesions
in brain CT scans. Schlegl et al. [17] propose AnoGAN to
map an image with abnormality to the latent space and then
reconstruct this representation back to image. The difference
between reconstructed and the test image is used to compute
abnormality score. Chen et al. [18] add a constraint in latent
space representation to adversarial AEs to encourage latent
space consistency for unsupervised detection of tumor in
brain MRI. Chen et al. [19] include KL-term for reducing
the difference between reconstructed and original image on
normal data. Baur et al. [20] and Sato et al. [21] make use
of AEs based models for detecting abnormal regions through
reconstruction error.

III. METHOD

Fig. 1 illustrates the whole procedure of our developed
CAD system for the diagnosis of COVID-19 on CT images.
It can be roughly divided into the following steps, which
are lung segmentation, opacity detection, feature extraction
and classification. At first, lung regions are extracted from
CT images by using a deep convolutional network that is
trained on a mixed dataset comprised by public and private
CT images. Then, we exploit an anomaly detection based
framework to extract the opacity regions via an unsupervised
learning manner. The opacity detector is based on a auto-
encoder that is trained by only using CT images with normal
tissues. Since the auto-encoder is only familiar with normal CT
images, it can not reconstruct well for abnormal CT images
with pulmonary opacities. By exploiting the reconstruction
errors and the segmented lung regions, it is easy to detect
the opacity regions, where feature extraction is conducted.
Finally, feature vectors are fed into a classifier to distinguish
COVID-19 and CAP. We describe the details of each part in
this section.

A. Lung Segmentation

We present a high-accuracy network for the segmentation
of COVID-19 lung regions from chest CT images. A mixed
dataset is constructed for improving the generalizability of the
segmentation network.

Models. Ronneberger et al. [22] proposed the U-Net for
segmentation of microscopy images. In this study, we utilize
the U-Net architecture with different pre-trained encoders
as backbone, such as MobileNetV2 [23], VGG19 [24] and
ResNet50 [25].
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Fig. 1. An overview of the proposed method. The input CT slices are fed into lung segmentation model and opacity detector respectively. The differences
between the reconstructed images obtained from opacity detection model and original images are computed and multiplied by segmentation results. After
thresholding, binary masks generated from difference maps incorporate with original images are utilized for feature extraction and classification to get the
final results.

TABLE I
DATASETS USED TO TRAIN AND EVALUTE THE PERFORMANCE OF LUNG SEGMENTATION MODEL.

Name Description Volumes Split
LCTSC Chest CT scans from cancer patients of three different institutions 60 Train

VESSEL12 Chest CT scans contain abnormalities such as emphysema and nodules 20 Train
StructSeg Chest CT scans from cancer patients 50 Train

DLDsOsaka Scans contain seven categories of pulmonary textures 217 Train&Test
COVID-19-CT-Seg Chest CT scans diagnosed as COVID-19 20 Test

COVID-19-ZJU COVID-19 CT scans collected by Zhejiang University 16 Test

Dataset. Depending on the severity of COVID-19 and CAP,
the typical pulmonary texture can be categorized into ground
glass opacities (GGO), crazy-paving and consolidation (CON).
To this end, we collect data from different datasets to build
a generalized dataset that covers most of the abnormalities in
lungs, as shown in the Table I. The lung CT segmentation
challenge 2017 (LCTSC) [26] contains CT images from 60
cancer patients of three different institutions. The vessel seg-
mentation in the lung 2012 (VESSEL12) [27] provides a total
of 20 segmented lungs with abnormalities such as emphysema,
nodules and pulmonary embolisms. The automatic structure
segmentation for radiotherapy planning challenge (Struct-
Seg) [28] published 50 cases from cancer patients. The diffuse
lung diseases collected from Osaka University (DLDsOsaka)
contains seven categories of pulmonary textures including
consolidation (CON), honeycombing (HCM), nodular opacity
(NOD), emphysema (EMP), multi-focal ground glass opacity
(MGGO), reticular ground glass opacity (RGGO) and normal
pulmonary tissues (NOR). To evaluate the generalization of the
trained model and the diversity of the training data, we build
a test dataset that consists of two COVID-19 datasets and a
part of DLDsOsaka (10% cases are randomly sampled). The
COVID-19 CT segmentation (COVID-19-CT-Seg) provides

CT scans from 20 patients infected with COVID-19. The
COVID-19-ZJU dataset is collected by Zhejiang University
contains 16 CT volumes diagnosed as COVID-19.

Implementation details. We perform segmentation on 2D
slice. During training and inference, the CT image intensity
values are clipped to the window [−600, 1500] and normalized
to [0, 1]. All images are rescaled to a resolution of 512× 512
pixels. Several image augmentations are applied during train-
ing, such as, random rotation, Gauss noise, random contrast,
blur and sharpen. Among the training data, about 90% are
used for training, while the rest 10% is used for validation.
The learning rate is 1e-4 and batch size is 16. Adam [29] is
used for optimization. The proposed network is implemented
by PyTorch [30] framework. All experiments are performed
on a TITAN RTX GPU.

Evaluation metrics. In this paper, the performance of the
segmentation network is conducted by the Dice similarity
coefficient (DSC). The metric is defined as follows:

DSC(A,B) =
2 |A ∩B|
|A|+ |B|

(1)

where A is the segmented region, B denotes the corresponding
ground-truth.
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Fig. 2. The architecture of the proposed opacity detection model which contains an auto-encoder and an encoder, employed within two sub-networks. First
sub-network behaves as the generator part of the model. The second sub-network is the discriminator network whose objective is to identify the input x and
the output output G(x) as real or reconstructed.

B. Opacity detection

Models. We build a GAN-based auto-encoder to identify
opacites. The network consists of two sub-networks, a gener-
ator G and discriminator D (see Figure 2). First sub-network is
an auto-encoder network aims at mapping the CT images with
normal lung tissues to latent space and remapping back to its
reconstructions. To fully reconstruct the healthy CT images
and model the distribution of the normal data, the second
sub-network is introduced behaving as the discriminator part
of the opacity detection model. The discriminator is trained
directly on real and reconstructed images and is responsible
for classifying images as real or fake (reconstructed). The
two sub-networks compete in a two-player game where the
generator tries to fool the discriminator while the discriminator
learns to distinguish between real and reconstructed data and
simultaneous improvements are made to both sub-networks.

Loss function. The objective function consists of three loss
functions, reconstruction loss Lrec, perceptual loss Lper and
adversarial loss Ladv . The formal definition of the objective
function is as follows: Given an input x drawn from normal
data distribution pX, we penalize G by minimizing the pixel-
wise l1-distance between the original x and the reconstructed
images G(x) to encourage the generator to learn contextual
information about the input data which is defined by:

Lrec = Ex∼pX ‖x−G(x)‖1 (2)

Inspired by [14] [31] that GAN training tends to be stable
by reducing the intermediate outputs from discriminator D,
we propose a new perceptual loss to reuse the feature maps
computed by discriminator. Perceptual loss [32] measures
the distance of features obtained from a pre-trained network
which is widely applied in image translation task. Here, we
use the features output from an intermediate layer of the
discriminator defined as f . We penalize G to match the feature

representation between the real and reconstructed images.
Hence, the perceptual loss Lper is defined as:

Lper = Ex∼pX ‖f(x)− f(G(x))‖2 (3)

Gulrajani et al. [33] proposed improved Wasserstein distance
with gradient penalty to enforce the Lipschitz constraint for
the stable training of GAN. Hence, we refer to the design of
WGAN-GP’s loss function to constrain discriminator which is
defined as follows:

Ladv =Ex∼pXD(G(x))− Ex∼pXD(x)+ (4)

λ(Ex̃∼pX̃
‖OD(x̃)‖2 − 1)2

where lambda is the weighting parameters, pX̃ is the generator
distribution and x̃ sampled from G(x) and x with t uniformly
sampled between [0, 1]:

x̃ = tG(x) + (1− t)x (5)

Overall, the objective function for opacity detection becomes
the following:

L = λrecLrec + λperLper + λadvLadv (6)

where λrec, λper and λadv are the weights to balance the
impact to the overall objective function.

Dataset. We collect healthy CT scans from 30 cases in
DLDsOsaka dataset for training. CT images of a total of 200
participants are collected for testing. In test set, there are
100 confirmed COVID-19 cases and the other 100 cases are
CAP patients. Five hospitals are involved, including Zhejiang
Hospital, Hangzhou Second People’s Hospital, Jingmen First
People’s Hospital, Taizhou Hospital and Sir Run Run Shaw
Affiliated Hospital of Zhejiang University School of Medicine.

Implementation details. To better reconstruct the input
data, we train the opacity detection model based on 2D image
patches extracted from CT volumes. During inference, full
size images are fed into the model to get the reconstructed
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Fig. 3. Visualization of segmentation and opacity detection results on COVID-19 and CAP cases.

abnormal images. By carefully constructing fully convolu-
tional networks, the model can take input of arbitrary size
and produce correspondingly-sized output. All CT images
are resized to 512 × 512 resolution and the intensity values
are clipped to lung window [−600, 1500] and mapped to
[0, 1]. Image patches are extracted according to the following
procedure. Raster-scanning with 32 pixels stride is used to
extract image patches with the size of 64×64×1. Patches are
further selected if the centers of image patches are inside the
lung regions produced by the segmentation model. Finally, a
total of 444755 64 × 64 × 1 image patches are utilized to
train the model. To reduce unnecessary noises which may
impact the quality of reconstructions, median filter is used
before extracting patches for training and testing data.

Inference. During test stage, the difference map is com-
puted between the reconstructed output of generator G(x)
and abnormal input x and then normalized to [0, 1] to get
a probability map. Each pixel in the probability map repre-
sents an opacity score. After thresholding and multiplied by
segmentation map, a binary mask of opacity in lung region
can be converted from the probability map as the final output
of opacity detection model.

C. Feature Extractor and Classifier

Feature Extractor. We apply radiomics [34] feature ex-
traction on opacity regions determined by opacity detection
model. Same features are also extracted from lung regions for
comparison. We extract features from three different trans-
formed images including original image, image transformed
by Laplacian of Gaussian (LoG) filter and image transformed
by wavelet. Seven classes of features are selected for each
transformed image: first order statistics, shape-based features,
gray level co-occurrence matrix (GLCM), gray level run length
matrix (GLRLM), gray level size zone matrix (GLSZM), gray
level dependence matrix (GLDM) and neighboring gray tone
difference matrix (NGTDM). Finally, we obtain a total of
1023-dimensional features. After that, least absolute shrinkage
and selection operator (LASSO) [15] is employed to filter out
redundant and unnecessary features and the remaining features
are used for classification.

Classifier. In our experiments, we compare the features ex-
tracted from opacity regions and lung regions with the follow-
ing machine learning methods. Support vector machine [35]
with a linear kernel (Linear SVM) or a radial basis function
kernel (RBF SVM), random forest [36], adaptive boosting
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(AdaBoost) [37] and XGBoost [38]. For all classifiers, we
employ a 5-fold cross-validation strategy to evaluate the per-
formance.

Evaluation metrics. Classification performance is evaluated
by four evaluation metrics, including accuracy, precision,
recall, f1-score and the area under the receiver operating
characteristic curve (AUC). Given true positive (TP), true
negative (TN), false positive (FP) and false negative (FN),
the accuracy, precision, recall and f1-score are calculated as
follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1− score = 2× Recall × Precision
Recall + Precision

(10)

IV. RESULTS

In this section, we conduct experiments including quanti-
tative results and qualitative results to demonstrate the effec-
tiveness of our proposed method.

A. Lung Segmentation

We show the quantitative results obtained by segmentation
model in Table II. The best performance is marked by bold
letters. The results show that models trained on our training
sets generalize well to test sets with different backbones. To
achieve a better trade-off between accuracy and speed, we
finally choose MobileNetV2 as the backbone of the segmen-
tation model. Figure 4 shows qualitative results for cases from
test sets. Our segmentation model yields masks that are close
to the ground truth.

Lung SegmentationGround TruthCT Images

Fig. 4. Visualization of segmentation results.

TABLE II
QUANTITATIVE RESULTS OF LUNG SEGMENTATION.

Backbone DLDsOsaka COVID-19-CT-Seg COVID-19-ZJU
MobileNetV2 0.98411 0.98168 0.99229

VGG19 0.98504 0.98174 0.99136
ResNet50 0.98473 0.98159 0.99116

B. Opacity Detection

Figure 3 illustrates the lung regions obtained from segmen-
tation model and opacity regions detected by opacity detection
model. As can be observed, opacities in lung regions from
patients diagnosed with COVID-19 or CAP can be segmented
correctly. Without the need for training in a supervised manner,
the proposed opacity detection model has ability to produce
accurate opacity masks by training only on CT images with
normal lung tissues. The obtained results demonstrate the
effectiveness of the opacity detection model.

C. Classification

To demonstrate that extracting features from opacity regions
rather than the entire lung regions contributes to improving the
performance of classification, we conduct experiments on two
different types of features for classifier, including lung-specific
features and opacity-specific features. Table III exhibits the
quantitative results (accuracy,precision, recall, f1-score and
AUC) achieved by different machine learning methods. Specif-
ically, the performance of using opacity-specific features is
higher than lung-specific on most of classification models. In
terms of accuracy, RBF SVM with opacity-specific features
achieves the best result, up to 95.5%. Therefore, the promising
performance validate that the proposed method can diagnose
COVID-19 from CAP accurately.

D. Limitations

Although the proposed opacity detection model for diagno-
sis of COVID-19 has achieved promising results. There are
still cases that opacity detection can not detect the opacity
regions correctly. Figure 5 gives some examples of the failure
cases. We can observe that opacity detection failed when
encountering patients with severe COVID-19 pneumonia. The
reconstructed images shown in Figure 5 indicates that the
reason for failing to find opacity regions is that the textures of
opacities are too close to the textures of regions outside lung.
A possible solution could be to modify the contrast between
the regions inside and outside lung before fed into opacity
detection model.

V. CONCLUSION

In this paper, we propose an opacity detection model for
diagnosis of COVID-19. By applying opacity detection, the
opacity regions can be segmented in an unsupervised manner
which is a key to overcome the bottleneck of insufficient
labeled data. We conduct experiments for investigating the
effectiveness of opacity-specific features for classification. The
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TABLE III
QUANTITATIVE RESULTS OF CLASSIFICATION.

Methods
Feature Extraction Evaluation
Lung Opacity Accuracy Precision Recall F1-score AUC

Linear SVM
X 0.9350 0.9674 0.9000 0.9302 0.9565

X 0.9400 0.9905 0.8900 0.9338 0.9585

RBF SVM
X 0.9350 0.9674 0.9000 0.9302 0.9565

X 0.9550 1.0000 0.9100 0.9510 0.9590

Random Forest
X 0.9400 0.9889 0.8900 0.9342 0.9640

X 0.9450 0.9895 0.9000 0.9402 0.9720

AdaBoost
X 0.9200 0.9285 0.9100 0.9178 0.9620

X 0.9400 0.9714 0.9100 0.9372 0.9640

XGBoost
X 0.9200 0.9443 0.8900 0.9155 0.9560

X 0.9450 0.9800 0.9100 0.9416 0.9600

C
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V
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9
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P

Opacity DetectionCT Images

Fig. 5. Relatively low detection performance of opacity detection on some
cases from COVID-19 and CAP.

results on the collected COVID-19 dataset with 100 COVID-
19 cases and 100 CAP cases demonstrated that diagnosis
performance is promoted with features extracted from opacity
regions. In the future, we plan to improve the performance
of opacity detection model and integrate more data into our
framework for accuracy promotion.
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