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Abstract—In this paper, we study the adversarial examples
existence and adversarial training from the standpoint of con-
vergence and provide evidence that pointwise convergence in
ANNs can explain these observations. The main contribution
of our proposal is that it relates the objective of the evasion
attacks and adversarial training with concepts already defined
in learning theory. Also, we extend and unify some of the other
proposals in the literature and provide alternative explanations
on the observations made in those proposals. Through different
experiments, we demonstrate that the framework is valuable in
the study of the phenomenon and is applicable to real-world
problems.

Index Terms—adversarial attack, robustness, artificial neural
network, classifier, learning theory, supervised learning, adver-
sarial training

I. INTRODUCTION

With the recent advancements in processing power and
algorithms, machine learning has become one of the more
popular tools in many industries. It is arguable that most of this
attention is due to the combined effect of deep learning and
big training sets. The effectiveness of applying deep learning
to common machine learning tasks like image classification,
object recognition, natural language processing and speech
recognition has fortified the position of multi-layer perceptron
(MLP) among the standard tools of solving machine learning
problems.

Considering these achievements, it would be natural to
use artificial neural networks (ANNs) in applications like
autonomous driving where safety and security is of impor-
tance. However, it was shown by Szegedy et al. that deep
networks are sensitive to adversarial examples [1]. Adversarial
examples are points close to a natural example in which
the classifier output changes drastically. In some cases, the
difference between the adversarial example and the natural
example is not perceivable to humans.

In the near future, it is expected that many instances of
MLPs are embedded in the physical world. However, research
has shown that adversarial samples can be misused in physical
world as well [2]. For example, the input signal can be changed
in a way that a speech recognition system order a wrong action
[3] or attack a self-driving car autonomous driving control [4].
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As a result, many concerns has been raised in regards to the
use of ANNs in safety-critical applications [5].

In practice, ANNs are considered black-box models. Al-
though these models work well in many tasks, they have
proved to be difficult to explain and interpret. Providing an
explanation for the existence of adversarial examples is crucial
in minimizing their effect. But, a combination of difficulties
in explaining the inner workings of ANNs and visualization
of high dimensional spaces has made the problem hard to
approach. Explaining the existence of adversarial examples is
still an open question and we refer the reader to [5] for a more
comprehensive study of research done on other aspects of this
phenomenon.

In this paper, we describe a new perspective on the reasons
behind the existence of adversarial examples and discuss the
consequences of our approach. This paper is organized in
five sections. After introduction, in Section II, we provide
a literature study of the relevant proposed explanations of
this phenomenon. Next, in Section III, we will describe the
proposed perspective and will continue by providing evidence
in support of the proposal in Section IV. We will finish the
paper with a discussion of the consequences and possible next
steps in Section V.

II. RELATED WORK

There have been multiple proposals for explaining the exis-
tence of adversarial examples phenomenon. The first explana-
tion was proposed in [1]. Szegedy et al. viewed the adversarial
examples as pockets in the input space which have a low
probability of being observed and correctly classified. This
view has been further described with an analogy between the
real numbers as the natural samples and the rational numbers
as the adversarial examples. In other words, There is a rational
number in the neighborhood of every real number even though
the probability of observing a rational number in an interval
of the real line is zero. Nevertheless, as mentioned in [6],
the argument does not justify why would a classifier show
such a behavior and it is only considered as a side effect of
nonlinearity of ANNs. This view is further undermined when
it was shown in [7] that adversarial examples are not isolated
points and they form dense regions in the input space.
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Next, linearity hypothesis was proposed in [8]. In contrast
with the low probability pockets perspective, the linearity per-
spective relates the adversarial phenomenon to a side effect of
linear classifiers in high dimensions. According to the linearity
perspective, nonlinear classifiers like ANNs are showing the
phenomenon because they are trained with algorithms that
prefer linear models. Using this theory, Goodfellow et al.
developed the Fast Gradient Search Method (FGSM) which
was able to easily produce adversarial examples that would
also transfer to other networks.

This attack is constructed as follows. Consider the inner
product of the weights w and an adversarial example x̃ =
x+ η.

〈w, x̃〉 = 〈w, x〉+ 〈w, η〉 (1)

According to (1), if we choose η = sign(w), the change in the
result of the inner product would be maximized, constrained
by l∞ norm. According to [8], since the sensory precision is
fairly limited, the input domain is discrete. But, on a computer,
we have to represent these quantities using floating-point
precision numbers. If the input dimension is large enough, the
accumulated error of floating-point arithmetic in the output
could be considerable even if η was actually small. Linearity
means that the trained classifiers show a similar behavior and
would be fooled if we choose η to be the sign of the gradient
of the loss function with respect to x.

Linearity perspective explains adversarial transfer as the side
effect of converging to the optimal linear classifier. According
to [6], this theory has two predictions. First, that all linear
classifiers show adversarial phenomenon and second, that the
effect would get worse as we increase the dimensions of the
input space. Nevertheless, Tanay and Griffin showed that both
of these predictions are wrong [6]. They constructed a linear
classifier which did not show the adversarial phenomenon and
they showed that the effect of the adversaries does not increase
as the dimensions of the problem increases.

The proposal of Ilyas et al. is also of interest in our discus-
sion [9]. They explain the existence of adversarial examples by
attributing them to features that are predictive, but nonrobust.
A useful but nonrobust feature is a feature that is highly
predictive of the true label on the empirical distribution of
samples and labels, but if we add adversarial perturbations to
samples, it would not be as useful anymore. That is, for a
distribution D, adversarial perturbations ∆(x) and a feature f
with a positive correlation with the label y,

ED[y.f(x)] > ED[y.f(x+ ∆(x))]. (2)

The authors show that these features consistently exist in
standard datasets and tie the phenomenon they observed
to a misalignment between the human-specified notion of
robustness and the inherent geometry of data. To support
their proposal, authors describe a process in which robust
and nonrobust features could be extracted from the training
samples and showed that removal of nonrobust features from
the training samples would exchange accuracy with a decrease
in the adversarial phenomenon effects.

There are other proposal and studies as well. For example
Shamir et al. proposed that the phenomenon is a natural
consequence of geometry of Rn with Hamming metric [10], or
Tanay and Griffin proposed that the adversarial phenomenon
can be reproduced by changing the angle of the decision
boundary manifold and the manifold that the natural samples
reside on [6]. These studies strongly suggest that the adversar-
ial phenomenon is somehow influenced by the training set and
the way classifiers are defined and trained. To the best of our
knowledge, there is no approach to the problem in which all
these different observations and ideas unite. In the following
sections, we describe a new perspective on the cause of the
phenomenon that can potentially clarify the reasons behind
the existence of adversarial phenomenon and at the same time
justify the observations made in the literature.

III. PROPOSED NOTION

In this section, we describe a setting in which the adversarial
samples phenomenon occur. Our proposal is based on the
proposition that convergence of ANNs to the true classifier
is pointwise, not uniform. In the following, we discuss the
proposition and describe its role in producing the adversarial
examples phenomenon.

A. Pointwise convergence

Consider the training set S = {(0,−), (1,+)}. This training
set consists of two samples from [0, 1] interval. Suppose that
we want to find the maximum margin classifier of S. To do
so, we need to choose a set of features first. Here, we use the
Bernstein basis polynomials as features. The n+ 1 Bernstein
basis polynomials of degree n are defined as

bi,n(x) =

(
n

i

)
xi (1− x)

n−i
, i = 0, . . . , n. (3)

Then, we choose support vector classifiers Fn as our hypoth-
esis space,

Fn(x;α) = α0

n∑
i=0

bi,n(0)bi,n(x)+α1

n∑
i=0

bi,n(1)bi,n(x). (4)

It could be seen from (3) that bi,n(0) = δi,0 and bi,n(1) =
δi,n where δ is the Kronecker delta function

δi,j =

{
0 if i 6= j,

1 if i = j.

As a result, the maximum margin classifier fn(x) of degree n
would be defined as

fn(x) = xn − (1− x)n. (5)

The above equation defines a sequence of maximum margin
classifiers. For example, f1(x) = 2x−1 is the linear maximum
margin classifier of S. It could be checked that fn is robust
and does not show any adversarial regions.

To illustrate the phenomenon, we pose the same classifi-
cation task on S, but use the first n + 1 shifted Chebyshev
basis polynomials as features instead. Unlike Bernstein basis



Fig. 1: A comparison of the Bernstein and Chebyshev maxi-
mum margin classifiers of S. It could be seen that convergence
of Chebyshev polynomials is not uniform.

polynomials, Chebyshev basis polynomials do not guarantee
uniform convergence and reveal the error caused by pointwise
convergence. Shifted Chebyshev polynomials of the first kind
are defined as

T ∗i (x) = Ti(2x− 1).

and Chebyshev basis polynomials of the first kind are defined
through the recurrence relation

T0(x) = 1,

T1(x) = x,

Ti+1(x) = 2xTi(x)− Ti−1(x).

Similar to the case of Bernstein basis polynomials, the
support vector classifiers Gn are defined by

Gn(x;α) = α0

n∑
i=0

T ∗i (0)T ∗i (x) + α1

n∑
i=0

T ∗i (1)T ∗i (x). (6)

It is known that T ∗i (1) = 1 and T ∗i (0) = (−1)i. As a result,
the maximum margin classifier gn(x) of degree n would be
defined as

gn(x) =
2

n+ 1

[n−1
2 ]∑

i=0

T ∗2i+1(x). (7)

Figure 1 compares a few members of fn and gn. It could be
seen that points exist that maximize or minimize the estimation
error gn(x) − fn(x). The result is oscillations in the output
of gn. Due to the sign of gn alternating between every root,
predictions of gn agrees with fn at most half of the time.
For a large n, the points that do not agree become dense in
the points that do. Nonetheless, for a small n, they produce
measurable regions in the input space.

To put the phenomenon in learning theory terms, the hy-
pothesis space P of polynomials is nonuniform learnable.
Hence, the hypothesis space Pn of polynomials of degree n
has the uniform convergence property. Bernstein polynomials

of degree n are testament to this fact since they guarantee
uniform convergence. A truncated Chebyshev polynomial on
the other hand only guarantees pointwise convergence. As a
result, even though as a hypothesis class it enjoys the uniform
convergence property, a Chebyshev polynomial falls under
the notion of consistency as a learning rule . We refer the
reader to [11] for an overview of nonuniform learnability and
consistency.

We propose that the phenomenon occurs when a universally
consistent learning rule on a nonuniform learnable hypothesis
class does not guarantee uniform convergence. According to
the definition of consistency, sample complexity of a consistent
learning rule depends on the generating distribution of the
data as well as the hypothesis. As a result, there could be
distributions of data that maximize or minimize the sample
complexity of the learning rule for any hypothesis. To make
it precise, the probability δ of the classifier making an error
approaches zero, but the maximum possible error ε of the
classifier does not vanish as fast as δ as we draw more samples
from a sub-optimal training distribution.

To showcase the proposal, we keep the degree of the Cheby-
shev polynomial constant and instead increase the number of
training points. The training points get labeled according to
the nearest neighbour classifier of S. We construct two training
sets, Em and Cm. Em is constructed using an equispaced grid
of m points, Cm on the other hand use a Chebyshev grid as
samples.

The Chebyshev maximum margin classifier of degree 30
of Em and Cm is depicted in Figure 2 for a few choices
of m. It could be seen in the figure that in case of Em,
uniform convergence does not occur even for relatively large
m. In contrast, classifiers trained on Cm converge in the
expected number of samples. As a matter of fact, Chebyshev
polynomials guarantee uniform convergence on a Chebyshev
grid, and hence, do not suffer from the phenomenon.

B. Optimal points of a hypothesis class
In the previous section, we demonstrated that Chebyshev

grid optimizes the sample complexity of Chebyshev polyno-
mials. These points seem to be reflecting the position of the
critical points of the estimation error gn(x)−fn(x). Thus, we
define the optimal training points of a hypothesis class in a
way that reflects this observation.

Optimal training points: Let X be a domain set, let H
be a hypothesis class and let A be a universally consistent
learning rule with respect to H. For every X ⊂ X and every
h ∈ H, let

ĥX = A({(x, h(x)) |x ∈ X}).

The optimal training points of A is a solution to the following
problem plus the boundary ∂X of X ,

arg min
X

∫
H

∑
x∈X
‖∇(ĥX(x)− h(x))‖ dh

subject to X is feasible

(8)

The intuition behind the definition of the optimal points is
that by minimizing the empirical risk on the critical points of



Fig. 2: The trained Chebyshev maximum margin classifiers of
degree 30 on Cm (top row) and Em (bottom row). We expect
that the predictor converge for m > 30 on the equispaced grid.
In practice though, it does not converge even for relatively
large m.

the error function, we are effectively minimizing the maximum
norm of the true error.

Computing the objective of (8) is not tractable for any
practical purpose. However, steps could be taken to calculate
an approximation. First, we can utilize the loss function L
as a surrogate for the objective of (8). We know that the loss
function is proportional to the magnitude of the error function,

L(h(x), h(x)) ∝ |ĥX(x)− h(x)|.

Hence, points that maximize L(h(x), h(x)) would be critical
points of ĥX(x) − h(x) and consequently would minimize
‖∇(ĥX(x) − h(x))‖. Of course, this is only a heuristic and
critical points of the error function could exist that are local
minimas of |ĥX(x) − h(x)|. Second, we approximate the
integral in (8) by restricting the hypothesis class. We call the
solution to this approximation the hard training points of the
restricted class.

Hard training points of H: The hard training points of
A with respect to a distribution H on H is a solution to the
following problem,

arg max
X

EH [
∑
x∈X

L(h(x), h(x))]

subject to X is feasible

(9)

Looking at (9), we can see that it is similar to the program
that results in adversarial examples. Indeed, if we reduce H
to a specific h, we would find an approximation to (8) that
closely resembles the objective of evasion attacks.

Adversarial training points of h: The adversarial training
points of A with respect to h ∈ H is a solution to the following
problem,

arg max
X

∑
x∈X

L(h(x), h(x))

subject to X is feasible

(10)

There are two differences between the proposed definition of
the adversarial training points of h and the standard definition
used in adversarial training. First, our definition does not use
the true labels in computing the loss. While the standard
definition may lead to stronger adversaries, our proposal makes
the independence of the phenomenon from the true predictor
explicit. Second, Our definition does not require the points to
be close to natural samples.

IV. EXPERIMENTS

In section III, we introduced a framework in which adver-
sarial examples are produced. Here, we back the propositions
by providing empirical evidence in their support. In our first
experiment, we show that a Chebyshev grid does optimize (9).
Then, we demonstrate how (9) could be used to adversarially
train a MLP.

A. Hard training points of Chebyshev polynomials

To exhibit that the definition of hard training points is
consistent with the observations made in section III about
Chebyshev polynomials, we now derive and visualize the
objective of (9) for a special family of polynomials in a
maximum margin classification setting.

It is known that the hinge loss function is the loss of the
maximum margin classifier. Thus, we are looking for hard
training points of a shifted Chebyshev polynomial of degree
n with respect to the hinge loss function.

arg max
X

EH [
∑
x∈X

max(0, 1− h(x)2)]

subject to 0 ≤ x1 < ... < xm ≤ 1

(11)

The max operator in the objective of (11) would make the
objective hard to manipulate. As a result, we restrict ourselves
to a family of polynomials with range in the [−1, 1] interval.
Shifted Chebyshev basis polynomials are examples of such
polynomials. Using shifted Chebyshev basis polynomials as
H , the problem will change to a form that is easier to analyse
and compute.

arg max
X

∑
x∈X

1

n+ 1

n∑
i=0

1− T ∗i (x)2

subject to 0 ≤ x1 < ... < xm ≤ 1

(12)

From (12) it could be deduced that the local minimas of∑n
i=0 T

∗
i (x)2 solve (12). Next, it could be argued that the

optimal solution is close to the roots of T ∗n(x), which are
exactly the points of a Chebyshev grid.

Figure 3 compares the position of Chebyshev nodes with
1

n+1

∑n
i=0 1− T ∗i (x)2. It could be checked in the figure that

Chebyshev nodes are very close to the optimal points. The
two nodes on the two end of [0, 1] are also critical points
of the error function because they belong to the boundary of
the interval. In our experiments, removal of the two boundary
points has a considerable negative effect on the trained clas-
sifier. This shows that we should consider the boundary ∂X
of the domain set as well.



Fig. 3: The expected value of loss on H in (12) for n = 10.
The points mark the value of the expectation at each node of
a Chebyshev grid.

B. Optimal training points in MLPs

We showed that the proposed notion can explain the phe-
nomenon in case of polynomials. Here, we analyze MLPs
through our framework. To this end, we sample a random
MLP classifier and visualize the adversarial and hard training
points objectives with respect to that network.

The domain set of the network is [−1, 1]2. The dimensions
of the network are 2 × 100 × 100 × 100 × 5. The weights
of the network are sampled independently from a standard
normal distribution. The activation function of the hidden
layers is tanh and the output of the network is activated
through softmax. We have chosen the cross entropy loss as
our surrogate for the error function.

The objective of (10) is straightforward to compute. To
compute (9), we need to choose a distribution over the
hypothesis class of MLPs. Following the case of Chebyshev
polynomials, we use each neuron in the feature layer of the
MLP as the hypothesis set. In other words, we create a copy
of the network, but replace the last layer with an identity
transform and compute (10) for the new network. For this
particular example, the size of the resulting network would be
2× 100× 100× 100× 100.

Figure 4 shows the results. By comparing the output of the
original network with the adversarial objective of the network,
we can see that the adversarial objective is sensitive to the
position of the decision boundary. But, we can also identify
some regions of the objective that get lighter or darker without
respecting the position of the decision boundary. According to
our proposal, if we sample the training points proportional to
the adversarial objective, the sample complexity of finding this
exact hypothesis would be minimized.

Contrasting the adversarial objective and the hard objective
in Figure 4 reveals that a hypothesis agnostic set of points
would not be as helpful as for the case of polynomials. In
other words, while we could reach a definitive set of optimal
points for polynomials, the optimal points of MLPs are not

Fig. 4: A comparison between the output, the adversarial
objective and hard objective of a random network. The ad-
versarial objective is representative of the decision boundary.
On the other hand, the hard objective suggests a very different
distribution of optimal points.

unique even up to the layers of a single network. As a result,
even though the proposed notion can explain the existence and
abundance of adversarial examples in MLPs, it cannot further
explain their transfer between different architectures of MLPs.
Specially, we could marginalize out the hypothesis space from
the sample complexity in polynomials, but the same could not
be said about MLPs.

C. Adversarial training of a MLP

In this section, we show that sampling according to the hard
objective described in the previous experiment does indeed
optimize the sample complexity of the robust hypothesis. To
do so, we adversarially train a MLP on a subset of MNIST
using the hard training points of the feature layer. Next, we
train a MLP with the same architecture but this time use
the whole of MNIST as the training set with no adversarial
training. Then, we compare the performance of the networks
in both adversarial and nonadversarial settings. To show that
the results are consistent across multiple real-world datasets,
we conduct the same experiments for Fashion-MNIST [12]
and report the results.

Here we use 784 × 512 × 512 × 10 networks with ReLU
activation. The robust network is trained using a third of the
full datasets. We have trained each network for 10 epochs. In
each step of the adversarial training, we find the hard training
points close to the batch with regards to the weights of the
feature layer in that step. To be more precise, we use the
current batch as the initial points and take a few gradient
ascend steps in the direction of (9). Then, we train the network
on this new batch of samples as well.

Figure 5 shows the accuracy of all networks on the test set
as a function of the magnitude of the adversarial perturbation.
A L2 normalized one-step gradient based attack is used for
this experiment.



(a) MNIST

(b) Fashion-MNIST

Fig. 5: The accuracy of MLPs compared to the magnitude of
the adversarial perturbation. The data shows that the adversar-
ial examples of the adversarially trained network does transfer
to the reference network, but not vice versa.

It could be seen that the adversarially trained network gets
a comparable performance with the reference network on the
natural samples set even though it is trained on a third of
the samples. The adversarially trained network is also more
robust compared to the reference network if we compare their
performance in the direct and transfer attack settings. The
results show that adversarial training using (9) would make
the trained MLP more robust against adversarial attacks by
attacking random hypothesises that use the same feature layer
instead of attacking the hypothesis itself.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a framework to explain the
adversarial examples phenomenon. We defined the adversarial
examples as the critical points of the error function. We
showed that this principle can fully explain adversarial exam-
ples existence, training and transfer for pointwise converging
polynomials.

Unfortunately, this approach does not enjoy the same suc-
cess in case of MLPs. We could demonstrate that MLPs do
follow the principle in case of existence and training, but

the same principle proved to be insufficient in explaining
transferable adversarial examples. Nevertheless, the results
suggest that the phenomenon would disappear if the learning
process guarantee uniform convergence of MLPs.

With regards to other proposals in literature, our definition
is more aligned with the low probability pockets perspective.
We constructed the first instance of a classifier with adversarial
examples that are dense in the input domain. While the low
probability pockets perspective relates the phenomenon to
highly nonlinear nature of ANNs, we have shown that the
phenomenon does occur for low degree polynomials as well,
which would produce adversarial regions in turn.

With respect to the linearity hypothesis, our analysis does
not confirm the view that the phenomenon is a result of
representing the input by floating-point numbers. We also
introduced an alternative explanation for the success of gra-
dient based attacks that maximize the training loss function.
While our proposal does not confirm that adversarial examples
transfer is due to converging to the optimal linear classifier,
we share the idea that the transfer is rooted in properties of
the optimal classifier.

The proposed notion is similar to the nonrobust features
perspective in that we also relate the phenomenon to a form
of optimal training points. Our proposal can accommodate a
notion of pointwise converging features similar to nonrobust
features as well. On the other hand, we do not support the
idea that adversarial examples transfer in MLPs is caused
by patterns in the input that are imperceptible to humans. In
case of MLPs, we did not observe any hypothesis independent
relation between the distribution of the optimal points and the
domain set in our experiments.

Our framework is heavily inspired by analogous concepts
in approximation theory. For now, we have analysed both
the training points and the hypothesis class by introducing
a definition for optimal training points and revealing the
role of convergence properties of the hypothesis class in the
phenomenon. If approximation theory is any indicator of the
path forward, our next step should be to analyse the classifier
independently from the training points. In other words, we
guess that there is something special about generalizing deci-
sion boundaries that is causing the transfer of the adversarial
examples in MLPs. In future work, we would focus on finding
extensions to the framework that would help explain the
transfer of adversarial examples in MLPs.
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