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Abstract. Face age editing has become a crucial task in film post-
production, and is also becoming popular for general purpose photog-
raphy. Recently, adversarial training has produced some of the most
visually impressive results for image manipulation, including the face
aging/de-aging task. In spite of considerable progress, current methods
often present visual artifacts and can only deal with low-resolution im-
ages. In order to achieve aging/de-aging with the high quality and ro-
bustness necessary for wider use, these problems need to be addressed.
This is the goal of the present work. We present an encoder-decoder ar-
chitecture for face age editing. The core idea of our network is to create
both a latent space containing the face identity, and a feature modula-
tion layer corresponding to the age of the individual. We then combine
these two elements to produce an output image of the person with a
desired target age. Our architecture is greatly simplified with respect
to other approaches, and allows for continuous age editing on high res-
olution images in a single unified model. Source codes are available at
https://github.com/InterDigitalInc/HRFAE.

Keywords: High resolution, face aging, image-to-image translation.

1 Introduction

Learning to manipulate face age is an important topic both in industry and
academia. In the movie post-production industry, many actors are retouched in
some way, either for beautification or texture editing. More specifically, synthetic
aging or de-aging effects are usually generated by makeup or special visual ef-
fects. Although impressive results can be obtained digitally, as in the recent Mar-
tin Scorcese’s movie The Irishman, the underlying processes are extremely time
consuming. Thus, robust, high-quality algorithms for performing automatic age
modification are highly desirable. Nevertheless, editing faces is an intrinsically
difficult task. Indeed, the human brain is particularly good at perceiving faces’
attributes in order to detect, recognize or analyze them, for instance to infer
identity or emotions. Consequently, even small artifacts are immediately per-
ceived and ruin the perception of results. For this reason, our goal is to produce
artifact-free, sharp and photorealistic results on high-resolution face images.

With the success of Generative Adversarial Networks (GANs) [7] in high
quality image generation, GAN-based models have been widely used for image-
to-image translation [35,40]. Despite having set new standards for natural image
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Fig. 1: Age editing results on 1024× 1024 images.We propose a single deep
age transformer network able to perform both face aging and de-aging, producing
high quality images that are sharp and with little artifacts. Using the face images
indicated by a yellow frame as input, our network can output a photo-realistic
image of the same person at any required target age in the range {20, . . . , 69}.

synthesis, GANs are known to suffer from two major flaws : an abundance of
small artifacts and strong instability of the training process. The latest face aging
studies [9,20,33,36,39] also adopt GAN-based models. Specifically, they divide
face datasets into different age groups, feed young images into the generator,
and rely on the discriminator to map output images to older age distributions.
There are multiple limitations to this approach. Firstly, as can be expected, these
approaches inherit the drawbacks of GAN-based methods - blurry background,
small parasite structures, instability of training. Secondly, as the aging effect is
generated by matching the output image distribution to the target group, these
methods are limited to coarse aging/de-aging. To achieve fine-grained transfor-
mation, a separate model needs to be trained between each pair of ages.

In this work, we propose an encoder-decoder architecture for the problem of
face age editing with high visual quality on high resolution images. In order to
address the aforementioned limitations, namely the tendency to produce visual
artifacts and training instability, we endeavour to keep the architecture as simple
as possible. Firstly, we use a single network for both aging and de-aging. This
is reasonable since the encoder part of our model is assumed to encode identity,
emotion or details in the input image that are not related to age, so that the same
latent space can be used for both tasks of aging and de-aging. Secondly, we rely
on a feature modulation layer, that is compact, acts directly on the latent space
and allows for continuous age transitions. Thirdly, unlike in competing methods
where the discriminator used during adversarial training is conditioned on the
target age, we use a discriminator which is not conditioned and concentrates
solely on the photorealism of the output images to reduce editing artifacts. The
discriminator can be considered as a regularizer which imposes photorealism
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other than a traditional discriminator trying to match two distributions. Thanks
to this design, our model achieves efficient disentanglement of age attributes
and face identity. We present experimental results on high resolution images
with qualitative and quantitative evaluations. In particular, these experiments
provide clear evidence that the visual quality achieved by our results outperforms
state of the art methods. Experiments on alternative datasets further illustrate
the generalization capacity of the method.

2 Related Works

Face aging The survey work [6] gives an exhaustive overview of the tradi-
tional age synthesis algorithms. In this work, we are more interested in deep
learning based methods, which have made impressive progress on face aging
tasks during the last few years. A conditional GAN [24] model is first intro-
duced for face aging task by [1,39]. They encode the face image to the latent
space, manipulate the latent code, and decode it to an aged face with the gener-
ator. However, the identity information is damaged during this process. This is
further improved by [36,38], by adding an identity preserving term to the objec-
tive. Despite the improvement, their results are over-smoothed compared with
the input images. To capture texture details, wavelet-based generative models
are introduced by [19,20]. Their complex models increase the training difficulty
and still yield strong artifacts. All the aforementioned models only enable face
aging from one age group to another, e.g ., from 20s to 40s, lacking flexibility.
Recently, [9] proposed an encoder-decoder network, in which a personalized ag-
ing basis is synthesized and an age-specific transform is applied. Their model
also relies on a conditional discriminator to distinguish aging patterns between
age groups. Different from other methods, our model is designed for age editing
with a random target age. Moreover, our approach produces much less artifacts,
making age editing on images of high resolution (1024× 1024) possible.

Image-to-image translation Face aging can be considered as an image-
to-image translation problem, ie translating images between young age and old
age domains. An optimization based method is proposed by [34], showing the
possibility to use linear interpolation of deep features from pretrained convnets to
transform images. GAN based methods [13,40,11] further enable real-time trans-
lation, by training a feed forward generator. Existing image-to-image translation
studies [3,4,18,29,30,37] on face images also yield impressive results in manip-
ulating facial attributes. Lample et al . [18] design an autoencoder architecture
to reconstruct images, and isolate single image characteristics in a latent com-
ponent via a discriminator. These characteristics can then be modified directly
in the latent space. Choi et al . [4] propose a method to perform image-to-image
translation for multiple domains using only a single model. Pumarola et al . [29]
introduce an attention based model, which enables face animation by simple
interpolation.

High-resolution image synthesis In spite of the considerable progress of
recent methods, manipulating/editing natural images of high resolution has not
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Fig. 2: Training process: each input image x0 is edited by the age transformer
G using the initial age α0 (reconstruction task) and the target age α1 (editing
task). The reconstructed image G(x0, α0) should be identical to the input image.
The edited image G(x0, α1) is further passed in a discriminator D that ensures
photorealism of the transformed image, and an age-classifier V that ensures age-
accurate transformation. The age transformer G contains three sub networks:
an encoder, a modulating network and a decoder. The encoder maps the input
image x0 to an age-invariant deep feature space. The modulating network maps
a target age α to a 128-dimensional modulating vector. This vector is used to
modulate each channel of the encoded features, hence applying the desired age
transformation. The modulated features are finally passed in the decoder to
obtain the transformed image. Two skip connections between the encoder and
the decoder in order to preserve the age irrelevant details better.

yet been achieved. Nevertheless, in another task - image generation, high quality
results at high resolution are now available. Image generation at 1024×1024 res-
olution is first achieved by [15], with a progressive growing of GAN architectures.
The quality of their results is further improved by StyleGAN [16,17], which learns
a separation of high-level attributes automatically during the training. Based on
this work, Shen et al . [32] propose an effective way to interpret the latent space
learned by the generator and achieve high visual fidelity face manipulation on
synthesized images. However, according to our experiments, only a fraction of
natural images can be accurately reconstructed with a latent code, which makes
this type of method impractical. In contrast, our proposed method achieves face
age editing on 1024× 1024 images, with great simplicity of architecture and loss
design. The age editing is achieved only by an auxiliary modulating network,
which could be potentially generalized to other face manipulation tasks.



High Resolution Face Age Editing 5

3 Method

In this section, we present the face age editing problem and present our proposed
model in detail. Figure 2 illustrates our proposed age transformer and training
procedure.

3.1 Overview

Let x0 be an image drawn randomly from a face dataset. We denote by α0

the age of the person in x0. Our goal is to transform x0 so that the person in
this image looks like someone at α1 years old. We want the aged version of x0

to share many age-unrelated characteristics with x0: identity, emotion, haircut,
background, etc. That is to say: the facial attributes not relevant to age, as well
as the background, need to be preserved during age transformation. Therefore,
we assume that a face aging model and a face de-aging model can share most
of their parameters. In this setting, we consider a single age transformer G and
assume that G can transform any face image to any target age. The inputs of
our model are the face image x0 and the target age α1. The output is denoted
by G(x0, α1), which depicts x0 at the target age α1.

3.2 Age transformer

The proposed age transformer shown in Figure 2 employs an auto-encoder ar-
chitecture and is made of an encoder, a feature modulation block and a decoder.
The encoder consists of three strided convolutional layers (the first one of stride
1, the other two of stride 2) and four residual blocks [8], while the decoder con-
tains two nearest-neighbour upsampling layers and three convolutional layers,
similar to the architecture used in [14,40]. The main difference compared to
these works is our feature modulation block, in which the output features of the
encoder are modulated by an age-specific vector (see details below). This idea
is inspired by recent works on style transfer [5,10] which show the possibility to
represent different styles using the parameters of normalization layers.

– Encoder The face image x0 is the input of the encoder. The output
features are denoted by C ∈ Rn×c, where c = 128 is the number of channels
and n is the product of the two spatial dimensions.

– Feature modulation for age selection The target age α1 is encoded
as an one-hot vector, denoted by z1, and passed to the modulating net-
work. This network consists of a single fully connected layer whith a sigmoid
activation. It outputs a modulation vector w ∈ [0, 1]c, which is used to re-
weight the features C before passing them into the decoder and obtaining
the face image at the desired age. The modulated features are Cdiag(w),
where diag(w) is the diagonal matrix with diagonal w.

– Decoder The decoder takes the modulated features C diag(w) as input
and two skip connections, used to preserve the finer details of the input
image. The final output is denoted by G(x0, α1).
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3.3 Training

As illustrated in Figure 2, we train our age transformer with an age classifier that
ensures age-accurate transformation and a discriminator that preserves photo-
realism.

The initial age α0 of x0 is easy to estimate using a pretrained age classifier,
e.g ., [31]. We thus do not use an age-annotated dataset for training. The original
age range of the training dataset is denoted by Q ⊂ N. At test time, the target
age can be chosen as any age in Q. At training time, it would seem reasonable to
chose any value inQ uniformly at random. However, we noticed that the artifacts
appearing during large age transformations were better corrected when selecting
a target age α1 far enough from α0 during training. We propose to sample α1

from the set Qα0
= {α ∈ Q : |α− α0| ≥ α∗} at training time, where α∗ is a

predefined constant representing the minimum age transformation interval. We
denote by q(α|α0) the uniform distribution over Qα0 .

Classification loss To measure the age of G(x0, α1), we use the same age
classifier as the one used to estimate α0. During training, we freeze the weights
of this classifier. The classifier, denoted by V , takes G(x0, α1) as input and
generates a discrete probability distribution over the set of ages {0, 1, . . . , 100}.
The classification loss satisfies

Lclass = Ex0∼p(x)Eα1∼q(α|α0) [`(z1, V (G(x0, α1)))] (1)

where p(x) denotes the training image distribution over X , ` denotes the cate-
gorical cross-entropy loss, and z1 is the one-hot vector encoding α1.

Adversarial loss To enforce better photorealism of the modified images
G(x0, α1), we adopt an adversarial loss built using PatchGAN [13] with the
LSGAN objective [22]. Unlike the latest works on face aging [9,20,33,36,39],
our discriminator is used to distinguish between real and manipulated images
without taking the age information into account. In our work, the aging and
de-aging effects is obtained solely with the age classification loss.

The discriminator is denoted by D. The architecture of D is the same as pro-
posed in [13]. We use a patch size 142×142 for 1024×1024 images. The modified
image G(x0, α1) should be indistinguishable from real samples. Therefore, the
losses we use are

LGAN(G) = Ex0∼p(x)Eα1∼q(α|α0)[(D(G(x0, α1))− 1)2], (2)

when training G, and

LGAN(D) = Ex0∼p(x)Eα1∼q(α|α0)[(D(G(x0, α1)))2] +

Ey∼p(x)[(D(y)− 1)2] (3)

when training D. We apply R1 regularization [23] with γ = 10 on the discrimi-
nator.

Reconstruction loss When the age transformer receives x0 and α0 as
inputs, the generated output image G(x0, α0) should be identical to the input
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image. Hence, we minimize the following reconstruction loss:

Lrecon = Ex0∼p(x)[||G(x0, α0)− x0||1]. (4)

Full loss We train the age transformer and the discriminator by minimiz-
ing the full objective

L = λreconLrecon + λclassLclass + LGAN (5)

where λrecon and λclass are weights balancing the influence of each loss.

4 Experiments

In this section, we introduce our training setup and present the experimental
results. We further evaluate the quality of our results using quantitative metrics.

4.1 Data augmentation with synthetic images

Our training dataset is built upon FFHQ [16], a high resolution dataset which
contains 70, 000 face images at 1024×1024 resolution. The dataset includes large
variations in age, ethnicity, pose, lighting, and image background. However, the
dataset contains only unlabeled raw images collected from Flickr.

To obtain the age information, we use an age classifier pretrained on IMDB-
WIKI [31]. We observe that FFHQ contains much more samples of young faces
than of old ones. This data imbalance is challenging since the aging and de-
aging tasks would not be treated equally during training: most of faces being
young, the age transformer would be trained to perform aging much more often
than de-aging, failing to yield satisfying de-aging results. To compensate this
imbalance in the age distribution, we propose to perform data augmentation
using StyleGAN - a state-of-the-art high resolution image generation model [16].
We use the StyleGAN model pretrained on FFHQ to generate 300, 000 synthetic
images. A quick visual inspection shows that most of the generated images have
no significant artifacts and are nearly indistinguishable from real images by
a human. Therefore, we use them for data augmentation to obtain a quasi-
uniform age distribution over Q: for any age bin with less than 1, 000 samples
in the original FFHQ dataset, we complete this bin with some of the generated
synthetic face images; for any age bin with more than 1, 000 samples, we select
randomly 1, 000 face images from the original FFHQ dataset. The age-equalized
dataset contains 47, 990 images over the range Q = {20, . . . , 69}.

4.2 Implementation details

Our model is implemented in PyTorch [28]. We take 95% of the equalized dataset
as our training set and the rest as test set. For the age transformer and the
discriminator, spectral normalisation [25] is applied on all the convolution layers



8 X. Yao, G. Puy, A. Newson, Y. Gousseau and P. Hellier

except the last one of the age transformer. All the activation layers use Leaky
ReLU [21] with a negative slope of 0.2.

We consider age transformation only in the age range Q = {20, . . . , 69}. The
constant α∗ is set to 25. We have observed that the most significant artifacts
appear when the gap between the source and target age is large. By choosing
α∗ large enough, we force the discriminator D to suppress these artifacts during
adversarial training. The weights λrecon and λclass are set to 10 and 0.1, respec-
tively. We use Adam optimizer with a learning rate of 10−4. The age transformer
G is updated once after each discriminator update. Our model is trained for 20
epochs to achieve face age editing on high resolution images. The first 10 epochs
are trained on 512× 512 images with a batch size of 4. The next 10 epochs are
trained on 1024× 1024 images, for which we reduce the batch size to 2, learning
rate to 10−5 and λrecon to 1.

4.3 Qualitative evaluation

Figure 9 presents age editing results on 1024 × 1024 input images in different
age groups. Our approach yields visually satisfying results with sharp details
(best viewed when zooming on the results) and without introducing significant
artifacts. Only the age relevant facial features are modified, while the identity,
haircut, emotion and background are well preserved. This is all the more satis-
fying that no mask has been used to isolate the face from the rest of the image.
Figure 4 presents age editing results with a smooth evolution of the target age.
The difference between two adjacent results is nearly invisible, which illustrates
the smoothness of the aging process.

We compare our method to the two most recent state-of-the-art methods on
face aging for which the official codes are released - IPCGAN [36] and PAG-
GAN [38]. We also compare our results to those obtained with FaderNet [18],
which allows one to manipulate several facial attributes including the age.

Figure 5 present the face aging results of IPCGAN, PAGGAN and our
method on CACD [2]. The output size of each method is: 128×128 for IPCGAN,
224×224 for PAGGAN, 256×256 for our method. IPCGAN generates satisfying
aging results and preserves well the identity of input images. However, as can be
seen e.g. in Figure 5(a) row 1 column 4, the generated image presents noticeable
artifacts. PAGGAN generates impressive aging effects but also introduce colored
artifacts as shown in Figure 5(b) row 1 column 2. IPCGAN and PAGGAN both
degrade the quality of input images. Our method is able to generate consistent
aging effects, and preserve well the fine details of the input images.

Generalisation capacity for images in unseen dataset For fair com-
parison and also to reduce the possible effect of overfitting on the training data,
we evaluate all methods on a dataset not viewed at training time by any of the
methods. We chose CelebA-HQ [15], a high resolution version of the CelebA
dataset. The input images are at 1024× 1024 resolution, and are further down-
sampled at the resolution at which each method was trained using their official
codes. The output size of each method is: 224× 224 for PAGGAN, 128× 128 for



High Resolution Face Age Editing 9

25 35 45 55 65

Fig. 3: Age editing results on 1024× 1024 images on FFHQ [16]. On each
row, the yellow frame indicates the original image. Each column corresponds to
a target age of: 25, 35, 45, 55, 65. Our approach yields visually satisfying results
without introducing significant artifacts. Only age relevant features are modified,
while the identity, haircut, emotion and background are perfectly preserved.

IPCGAN, 256 × 256 for FaderNet, and 1024 × 1024 for our method. We com-
pare only the face aging results from young age group to old age group, since
PAGGAN and IPCGAN are trained only for aging. Figure 6 shows the results ob-
tained with the different methods. FaderNet [18] introduces little modifications.
PAGGAN [38] generates satisfying age progression effects. However, noticeable
artifacts are present on the face edges and hairs. IPCGAN [36] is limited to low
resolution and thus introduces a strong degradation on the quality of the image.
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Fig. 4: Continuous face age editing results on FFHQ [16]. As can be
observed, the difference between two adjacent results is nearly invisible, which
demonstrates the smoothness of the aging process.

Table 1: Quantitative evaluation using online face recognition API [12].
We compare our method against three methods: Fader Network [18], PAG-
GAN [38] and IPCGAN [36]. Images are transferred to the oldest age group
(50+) for all the methods. The second column presents the average predicted
age. The third column indicates the blurriness of the results (lower value means
less blurry). The fourth column is the gender preservation rate, meaning to which
percentage the original gender is preserved. The fifth column refers to expres-
sion preservation - smiling preservation rate. The last two columns indicate the
emotion preservation rate

Gender Smiling Emotion Preservation(%)
Method Predicted Age Blur Preservation(%) Preservation(%) Neutral Happiness

FaderNet [18] 44.34 ± 11.40 9.15 97.60 95.20 90.60 92.40
PAGGAN [38] 49.07 ± 11.22 3.68 95.10 93.10 90.20 91.70
IPCGAN [36] 49.72 ± 10.95 9.73 96.70 93.60 89.50 91.10

Ours 54.77 ± 8.40 2.15 97.10 96.30 91.30 92.70

In comparison to these results, our approach introduces much less artifacts and
preserves the fine details of the face and the background better.

4.4 Quantitative evaluation

Quantitative evaluation of image-to-image translation tasks is still an open ques-
tion and there is no universal metric to measure photorealism or quantify arti-
facts in an image. The recent works [9,20,38] on face aging use an online face
recognition API to estimate the age and the identity preservation accuracy of
the modified images. We thus employ a similar evaluation process.

In our evaluation, the first 1, 000 images with true “Young” label of the
CelebA-HQ dataset are extracted as test images. Using this test set, we make a
quantitative comparison with FaderNet [18], IPCGAN [36] and PAGGAN [38].
Each image is transferred to the oldest age group using their official released
models. For IPCGAN and PAGGAN, the oldest age group refer to 50+ and
[51, 60] respectively. For FaderNet, the old attribute is set to be the default
largest value for aging in their official code. To have a fair comparison with
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Fig. 5: Comparison with IPCGAN [36] and PAGGAN [38] on
CACD [2]. For each subfigure in (a), the top row corresponds to the aging
results of IPCGAN. The second row shows the images generated by our method.
For each subfigure in (b), the top row corresponds to the aging results of PAG-
GAN. The second row shows the images generated by our method.

groupwise methods, and since 50+ is considered as the oldest age group, we
choose a target age of 60 (the mean of the age range {51, . . . , 69} ⊂ Q) for our
age transformer.

Thus we get 1000 modified images for each method. We further evaluate these
output images using the online face recognition API of Face++ [12]. From the
detect API, we obtain the following interesting metrics: age, gender, blurriness
(whether the face is blurry or not, larger values means blurrier), smiling and emo-
tion estimation. The emotion estimation contains a series of emotions: sadness,
neutral, disgust, anger, surprise, fear and happiness. With a preliminary analysis
on the results, 94.20% of the input images are classified as neutral or happiness.
Thus we just keep these two terms for emotion preservation comparison. We
have also compared the identity preservation rate using the API to compare the
modified images with the original inputs. However, since all methods achieve a
nearly 100% accuracy, this metric is not reported here.

Table 1 shows the quantitative evaluation results. All the methods are given
the oldest age group as aging target, and we notice that our method has the
highest average predicted age. The gender preservation rate is calculated by
comparing the estimated gender with the original CelebA annotations. Using this
metric, FaderNet achieves the best performance, followed by our method. For
expression preservation (smiling) and emotion preservation (neutral, happiness),
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Input (10242) Fader (2562) PAGGAN (2242) IPCGAN (1282) Ours (10242)

Fig. 6: Comparison of face aging results on CelebA-HQ [15]. The first
column are the input images. The second to fifth column are outputs from Fader
Network [18], PAG-GAN [38], IPC-GAN [36] and our method. Our results reach
the highest resolution without introducing significant artifacts. Our method pre-
serves the background better compared to other techniques, see for instance the
letters on the third row. In addition, compared to other techniques, our method
leads to a result without artefacts nor blur.

our approach yields the best results. It is to be noted however that all methods
have similar results. For the blur evaluation, results are much more contrasted.
Our method performs much better in generating sharper images, which is in
agreement with the visual comparisons.

4.5 Discussion

Ablation study on discriminator We have explored three different types
of discriminators to train the age transformer. Figure 7 presents the face age
editing results corresponding to the different settings.

– Conditional discriminator. We adopt a patch discriminator [13] with a
label projection applied on the features before the last convolutional layer,
similar to the settings in [26]. The discriminator is conditioned on four age
groups: 20-35, 35-45, 45-55, 55-70. At the training stage we find it essential
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Fig. 7: Face age editing results with different types of discriminator. (a)
Conditional discriminator. (b) Two separate discriminators. One receives images
only from old age groups, the other receives images from young age groups. (c)
Our proposed method - using one single discriminator. Comparing to the results
in (a) and (b), the proposed method (c), which uses a single discriminator,
generates reliable face aging/de-aging effets with the least artifacts.

to give the same number of real and fake images from each class to the
discriminator to make the training successful. If we sample a target age
α1 from the set Qα0

= {α ∈ Q : |α− α0| ≥ α∗} at training time, the
discriminator will receive more manipulated images in the youngest and
oldest group. Thus it tends to classify all the images in these two groups
as fake. The conditional discriminator is very sensitive to the original data
distribution and needs much more hyper-parameter fine-tuning to converge.
Figure 7(a) presents the age editing results with conditional discriminator.
Strong artifacts can be observed in the aging results.

– Two separate discriminators. One discriminator receives manipulated
and real images with a desired age lies in the old age group (45-70), while
the other one takes manipulated and real images in the young age group
(20-44). With this setting, the task of generating aging/de-aging effects is
shared among the classifier and the discriminators. Although the results in
7(b) are better than those in 7(a), over-smoothing artifacts are perceived in
the de-aging results and colored artifacts appear in the aging results.

– One single discriminator. This is our proposed method. The discriminator
can be considered as a regularizer which imposes photorealism, as it takes all
the manipulated and real images as input. The generation of aging/de-aging
effects is solely dictated by the age classifier. We are able to achieve high
resolution results only with this last setting.

Image reconstructed from a latent code optimization As mentioned
in Section 2, the recent work of Shen et al . [32] proposes an effective way to
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Input Reconstructed Input Reconstructed Input Reconstructed

Fig. 8: Images reconstructed from a latent code optimization. We analyze
the possibility of encoding natural images to the latent space of StyleGAN [16],
through optimization in the latent space minimizing the distance between the
generated image and the input image. Each image is then reconstructed from this
optimized latent code. The relatively low quality of the reconstruction strongly
suggest that editing performed in the latent space cannot lead to a sharp and
artifact-free result.

manipulate the latent code of an image generator to achieve high visual quality
manipulation of synthesized images. It is therefore tempting to manipulate the
latent code directly to produce face manipulation (and thus age editing) on
natural images with this approach. However, finding such a latent code for an
arbitrary face image is still a challenging problem. According to our experiments
using StyleGAN [16], only a fraction of natural face images can be accurately
reconstructed from the latent code 4 by [27]. Consequently, this type of method is
impractical until a better StyleGAN encoder is made available. Figure 8 is meant
to support this claim, where reconstruction results of natural face images can be
assessed. We notice that the reconstructed images have painting-like artifacts,
blurry backgrounds, and sometimes fail to preserve the identity of the person in
the input image. Indeed, StyleGAN is much more efficient at sampling random
faces from the latent space than at approximating a given face image. This is due
to the fact that a GAN is not necessarily invertible. Hence, an editing method
based on this latent code reconstruction will struggle to handle correctly natural
images and to achieve the high visual quality of our method.

Weakly supervised training To the best of our knowledge, our work
is the first to use unlabeled data for training among recent face aging stud-
ies [9,20,33,36,39]. A classifier pretrained on IMDB-WIKI [31], a low resolution
face dataset, is used to provide age information. Moreover, the discriminator
in our method is used only to distinguish real and manipulated images. Rely-
ing solely on the classifier, we successfully extract the age specific features and
further realize age transform on high resolution images. This reveals the capac-
ity of the classifier, even trained on low quality images. Our method could be
potentially generalized to other face attributes manipulation tasks, by using a
separate pair of modulating network and classifier for each attribute.

4 The latent code is obtained through optimization in the latent space by finding a
latent code that minimizes the distance between the generated image and the input
image.
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5 Conclusion

In this paper, we have proposed an age transformer architecture, enabling contin-
uous face age editing with a single network, which we have endeavoured to keep
as simple as possible. We believe that this approach, combined with an encoder-
decoder architecture, rather than relying on a complex GAN, is the best path
towards high quality, high resolution face editing results. We have demonstrated
the capacity of our model to produce photorealistic and sharp results, without
introducing significant artifacts, on images of resolution 1024 × 1024. The pro-
posed feature modulation block appears to achieve efficient separation of age
and identity information. Given the performance achieved, this design can be
potentially useful for other face attribute manipulation tasks.
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A Network architecture

Table 2 presents the hyperparameters of the proposed network architecture. The
discriminator is a 142 × 142 patch discriminator. Each element of the output
feature map corresponds to a receptive field of 142 × 142 on the original input
image.

B Age classifier

To obtain the age information of FFHQ dataset [16], we use the age classifier [31],
which has been pretrained on IMDB-WIKI. This dataset contains 523, 051 face
images of 20, 284 celebrities collected from the IMDB and Wikipedia websites.
The dataset mostly covers the [20, 65] age interval, and has only very few samples
for the younger and older age intervals. Consequently, the age classifier might
yield less accurate age estimation for faces of people younger than 20 years old or
much older than 65 years old. We therefore choose to use images in the age range
Q = {20, . . . , 69} for training. We pass the images of FFHQ dataset into the age
classifier and observe that FFHQ contains much more samples of young faces
than of old ones. We then augment the dataset with synthetic images generated
by StyleGAN [16] to achieve a quasi-uniform age distribution over the age range
Q, as described in section 4.1 of the paper.

C Additional results

In this section, we present supplementary results on 1024× 1024 images.

C.1 Results on FFHQ dataset

More age transform results on 1024×1024 images of FFHQ dataset are presented
in Figure 9 and 10.

C.2 Comparison with other methods

In Figure 13, we show additional comparison of face aging results on Celeba-
HQ [15]. As mentioned in the paper, we compare our method against the two
most recent state-of-the-art methods on face aging for which the official codes
are released - PAGGAN [38] and IPCGAN [36]. We also compare our results to
those obtained with Fader Network [18], which allows one to manipulate several
facial attributes including the age. Each input image is transformed to the oldest
age group using their official released models. For IPCGAN and PAGGAN, the
oldest age group refer to 50+ and [51, 60] respectively. For Fader Network, the
age attribute is set to be the default largest value for aging in their official code.
To have a fair comparison with groupwise methods, and since 50+ is considered
as the oldest age group, we choose a target age of 60 (the mean of the age range
{51, . . . , 69} ⊂ Q) for our age transformer.
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Table 2: Hyperparameters of the proposed network architecture. The
input size is 1024× 1024× 3. For the age transformer, except the last one, each
convolution is followed by an instance normalization and a LeakyReLU activa-
tion. For the discriminator, except the first and the last one, each convolution is
followed by a batch normalization and a LeakyReLU activation.

Operation Kernel size Stride Channel

Age transformer
Encoder

Convolution 9 × 9 1 32
Convolution 3 × 3 2 64

Skip connection 1
Convolution 3 × 3 2 128

Skip connection 2
Residual block 3 × 3 1 128
Residual block 3 × 3 1 128
Residual block 3 × 3 1 128
Residual block 3 × 3 1 128

Modulation layer
Decoder

Concatenation with skip connection 2
Upsampling
Convolution 3 × 3 1 64
Concatenation with skip connection 1
Upsampling
Convolution 3 × 3 1 32
Convolution 9 × 9 1 3

Discriminator
Convolution 4 × 4 2 32
Convolution 4 × 4 2 64
Convolution 4 × 4 2 128
Convolution 4 × 4 2 256
Convolution 4 × 4 1 512
Convolution 4 × 4 1 1

Upsampling mode Nearest (scale factor = 2)
Padding mode Reflection
Normalization InstanceNorm for age transformer

BatchNorm for discriminator
Activation LeakyReLU (negative slope = 0.2)
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25 35 45 55 65

Fig. 9: Age transformation on 1024×1024 images. On each row, the yellow
frame indicates the original image. Each column corresponds to a target age
of: 25, 35, 45, 55, 65. Our approach yields visually satisfying results without
introducing significant artifacts. Only age relevant features are modified, while
the identity, haircut, emotion and background are perfectly preserved.
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25 35 45 55 65

Fig. 10: Age transformation on 1024 × 1024 images. On each row, the
yellow frame indicates the original image. Each column corresponds to a target
age of: 25, 35, 45, 55, 65. Our approach yields visually satisfying results without
introducing significant artifacts. Only age relevant features are modified, while
the identity, haircut, emotion and background are perfectly preserved.
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25 35 45 55 65

Fig. 11: Age transformation on 1024 × 1024 images. On each row, the
yellow frame indicates the original image. Each column corresponds to a target
age of: 25, 35, 45, 55, 65. Our approach yields visually satisfying results without
introducing significant artifacts. Only age relevant features are modified, while
the identity, haircut, emotion and background are perfectly preserved.
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25 35 45 55 65

Fig. 12: Age transformation on 1024 × 1024 images. On each row, the
yellow frame indicates the original image. Each column corresponds to a target
age of: 25, 35, 45, 55, 65. Our approach yields visually satisfying results without
introducing significant artifacts. Only age relevant features are modified, while
the identity, haircut, emotion and background are perfectly preserved.
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Input (10242) Fader (2562) PAGGAN (2242) IPCGAN (1282) Ours (10242)

Fig. 13: Comparison of face aging results on CelebA HQ [15]. The first
column are the input images. The second to fifth column are outputs from Fader
Network [18], PAG-GAN [38], IPC-GAN [36] and our method. Our results reach
the highest resolution without introducing significant artifacts. Our method pre-
serves the background better compared to other techniques, see for instance the
letters on the third row. In addition, compared to other techniques, our method
leads to results that are free of artefacts and blur.
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Input (10242) Fader (2562) PAGGAN (2242) IPCGAN (1282) Ours (10242)

Fig. 14: Comparison of face aging results on CelebA HQ [15]. The first
column are the input images. The second to fifth column are outputs from Fader
Network [18], PAG-GAN [38], IPC-GAN [36] and our method. Our results reach
the highest resolution without introducing significant artifacts. Our method pre-
serves the background better compared to other techniques, see for instance the
letters on the third row. In addition, compared to other techniques, our method
leads to results that are free of artefacts and blur.
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