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Fig. 1. Overview of Detective: objects are detected one at a time until an End-of-Sequence (EoS) token is emitted.

Abstract—In this work, we present Detective – an attentive
object detector that identifies objects in images in a sequential
manner. Our network is based on an encoder-decoder archi-
tecture, where the encoder is a convolutional neural network,
and the decoder is a convolutional recurrent neural network
coupled with an attention mechanism. At each iteration, our
decoder focuses on the relevant parts of the image using an
attention mechanism, and then estimates the object’s class and
the bounding box coordinates. Current object detection models
generate dense predictions and rely on post-processing to remove
duplicate predictions. Detective is a sparse object detector that
generates a single bounding box per object instance. However,
training a sparse object detector is challenging, as it requires the
model to reason at the instance level and not just at the class
and spatial levels. We propose a training mechanism based on the
Hungarian algorithm and a loss that balances the localization and
classification tasks. This allows Detective to achieve promising
results on the PASCAL VOC object detection dataset. Our
experiments demonstrate that sparse object detection is possible
and has a great potential for future developments in applications
where the order of the objects to be predicted is of interest.

I. INTRODUCTION

In computer vision, the object detection task consists in
localizing and categorizing objects of interest in a given image.
It is one of the many tasks where deep learning based methods
have achieved an outstanding performance [1], [2], [3]. Cur-
rent object detection architectures are trained to make dense
predictions, i.e., they generate a large amount of prospective
detections, reaching even thousands of bounding boxes per
image. Then, at inference time, the superfluous detections are
filtered in a post-processing stage using Non-Maximum Su-
pression (NMS). The NMS algorithm greedily iterates over the
generated detections, and, if two of them highly overlap with
each other, it discards the one having a lower associated score.

Although NMS is a very effective approach, it also comes
with limitations. For example, if two objects in the image
highly overlap with each other, and the network predicts
one bounding box for each, NMS would usually wrongly
discard one of them. The essence of this problem does not
lie in NMS itself, but since object detectors generate dense
predictions over each region in the image, they inherently do
not reason about the objects at the instance level in the first
place. By densely predicting objects, conventional detectors
also necessarily encounter a high class imbalance between
object categories and the background class. This is due to
the prevalence of background detections in comparison to
foreground ones, since most regions in an image are part of
the background. If not addressed, the class imbalance has a
highly negative impact on the learning process.

To counter the aforementioned shortcomings, we introduce
Detective – an attentive recurrent object detector that is fully
end-to-end during training and inference, in the sense that
it does not require any additional post-processing steps. To
this end, the model is explicitly designed for sparse object
detection, and is trained to exactly predict one bounding box
per object instance and jointly estimate the object’s class. It is
based on an encoder-decoder architecture, where the encoder
is a Convolutional Neural Network (CNN) and the decoder is a
Convolutional Recurrent Neural Network (ConvRNN), specif-
ically a Convolutional Long Short-Term Memory network
(ConvLSTM). At inference time, the ConvLSTM predicts the
objects in the image one at a time (Figure 1), until it decides
that there are no more objects left to be predicted by emitting
an End-of-Sequence (EoS) token. After discarding the EoS
token and the eventual background detections, the output of
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Detective represents the final set of detections, thus bypassing
the need for any further post-processing steps.

Besides enabling a fully end-to-end learning for object de-
tection by not requiring any post-processing, Detective comes
with several other advantages. In comparison to conventional
object detectors, the training does not suffer from the class-
imbalance problem that would otherwise occur when densely
predicting bounding boxes over the whole image and as a
result, extra steps like Online Hard Example Mining (OHEM)
are not required. The decoder in Detective is also lightweight
by design since it leverages weight sharing across time in the
RNN which makes it suitable for resource-restricted devices.
Since objects are detected sequentially, the model can be
leveraged to predict objects in a pre-defined order in one
pass in cases where the order of the objects in the image
matters. Possible applications for ordered object detection can
be found in fields like autonomous driving or assistance for
the visually impaired. In autonomous driving, for example,
it may be more critical to detect pedestrians at first before
detecting vehicles and road signs. Thus, this key property of
our framework has the potential to pave the way for ordered
object detection, where prioritizing different categories can
lead to faster reactions of applied systems.

Our approach relies on RNNs, which have been successfully
used in conjunction with CNNs in computer vision tasks like
image captioning [4], [5] where the output is expected to
follow a certain order. The CNN-RNN framework has been
used to a large extent in multi-label image classification [6],
[7], [8], but very few works have addressed the localization
problem [9], [10], [11] and even less works have explored the
combination of the classification and localization tasks [12].
Since object detection is commonly framed as an unordered
problem, the ground truth objects in the common object
detection datasets are not subjected to any order. This mainly
poses the challenge of how to assign target objects to the
predictions made by the RNN during training. To address
this, we build on related work [9] and conceive a training
strategy that does not impose any given order on the RNN
by dynamically matching the predictions to the target objects
during training. Finally, we evaluate our approach on the
popular PASCAL VOC dataset [13] that was used as a testbed
for a variety of architectures for object detection. Therein, we
show the capabilities of our approach for object detection,
where we augment the evaluation with various analysis and
settings of the Detective architecture.

Contributions. A key contribution of this paper is the object
detection framework that enables a fully end-to-end learning
and inference without requiring any post-processing. More-
over, the Detective network opens the possibility for reasoning
at instance level, and paves the way for ordered object detec-
tion, enabling safety critical applications to prioritize object
categories. We experimentally show that using an attention
mechanism and a ConvLSTM positively impacts the localiza-
tion capability of our model by augmenting spatial awareness.

II. RELATED WORK

Two-Stage Object Detectors. Driven by the advances of
deep learning, the object detection task has experienced major
progress in recent years. The first deep networks employed for
object detection leverage classical region proposal algorithms
(e.g., selective search [14]) as a pre-processing step. The found
regions are then passed to a neural network that associate each
of them with an object class or are marked as background and
discarded. A key network in this category was proposed by
Girshick et al. called Region Convolutional Neural Network
(R-CNN) [15], which comprises a pre-processing step based
on selective search to extract a fixed set of region proposals
from the image. These regions are used to extract features from
a pre-trained CNN, which are fed to Support Vector Machines
(SVMs) for classification, while bounding box offsets are
regressed using least mean squares to refine the localization
given by the region proposals. Despite outperforming prior
works by a substantially large margin, R-CNN is slow due to
the overhead caused by extracting a high number of object
proposals that are fed repeatedly to the CNN.

Several other extensions were introduced to counteract the
drawbacks in the R-CNN model such as: (1) feeding the
entire image to the CNN to extract the feature maps (SPP-
Net [16]), (2) extracting features using Region of Interest (RoI)
pooling for the regions generated by selective search (Fast R-
CNN [17]), (3) replacing selective search with a Region Pro-
posal Network (Faster R-CNN [1]), (4) replacing the backbone
network with VGG [1], FPN [18] or ResNet-FPN [19]. Even
though these network improve performance by a large margin
compared to other approaches, two-stage object detectors have
a relatively inferior speed. This is mainly due to their complex
architectures and the two-step process of extracting region
proposals combined with their further processing.

One-Stage Object Detectors. Several networks were intro-
duced that jointly regress the bounding box coordinates and
estimate the object’s class. In YOLO [20], the detection
head jointly predicts bounding box offsets, class scores and
objectness scores for each cell in the feature map estimated
by the backbone. To do so, each cell is responsible for
detecting the class of an object, whose center falls into that
grid cell. In a similar vein, the Single Shot Detector (SSD) [21]
estimates bounding boxes for each vector slice in the 3D
tensor generated by the CNN. However, instead of passing
multiple scales of the image to the network, feature maps
from different levels of the CNN backbone are concatenated
and used to densely predict objects over the image. Multiple
extensions were proposed based on these models: (1) inflation
of the features for fine-grained detection [22], (2) using
DenseNet [23] as a backbone without pre-training [24], (3)
balancing the class-wise distribution during training [25], [2].
Even though some of these networks are trained end-to-end,
all of them leverage a post-processing step to filter the strongly
overlapping predicted boxes.



Non-Maximum Suppression (NMS). All previously intro-
duced networks rely on Non-Maximum Suppression (NMS)
as a post-processing step to filter potential duplicates, i.e., to
obtain a single prediction per object instance. NMS succes-
sively traverses the predictions in a greedy fashion and if two
bounding boxes strongly overlap (i.e., have a high intersection
over union), the box with the lower assigned confidence score
is discarded. The overlap threshold to merge the bounding
boxes is handled as a conventional hyper-parameter that is set
depending on the dataset and model. While the final outputs
of previously proposed frameworks for object detection are
mostly free of duplicates, the raw outputs are often not, as the
models are not explicitly trained to output only one bounding
box per object instance. Hosang et al. propose a learnable
module that aims to replace NMS [26]. The network learns
new scores for the detections made by the object detector,
so that for each object only one detection would have a
high score, and all others would have a very low score,
thus, can be discarded by thresholding. Nonetheless, whether
with greedy or learnable NMS, the underlying object detector
still generates a high number of detections that need to be
filtered afterwards. In comparison to these approaches, we
aim to remove the filtering step altogether and only want to
directly generate a single bounding box per object instance,
thus allowing for a reasoning on the instance level.

Recurrent Neural Networks (RNNs). In computer vision,
RNNs have been extensively used in image captioning [27],
[4], [5], [28], where a CNN first computes an image repre-
sentation and then the RNN (often coupled with an attention
mechanism [5], [28]) generates a description of the image one
word at a time. RNNs have also been used to some extent in
multi-label image classification [6], [7], [8], where an image
is associated with a variable number of labels and the RNN
predicts these one at a time. To a lesser degree, RNNs were
employed in the localization task to localize object instances in
an image sequentially. Most relevant is the work by Stewart
et al. for people detection [9], where a CNN first encodes
an image into feature maps, and a grid of LSTM networks
sequentially predict bounding boxes at each location in the
feature maps until a stopping condition is met. During training,
the ground truth objects are matched to the predictions using
the Hungarian algorithm [29]. At inference time, the model
relies on a stitching process also based on the Hungarian
algorithm to filter the duplicate predictions. Our work is
similar to the work by Stewart et al. in the way that it uses the
Hungarian algorithm in the matching process and extends it
to object detection in general. However, it differs substantially
from an architectural standpoint as it uses a single ConvLSTM
instead of a grid of LSTM networks and does not require
any post-processing at inference time. In a similar vein to our
work, some other works also build on the work by Stewart et
al. and extend it for instance segmentation [10], [11], [12].
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Fig. 2. Overview of Detective’s architecture. The feature maps generated by
the ConvLSTM are dynamically pooled by an attention module.

III. MODEL ARCHITECTURE

Detective is based an encoder-decoder architecture, where
the encoder is a CNN and the decoder consists of a Convo-
lutional LSTM (ConvLSTM) [30] coupled with an attention
mechanism. Given an input image, the encoder computes an
image representation in form of a 3D tensor that is then
passed to the decoder. At each iteration, the ConvLSTM-based
decoder estimates a pair of class probabilities and location
offsets. While the number of iterations is fixed during training
(Section IV), at inference time, the ConvLSTM stops iterating
when the End-of-Sequence (EoS) token is generated. Thus, the
model has to learn both to detect objects and to stop iterating
when there are no more objects left in the scene.

A. Encoder

For the encoder network, we leverage a ResNet50
model [31] pre-trained on ImageNet [32] as it has shown to be
the backbone of choice in many modern object detectors [33],
[18], [2]. Therein, we remove the average-pool and fully-
connected layers, and obtain a final visual representation of
the size h × w × c. Although the extracted feature maps can
be directly passed to the decoder, we ease the learning of the
bounding boxes by explicitly encoding positional information
and fusing them with the semantic representations. More
formally, we concatenate the extracted feature maps with
positional embedding matrices F x, F y ∈ Rh×w in both the
x- and y-dimensions as follows:

F x
i,j = j, F y

i,j = i where i = 0, . . . , h− 1, j = 0, . . . , w − 1.
(1)

After the merging operation, we obtain a 3D tensor I of the
size h×w× (c+2), which is passed to the decoder network.

B. Decoder

ConvLSTM. To generate the sequence of bounding boxes
and associated object classes, we employ a recurrent neural
network, specifically a ConvLSTM [30]. In contrast to con-
ventional LSTM networks, the input, the hidden state and the
cell state are 3D tensors instead of vectors. Consequently, the
matrix-multiplications with the weight matrices is replaced
by convolutions. The ConvLSTM is implemented following
Equation 2, where at iteration t, Xt is the input (set to the
feature maps I), Ht is the hidden state, Ct is the cell state
and it, ft and ot are respectively the input, forget and output
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Fig. 3. The attention mechanism in Detective. The attention map is obtained
from two convolution layers followed by softmax normalization. The final
vector representation of the image is generated by weighting the input 3D
tensor with the values in the attention map.

gates. The convolution operation is represented by ∗, while ◦
denotes the element-wise product.

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)

ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)
(2)

Attention-based dynamic pooling. The hidden state at each
iteration step acts as a representation of the object currently
being detected. To decode this representation into a pair of
class probabilities and location offsets, an attention mechanism
dynamically pools the hidden state at each iteration step into a
vector, which is subsequently passed through the classification
and localization branches. The attention mechanism consists
of a neural network with a single hidden layer with d neurons
and an output layer with a single neuron. Given a hidden state
Hi ∈ Rh×w×d, the neural network produces an attention map
A ∈ Rh×w×1. The values of the soft attention map are ob-
tained by applying the softmax normalization on A modeling
a probability distribution over each location being relevant to
generate the current object. The final output oi ∈ Rd is the
result of the dot product between the hidden state and the
attention weights given by:

oi = Hf
i · softmax(Af

i ), (3)

where Hf
i ∈ Rd×(h·w) and Af

i ∈ Rh·w are flattened versions
of Hi and Ai along the spatial dimensions. The softmax
function softmax : Rk → Rk normalizes the input over all
its values as follows:

softmax(z)i =
ezi∑k
j=1 e

zj
for i = 1, ..., k and z ∈ Rk, (4)

where k ∈ N is a fixed and finite number, which we set in
Equation 3 to: k = h · w.

Classification and localization branches. The classification
and localization branches consist of simple linear layers fol-
lowed by the softmax and sigmoid normalization functions,
respectively, to compute the class probability scores and the
bounding box offsets. Since the model needs to signal when

to stop iterating, the set of object classes C is extended with
an extra class representing the End-of-Sequence (EoS) token.
In addition, an extra background class is used to classify
predictions that do not sufficiently overlap with any ground
truth objects. At inference time, such predictions are simply
discarded. Concretely, given an object representation o ∈ Rd,
the classification scores are computed as:

pcls = softmax(W ᵀ
cls · o+ bcls), (5)

while the bounding box offsets are computed as follows:

ploc = σ(W ᵀ
loc · o+ bloc) (6)

where Wcls ∈ Rd×(|C|+2) and Wloc ∈ Rd×4, bcls ∈ R|C|+2

and bloc ∈ R4 are learnable parameters and σ is the sigmoid
function applied element-wise, which is defined as:

σ : R→ [0, 1], σ(x) =
1

1 + e−x
.

We apply the sigmoid function since the bounding box offsets
are computed relative to the top-left corner in the image, and
thus, it needs to be bound in the [0, 1] range.

IV. LEARNING PROCEDURE

During training, the model needs to learn to localize and
recognize the objects in the scene as well as to learn when to
stop iterating, i.e. when there are no more objects of interest
left in the image. Our RNN is trained in a supervised fashion
on conventional object detection datasets comprising images
with associated labels of the object class and bounding box
coordinates. In contrast to common object detectors, a key
challenge in our setup is that there is no straightforward way
to map the predicted instances to the ground truth object an-
notations. While RNNs necessitate sequential data, the object
detection task comprises an unordered set of object instances
present in the image. Thus, a major aspect for our framework
design is how to map the set of object bounding boxes to the
predictions of our RNN. To this end, we propose to leverage
the popular Hungarian Algorithm [29] for establishing the
matching between our predictions and the ground truth.

A. Dynamic Matching

Since object detection is usually not treated as a sequential
task, the ground truth objects in an image are unordered and,
thus, a direct mapping between the ground truth objects set
and the predictions does not exist. Several works using RNNs
for object localization [9] or instance segmentation [10], [11]
address this problem by framing it as an assignment problem
in a bipartite graph, where one part is the set of ground truth
objects and the other is the set of predictions. The weight
on each edge on the graph represents the cost of matching a
ground truth object to a prediction.

In our problem setup, the space of target labels can be
expressed as St ⊂ 1|C|+2 × [0, 1]4. We denote the set of n
target labels in one image by T ⊂ Stn. A single target label
is defined as the tuple (tcls, tloc) ∈ T , where tcls is the one-hot
encoded target class and tloc is the vector of target bounding



box offsets. We set the number of RNN iterations during
training to m = n+1, where n is the number of ground truth
objects. While the first n predictions are matched to ground
truth objects, the last prediction is matched to the EoS token.
The prediction space softened by the softmax normalization is
expressed as Sp ⊂ [0, 1]|C|+2× [0, 1]4. We denote the set of n
predictions for one image with P ⊂ Spn. Note that only the
first m − 1 = n predictions are matched to the ground truth
objects as the m-th prediction is assigned to the EoS token.
Similarly as for the ground truth labels, a single prediction of
our model is a tuple (pcls, ploc) ∈ P , where pcls is the vector
of class probability scores and ploc is the vector of predicted
bounding box offsets.

Let f : T × P → Rn×n be the cost function between the
target and the prediction, which is defined as the weighted
sum of the classification and localization losses:

f(t, p) = µclsLcls(tcls, pcls) + µlocLloc(tloc, ploc), (7)

where Lcls and Lloc are the classification and localization
loss function, respectively, and µcls and µloc are hyper-
parameters. The goal is then to find a bijective matching
function g : T → P such that the overall matching cost∑

t∈T f(t, g(t)) is minimal. This frames the assignment prob-
lem as a minimization problem, whose optimal solution can
be found in polynomial time with a complexity in O(n3) by
means of the Hungarian algorithm [29].

B. Loss Function

Given the bijective mapping g between ground truth objects
and predictions, letM = {(t, p) ∈ T ×P | p = g(t) ∀t ∈ T }
be the set of the matched pairs of targets and predictions. We
define the loss to be minimized as a weighted sum of the
classification and localization losses:

L = λclsLcls + λlocLloc. (8)

The classification loss is responsible for learning to classify
objects, discard boxes as background and to signal when
to stop iterating. Following works like Faster R-CNN [1],
predictions whose Intersection over Union (IoU) with their
matched target objects is greater than 0.5 are considered
as foreground predictions, while the ones with an IoU less
than 0.3 are marked as background. Predictions with an IoU
between 0.3 and 0.5 with their matched target objects are
ignored when computing the classification loss. The set of
pairs of targets and foreground predictions is denoted by:

MFG = {(t, p) ∈M | IoU(t, p) ≥ 0.5} (9)

and the set of pairs of targets and background predictions is
depicted by:

MBG = {(t, p) ∈M | IoU(t, p) < 0.3}. (10)

This allows us to define Lcls as

Lcls =
∑

(t,p)∈MFG

Lcls(tcls, pcls)

+
∑

(t,p)∈MBG

Lcls(BG, pcls) + Lcls(EoS, p
(m)
cls ), (11)

where Lcls is the negative log-likelihood loss function, BG is
the background class and p(m) is the last prediction produced
by the RNN.

The localization loss Lloc is computed over all target
prediction pairs in M:

Lloc =
∑

(t,p)∈M

Lloc(tloc, ploc), (12)

where Lloc is the L2 loss function. Note that the offset regres-
sion is performed only on the first n predictions, regardless
of the IoU between these and their associated targets. Since
the number of steps the RNN performs during inference is not
given beforehand, the network needs to learn when the total
number of objects is reached, i.e., has to stop iterating.

C. Parameter setup

We learn the parameters by minimizing our loss function
(Equation 8) using Adam [34] with an initial learning rate
of 10−4, an exponential decay for the first moment of 0.9
and for the second moment of 0.999. The matching and loss
weights are experimentally set to µloc = λloc = 16, µcls = 0
and λcls = 0.1. The ConvLSTM in Detective comprises 512
filters of size 3×3, stride S = 1 and same padding to preserve
the spatial dimensions.

V. EVALUATION

The goal of this work is to achieve end-to-end object
detection that does not require any post-processing at inference
time. As it is a common practice in the field of object
detection, we perform the experiments on the PASCAL VOC
[13] dataset, which contains thousands of images that were
annotated with bounding boxes along with their corresponding
classes. PASCAL VOC comes in two versions: VOC07 and
VOC12, both of which are split into three subsets: train,
val and test, and have annotations of 20 classes. For
VOC07, the annotations of the test set are publicly available,
whereas for VOC12, only the unannotated images from the
test set are available and the annotations are kept private
on an evaluation server. We follow other works [1], [33], [21]
and use the combination of the train and val sets from
VOC07 and VOC12 (trainval07+12) to train our model
and validate on the test set of VOC07 (test07). Detective
achieves an mAP of 52.0% on test07 without requiring any
post-processing. As a reference, other object detectors that rely
on NMS in a post-processing stage like R-FCN [33] or DSSD
[22] achieve 80.5% and 81.5% respectively on test07.
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Fig. 4. Distribution of the predictions generated by Detective at each ConvLSTM iteration. A good prediction has an IoU≥0.5 (left) or IoU≥0.25 and is
correctly classified. A duplicate prediction identifies an object that was already predicted. A bad prediction does not match any ground truth object (wrong
class or IoU lower than the threshold). Background predictions are labeled as background by the network and are discarded at inference time. An EoS token
is correct if all ground truth objects have already been detected, and otherwise incorrect.

TABLE I
RESULTS OF DETECTIVE UNDER DIFFERENT DECODER SETTINGS

Model
Conv-
LSTM

Attention
Positional

embeddings
Background
classification

mAP (%)
on VOC07

Baseline 7 7 7 7 40.7

(A) 7 3 3 3 49.4
(B) 3 7 3 3 46.5
(C) 3 3 7 3 47.9
(D) 3 3 3 7 49.9

Detective 3 3 3 3 52.0

A. Ablation Study

To assess the contribution of the different elements consti-
tuting our model, we conduct an ablation study where the en-
coder is kept the same throughout all experiments and different
components of the decoder are omitted. The different design
decisions that we evaluate are the choice of a convolutional
LSTM network instead of a 1D LSTM network, the attention
mechanism, the additional positional embeddings and the
additional background class. We choose as a baseline a model
where all these components are turned off, that is, a simple
LSTM network whose input is an average-pooled image fea-
ture vector without additional positional encodings and with-
out background classification. The results of this experiment
are reported in Table I, while the per-class average precision
resulting from the different models is reported in Table II.

The different design decisions bring an overall improvement
of around 11% in the mAP over the baseline. In Table I, we
mark with model (A) a 1D LSTM network whose input is an
attended feature vector conditioned on both the feature maps
and the hidden state. Model (A) improves the mAP score by
more than 2% in comparison to the baseline approach that
does not make use of convolutional layers. In model (B), we
switch the attention-based dynamic pooling a simple average
pooling. The attention mechanism has the most significant
impact in Detective by bringing an improvement of 5.5% in
mAP, which confirms that attention plays indeed a critical
role in inducing spatial awareness. To assess the role of the
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Fig. 5. Precision of the detections at each iteration

positional embeddings, we omit the concatenation of these
with the feature maps resulting from the encoder in model
(C) and compare its performance with Detective. We find that
the additional positional embeddings play an important role
in helping the model in the localization task as they improve
the performance of our model by nearly 4%. When trained
without classifying background detections as such, model (D)
in Table I achieves a lower mAP score than Detective by
about 2%. Even though background classification in Detective
is not as crucial as it is the case in other object detectors, for
bounding boxes are in our case not predicted at each location
in the image, it still improves performance by more than 2%.

B. Performance Analysis

We investigate the distribution of the predictions generated
by Detective over several ConvLSTM iterations in Figure 4.
We observe that the first prediction is generated with a high
degree of precision, after which the performance degrades. By
lowering the IoU threshold at which detections are accepted
from the standard to 0.5 to 0.25, we find that the number
of true positives significantly increases, which suggests that
Detective’s performance is especially limited by its localiza-
tion ability. Nevertheless, we can observe in Figure 5 that
Detective’s performance at each iteration is steadily better than
the baseline’s, which is mainly attributed to the attention mech-
anism and the use of a ConvLSTM. This is also demonstrated
in Figure 6, which shows that the number of detected objects is



TABLE II
MAP AND PER-CLASS AVERAGE PRECISION (%) ON TEST07

Model mAP plane bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Baseline 40.7 54.3 54.3 39.0 31.2 5.8 51.7 43.3 68.0 11.1 34.1 43.1 59.9 69.6 52.5 33.6 7.9 24.0 44.8 68.4 17.2
(A) 49.2 55.0 59.6 48.4 34.2 14.4 60.0 56.8 76.5 20.7 40.4 50.4 68.6 74.8 64.1 46.3 15.5 41.3 50.4 72.4 35.0
(B) 46.5 55.6 56.7 43.3 35.9 6.2 59.5 50.8 75.7 18.8 43.2 47.0 63.2 73.6 57.9 38.4 10.9 45.2 43.3 73.9 31.2
(C) 47.8 54.9 57.8 43.9 37.8 15.5 57.1 55.1 69.7 18.5 41.9 55.6 63.2 75.6 61.9 42.9 15.0 35.5 49.9 73.6 33.0
(D) 49.9 58.0 60.2 51.2 42.1 13.1 61.5 56.1 75.6 18.7 44.5 52.1 65.9 73.9 64.0 43.0 16.3 40.0 51.2 75.7 36.5

Detective 52.0 60.8 64.2 52.7 39.6 14.1 59.3 59.2 75.3 22.7 45.8 53.1 71.8 76.8 68.1 47.3 18.4 40.7 54.0 74.6 42.0
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Fig. 6. Number of detections vs. number of ground truth objects. The green
line shows the ideal case where the number of detected objects matches the
number of ground truth objects. Our networks tend to make less detections
than there are ground truth objects. Nonetheless, Detective shows better
performance than the baseline.

highly correlated with number of ground truth objects. While
Detective generates less detections when the number of ground
truth objects is high, it consistently improves over the baseline.

The small number of predictions labeled as background as
seen Figure 4 reflects the reason why classifying background
predictions comes with an improvement of only 2% (Table I).
Importantly, this attests to how our learning procedure yields
a significantly lower number of background detections in
comparison to common object detectors. Hence, the training
inherently does not suffer from the class-imbalance problem
that is usually caused by an overwhelmingly big number of
background detections. Moreover, the low number of dupli-
cates (Figure 4) further demonstrates the viability of detecting
objects without post-processing.

C. Effect of Attention

As covered by the ablation study, attention plays an impor-
tant role in Detective by adding spatial awareness. We qual-
itatively demonstrate this further by visualizing the attention
maps at each iteration on various images as shown in Figure 7.
The visualizations illustrate how the attention mechanism
selectively shifts the focus at each iteration from one object
to the other. In doing so, it allows the network to compute
meaningful object representations at each iteration that serve
to predict the class and the bounding box offsets of the object.

D. Potential of the proposed approach

Although sparse object detection is still challenging, Detec-
tive shows promising results as it can be seen in Figure 7.
To demonstrate how Detective would behave under a dense
regime, we allow the network in the following experiment to
make an extra number of predictions and set the total number
of ConvLSTM iterations during training to m = n+5, where

n is the number of ground truth objects. During training, the
Hungarian algorithm matches the n targets to n predictions
from the first m − 1 predictions and the last prediction is
matched to the EoS token. The loss computation follows the
same Equations 8, 11 and 12, and the predictions that were
not matched are simply ignored when computing the loss. As
a result, the model is not penalized when producing duplicate
detections. This alleviates the constraint of predicting the exact
objects in the image, but at the expense of achieving fully
end-to-end object detection. At inference, the model produces
a higher number of duplicates which need to be filtered using
NMS. After applying NMS, the model achieves an mAP of
64.1%, i.e., 12% higher than the mAP achieved by Detective.
Even though this shows that making dense predictions still
outperforms sparse object detection, it attests for the potential
of Detective as it significantly gains in performance while
being trained to only make 5 extra predictions.

VI. CONCLUSION

In this work, we proposed Detective – a novel architecture
that tackles the object detection task without requiring any
post-processing. Detective comprises a ConvLSTM coupled
with an attention mechanism, that sequentially detects the
object instances in an image and determines when to stop
iterating by emitting an EoS token. Our network achieves
promising results on the popular PASCAL VOC dataset for
object detection, showing an improvement of over 11% in
comparison to a baseline LSTM model. Finally, by visualizing
the generated attention maps, we show how our model selec-
tively focuses on each object instance, which demonstrates
how Detective is able to reason at the instance level.
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