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Abstract—The existence of noisy labels in the dataset causes
significant performance degradation for deep neural networks
(DNNs). To address this problem, we propose a Meta Soft
Label Generation algorithm called MSLG, which can jointly
generate soft labels using meta-learning techniques and learn
DNN parameters in an end-to-end fashion. Our approach adapts
the meta-learning paradigm to estimate optimal label distribution
by checking gradient directions on both noisy training data and
noise-free meta-data. In order to iteratively update soft labels,
meta-gradient descent step is performed on estimated labels,
which would minimize the loss of noise-free meta samples. In
each iteration, the base classifier is trained on estimated meta
labels. MSLG is model-agnostic and can be added on top of
any existing model at hand with ease. We performed extensive
experiments on CIFAR10, Clothing1M and Food101N datasets.
Results show that our approach outperforms other state-of-
the-art methods by a large margin. Our code is available at
https://github.com/gorkemalgan/MSLG noisy label.

Index Terms—deep learning, label noise, noise robust, noise
cleansing, meta-learning

I. INTRODUCTION

Recent advancements in deep learning have led to great im-
provements in computer vision systems [1]–[3]. Even though
it is shown that deep networks have an impressive ability to
generalize [4], these powerful models have a high tendency
to memorize even complete random noise [5]–[7]. Therefore,
avoiding memorization is an essential challenge to overcome
to obtain representative neural networks, and it gets even more
crucial in the presence of noise. There are two types of noises,
namely: feature noise and label noise [8]. Generally speaking,
label noise is considered to be more harmful than feature noise
[9].

Gathering cleanly annotated large datasets are both time
consuming and expensive. Furthermore, in some fields, where
labeling requires a certain amount of expertise, such as medical
imaging, even experts may have contradicting opinions about
labels, which would result in label noise [10]. Therefore,
datasets used in practical applications mostly contain noisy
labels. Due to its common occurrence, research on deep
learning techniques in the presence of noisy labels has gained
popularity, and there are various approaches proposed in the
literature [11].

In this work, we propose a soft-label generation framework
that simultaneously seeks optimal label distribution and net-
work parameters.

Each iteration of the training loop consists of two stages.
In the first stage, posterior label distribution is updated by

gradient descent step on the meta objective. Our meta ob-
jective based on a basic assumption: the best training label
distribution should minimize the loss of the small clean meta-
data. Therefore, the meta-data is chosen as the clean subset
of the dataset. In the second stage, the base classifier is
trained on images with their corresponding predicted labels.
Our framework simultaneously generates soft-label posterior
distribution and learns network parameters, by consecutively
repeating these two stages.

Our contribution to the literature can be summarized as
follows:
• We propose an end-to-end framework called MSLG,

which can simultaneously generate meta-soft-labels and
learn base classifier parameters. It seeks for label distribu-
tion that would maximize gradient steps on meta dataset
by checking the consistency of gradient directions.

• Our algorithm needs a clean subset of data as meta-data.
However, required clean subset of data is very small
compared to whole dataset (less than 2% of training
data), which can easily be obtained in many cases. Our
algorithm can effectively eliminate noise even in the
extreme scenarios such as 80% noise.

• Our proposed solution is model agnostic and can easily
be adopted by any classification architecture at hand. It
requires minimal hyper-parameter tuning and can easily
adapt to various datasets from various domains.

• We conduct extensive experiments to show the effective-
ness of the proposed method under both synthetic and
real-world noise scenarios.

This paper is organized as follows. In section II, we present
related works from the literature. The proposed approach is
explained in section III, and experimental results are provided
in section IV. Finally, section V concludes the paper by further
discussion on the topic.

II. RELATED WORK

In this section, we first present various approaches from the
literature. Then we focus on fields of label noise cleansing and
meta-learning, which this work belongs to.

Various approaches in the literature: One line of works
tries to determine the noise transition matrix [12]–[15], which
is the probabilistic mapping from true labels to noisy labels.
Then, this matrix is used in loss function for loss correction.
However, matrix size increases exponentially with an increas-
ing number of classes, which makes the problem intractable
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for large scale datasets. Moreover, these methods assume that
noise is class-dependent, which is not a valid assumption for
more complicated noises such as feature-dependent noises.
Another line of works focuses on robust losses [16]. Works
show that 0-1 loss has more noise tolerance than traditional
loss functions [17]–[19], but it is not feasible to use it in
learning since it is a non-convex loss function. Therefore,
various alternative loss functions for noisy data are proposed
such as; mean absolute value of error [16], improved mean
absolute value of error [20], generalized cross-entropy [21],
symmetric cross entropy [22]. These methods generally rely
on the internal noise robustness of DNNs and try to enhance
this ability with proposed robust losses. However, they do not
consider the fact that DNNs can learn from uninformative
random data [5]. Regularizer based approach is proposed in
[23], defending performance degradation is due to overfitting
of noisy data. Some works aim to emphasize likely to be
clean samples during training. There are two major lines of
approaches for this kind of methods. The first approach is to
rank samples according to their cleanness, and then samples
are fed to the network by a curriculum going from clean
samples to noisy samples [24]–[27]. The second approach uses
a weighting factor for each sample so that their impact on
learning is weighted according to their reliability [28], [29].
Please see [11] for a more detailed survey on the field.

Label noise cleansing algorithms: One obvious way to
clean noise is to remove suspicious samples [30] or their
labels [31] from the dataset. Nevertheless, this results in an
undesirable loss of information. Therefore, works mainly focus
on correcting noisy labels iteratively during training. A joint
optimization framework for both training base classifier and
propagating noisy labels to cleaner labels is presented in
[32]. Using expectation-maximization, both classifier param-
eters and label posterior distribution is estimated in order
to minimize the loss. A similar approach is used in [33]
with additional compatibility loss condition on label poste-
rior. Considering noisy labels are in the minority, this term
assures posterior label distribution is not diverged too much
from given noisy label distribution, so that majority of the
clean label contribution is not lost. Our proposed solution is
slightly different than label cleansing algorithms. Instead of
finding exact clean label distribution, our framework aims to
find optimal soft-label distribution that would maximize the
learning on the small noise-free data. We call these estimated
labels meta-soft-labels.

Meta learning algorithms: As a meta-learning paradigm,
MAML [34] shown to give fruitful results in many fields.
MAML aims to take gradient steps that are consistent with
meta objective. This idea is also applied to noisy label setup.
For example, [35] aims to find most noise-tolerant weight
initialization for the base network. Three particular works
worth mentioning are [36]–[38], in which authors try to find
the best sample weighting scheme for noise robustness. Their
meta objective is defined to minimize the loss on the noise-
free subset of data. Our approach is similar to these works,
but our objective is totally different. Instead of searching for

a weighting scheme, our framework seeks for a soft-label
distribution.

III. THE PROPOSED MSLG METHOD

A. Problem Statement

Classical supervised learning consists of an input dataset
S = {(x1, y1), ..., (xN , yN )} ∈ (X,Y )N drawn according to
an unknown distribution D, over (X,Y ). Task is to find the
best mapping function f : X → Y among family of functions
F , where each function is parametrized by θ.

One way of evaluating the performance of a classifier is
the so called loss function, denoted as l. Given an example
(xi, yi) ∈ (X,Y ), l(fθ(xi), yi) evaluates how good is the
classifier prediction. Then, for any classifier fθ, the expected
risk is defined as follows

Rl,D(fθ) = ED[l(fθ(x), y)] (1)

where E denotes the expectation over distribution D. Since
it is not generally feasible to have complete knowledge over
distribution D, as an approximation, the empirical risk is used

R̂l,D(fθ) =
1

N

N∑
i=1

l(fθ(xi), yi) (2)

Various methods of learning a classifier may be seen as
minimizing the empirical risk subjected to network parameters

θ? = argmin
θ

R̂l,D(fθ) (3)

In the presence of the noise, dataset turns into Sn =
{(x1, ỹ1), ..., (xN , ỹN )} ∈ (X,Y )N drawn according to a
noisy distribution Dn, over (X,Y ). Then, risk minimization
results in

θ?n = argmin
θ

R̂l,Dn(fθ) (4)

As a result, obtained parameters by minimizing over Dn are
different from desired optimal classifier parameters

θ? 6= θ?n

Therefore, our proposed framework seeks for optimal label
distribution D̂ in order to train optimal network parameters θ?

for distribution D. Throughout this paper, we represent noise-
free labels by y, noisy labels by ỹ, and predicted labels by
ŷ. While y, ỹ are hard labels, ŷ is soft label. Dn represents
the noisy training data distribution and Dm represents the
clean meta-data distribution. N is the number of training data
samples and M is the number of meta-data samples, where
M << N . We represent the number of classes as C and
superscript represents the label probability for that class, such
that yji represents the label value of ith sample for class j.



Fig. 1: Training consists of two consecutive stages. In the first stage, θ is updated on noisy training data xn and its predicted
label ŷ. Then forward pass is done with updated parameters θ̂ on meta data xm with clean labels ym. Afterward, gradients are
backpropagated for optimal prediction of ŷ. In the second stage, network is trained on noisy data batch with predicted labels
and additional entropy loss.

B. Learning with MSLG

The overall architecture of MSLG is illustrated in Figure 1,
which consists of two consecutive stages: meta-soft-label
generation correction and training. For each batch of data,
first posterior label distribution is updated according to meta-
objective, and then the base classifier is trained on these
predicted labels.

1) Meta-Soft-Label Generation: This phase consists of
two major steps. First, we find updated network parameters
by using mini-batch from training samples and corresponding
predicted labels. This is done by taking a stochastic gradient
descent (SGD) step on classification loss

θ̂ = θ(t) − α 1

N

N∑
i=1

∇θLni (θ, ŷ
(t)
i )

∣∣∣∣∣
θ(t)

(5)

where Lni (θ, ŷ
(t)
i ) = Lc(fθ(xi), ŷi) for xi ∈ Dn and

ŷ
(t)
i is corresponding predicted soft label at time step t. Lc

represents the classification loss, which is further explained
in subsection III-D. Secondly, we update label predictions by
minimizing the loss on meta-data with the feedback coming
from updated parameters.

ŷ(t+1) = ŷ(t) − β 1

M

M∑
i=1

∇ŷLmi (θ̂, yi)

∣∣∣∣∣
ŷ(t)

(6)

where Lmi (θ̂) = Lcce(fθ̂(xi), yi) for xi, yi ∈ Dm and Lcce
represents the classical categorical cross entropy loss.

2) Training: In this phase, network parameters are updated
with SGD on noisy training samples with corrected label
predictions and entropy loss

θ(t+1) = θ(t)−λ 1

N

N∑
i=1

∇θ

(
Lc(θ, ŷ(t+1)

i )

∣∣∣∣∣
θ(t)

+ Le(fθ(xi))

)
(7)

Notice that we have three different learning rates α, β and
λ for each step. The overall algorithm is summarized in
algorithm 1.

Algorithm 1: Meta Label Noise Cleaner
Input: Training data Dn, meta-data Dm, batch size bs
Output: Network parameters θ, soft label predictions ŷ
while not finished do
{x, ỹ} ← GetBatch(Dn,bs);
{xm, ym} ← GetBatch(Dm,bs);
Update ŷ by Equation 5 and Equation 6;
Update θ by Equation 7;

end

C. Formulation of ŷ
In MSLG, label distribution yd is maintained for all training

samples xi. Following [33], we initialized yd using noisy
labels ỹ with the following formula

yd = Kỹ (8)

where K is a large constant. Then softmax is applied to get
normalized soft labels

ŷ = softmax(yd) (9)

This setup provides unconstrained learning for yd while
producing valid soft labels ŷ all the time.



D. Loss Functions

1) Classification Loss: Inspired from [33], we defined our
meta loss as KL-divergence loss with a slight trick. KL-
divergence is formulated as follows:

KL(P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(10)

KL-divergence loss is asymmetric, which means

KL(Q||P ) 6= KL(P ||Q) (11)

Therefore we have two different configurations. First op-
tions is:

Lc,1 =
1

N

N∑
i=1

KL(ŷi||fθ(xi)), where

KL(ŷi||fθ(xi)) =
C∑
j=1

ŷji log

(
ŷji

f jθ (xi)

) (12)

which produces the following gradients

∂Lc,1
∂f jθ (xi)

= − ŷji
f jθ (xi)

(13)

Second possible configuration of loss function is

Lc,2 =
1

N

N∑
i=1

KL(fθ(xi)||ŷi), where

KL(fθ(xi)||ŷi) =
C∑
j=1

f jθ (xi) log

(
f jθ (xi)

ŷji

) (14)

which produces the following gradients

∂Lc,2
∂f jθ (xi)

= 1 + log

(
f jθ (xi)

ŷji

)
(15)

Lets assume a classification task where true label is 2 (y2i =
1) but noisy label is given as 5 (ỹ5i = 1). Now we consider
two updates on ŷ2i and ŷ5i
• Case ŷj=2

i : ŷ2i is initially very small, therefore f2θ (xi)�
ŷ2i . In that case Lc,1 will produce a very small gradients
(13) while Lc,2 will produce a medium positive gradient
(15) as desired.

• Case ŷj=5
i : ŷ5i initially has peak value; however, due to

internal robustness of network we expect f5θ (xi)� ŷ5i . In
that case Lc,1 produce large negative gradient (13) while
Lc,2 produce medium negative gradients (15).

As a result we can conclude the following statement: Lc,1
focuses on learning from y5i (noisy label) while Lc,2 focuses
on positive learning from y2i (correct label) and negative
learning from y5i (noisy label). Therefore we believe Lc,2 is
better choice for our learning objective.

Even though our loss formulation may be seen same as [33],
its usage it totally different. While [33] uses∇ŷLc to update ŷ,

we use second order derivative of ∇fθLc as a meta-objective
which is further explained in subsection III-E.

2) Entropy Loss: Inspired from [32], we defined additional
entropy loss as a regularization term. This extra loss forces
network predictions to peak only at one class and zero out
on others. This property is useful to prevent learning curve to
halt since network predictions are forced to be different than
estimated soft labels ŷ. Entropy loss is defined as follows

Le(fθ(x)) = −
1

N

N∑
i=1

C∑
j=1

f jθ (xi) log(f
j
θ (xi)) (16)

E. Meta Objective

From Equation 6, update term for ŷ is as follows

β
1

M

M∑
i=1

∇ŷLmi (θ̂(ŷ))

∣∣∣∣∣
ŷ(t)

(17)

= β
1

M

M∑
i=1

∂Lmi (θ̂(ŷ))

∂θ̂(ŷ)

∂θ̂(ŷ)

∂ŷ

∣∣∣∣∣
ŷ(t)

(18)

Using Equation 5 for θ̂(ŷ) and replacing θ̂(ŷ) with θ̂ for
the ease of notation we get

= − αβ

MN

M∑
i=1

∂Lmi (θ̂)

∂θ̂

∂

∂ŷ

 N∑
j=1

∂Lnj (θ, ŷ)

∂θ

∣∣∣∣∣
ŷ(t)

(19)

= −αβ
N

N∑
j=1

∂

∂ŷ

(
1

M

M∑
i=1

∂Lmi (θ̂)

∂θ̂

∂Lnj (θ, ŷ)

∂θ

)∣∣∣∣∣
ŷ(t)

(20)

Let

Gij(ŷ) =
∂Lmi (θ̂)

∂θ̂

∂Lnj (θ, ŷ)

∂θ
(21)

Then we can rewrite Equation 6 as

ŷ(t+1) = ŷ(t) +
αβ

N

N∑
j=1

∂

∂ŷ

(
1

M

M∑
i=1

Gij(ŷ)

)∣∣∣∣∣
ŷ(t)

(22)

In this formulation
1

M

∑M
i=1Gij(ŷ) represents the similar-

ity between the gradient of the jth training sample subjected to
θ and the mean gradient computed over the batch of meta-data.
Therefore, this will peak when gradients on a training sample
and mean gradients over a mini-batch of meta samples are
most similar. As a result, taking a gradient step subjected to ŷ
means finding the optimal label distribution so that produced
gradients from training data are similar with gradients from
meta-data.



F. Overall Algorithm

We propose a two-stage framework for our algorithm. In
the first stage we train the base classifier with traditional SGD
on noisy labels as warm-up training, and in the second stage
we employ MSLG algorithm algorithm 1.

Warm-up training is advantageous for two reasons. Firstly,
works show that in the presence of noisy labels, deep networks
initially learn useful representations and overfit the noise only
in the later stages [6], [7]. Therefore, we can still leverage
useful information in initial epochs. Secondly, we update
ŷ according to predictions coming from the base network.
Without any pre-training, random feedback coming from the
base network would cause ŷ to lead in the wrong direction.

IV. EXPERIMENTS

A. Datasets

1) CIFAR10: CIFAR10 has 60k images for ten different
classes. We separated 5k images for the test set and another
5k for meta-set. The remaining 50k images are corrupted with
synthetic label noise.

For synthetic noise, we used two types of noises; uniform
noise and feature-dependent noise. For uniform noise, labels
are flipped to any other class uniformly with the given error
probability. For feature-dependent noise, we followed [39], in
which a pre-trained network is used as feature extractor to
map images to feature domain. Then samples that are closest
to decision boundaries are flipped to its counter class. This
noise checks the image features and finds the most ambiguous
samples and flip their label to the class of most resemblance.

2) Clothing1M: Clothing1M is a large-scale dataset with
one million images collected from the web [40]. It has images
of clothings from fourteen classes. Labels are constructed
from surrounding texts of images and are estimated to have
a noise rate of around 40%. There exists 50k, 14k and 10k
additional verified images for training, validation and test set.
We used 14k validation set as meta-data and 10k test samples
to evaluate the classifier’s final performance. In order to have
a fair evaluation, we did not use 50k clean training samples
at all.

3) Food101N: Food101N is an image dataset containing
about 310k images of food recipes classified in 101 classes
[29]. It shares the same classes with Food101 dataset but
has much more noisy labels, which is estimated to be around
20%. It has 53k verified training and 5k verified test images.
We used 15k samples from verified training samples as meta-
dataset.

B. Implementation Details

For all datasets we used SGD optimizer with 0.9 momentum
and 10−4 weight decay. We set K = 10 for all our experi-
ments.

1) CIFAR10: We use an eight-layer convolutional neural
network with six convolutional layers and two fully connected
layers. The batch size is set as 128. λ is initialized as 10−2

and set to 10−3 and 10−4 at 40th and 80th epochs. Other
parameters are set as Table II. Total training consists of 120

epochs, in which the first 44 epochs are warm-up and the
remaining epochs are MSLG training. For data augmentation,
we used random vertical and horizontal flip. Moreover, we pad
images 4 pixels from each side and random crop 32x32 pixels.

2) Clothing1M: In order to have a fair comparison with the
works from the literature, we followed the widely used setup
of ResNet-50 architecture pre-trained on ImageNet. Batch size
is set to 32. λ is set to 10−3 for the first 5 epochs and to 10−4

for the second 5 epochs. Total training consists of 10 epochs,
in which the first epoch is warm-up and the rest is MSLG
training. Other parameters are set as follow; α = 0.1, β = 100.
All images are resized to 256x256, and then central 224x224
pixels are taken.

3) Food101N: We used the same setup and parameter
set from Clothing1M. Only difference are at the following
parameters; λ = 0.5, β = 1500

C. Experiments on CIFAR10

We tested our algorithm with CIFAR10 under varying level
of noise ratios for different types of noises. Since we manually
add synthetic noise, we have complete knowledge over the
noise. Therefore, we feed the exact noise transition matrix to
forward loss method [15] for baseline comparison, which is
not possible in real-world datasets. Results are presented in
Table I.

As can be seen, we beat all baselines with a large margin
for all noise rates of the feature-dependent noise. We manage
to get around 75% accuracy even under the extreme case
of 80% noise. For uniform noise, our algorithm falls shortly
behind the best model, but still manages to get comparable
results. This can be explained as follow. For uniform noise,
noisy samples are totally unrelated to features and true label
of the data. Due to the internal robustness of the network, this
would result in f jθ (xi) � ỹji for noisy class j. This would
result in large negative gradients Equation 15. In the case of
feature-dependent noise, noisy labels are related to real label
distribution. As a result, network prediction and noisy label
is more similar f jθ (xi) < ỹji for noisy class j. This would
result in smaller gradients Equation 15. Therefore, when noise
is random, gradients due to noisy class may overcome the
gradients due to true class, which presents a more challenging
framework for stabilization of robust learning. Therefore, our
proposed framework is slightly less robust to random noise.

We test our algorithm with changing number of meta-data
samples. As expected, our accuracy increases with increasing
number of meta-data. However, as can be seen from Figure 2,
only small amount of meta-data is required for our framework.
For CIFAR10 dataset with 50k noisy training samples, 1k
meta-data (2% of training data) achieves approximately the top
result. Moreover, as presented in Figure 2, number of required
meta-data is independent of the noise ratio.

D. Experiments on Clothing1M

In order to show effectiveness of our algorithm, we tested
with real-world noisy label dataset Clothing1M. For forward
loss method [15], we used samples with both verified and



noise type uniform feature-dependent
noise ratio (%) 0 20 40 60 80 20 40 60 80
Cross Entropy 88.13 82.69±0.44 76.84±0.31 66.46±0.60 38.04±0.92 81.21±0.11 71.46±0.22 69.19±0.61 23.89±0.38
Generalized-CE[21] 86.34 84.62±0.25 81.98±0.19 74.48±0.43 44.36±0.63 81.21±0.22 71.70±0.54 66.56±0.36 10.93±0.68
Bootstrap [26] 88.24 82.51±0.21 76.97±0.23 66.13±0.36 38.41±1.65 81.24±0.15 71.63±0.42 69.74±0.32 23.25±0.20
Co-Teaching[27] 84.72 85.96±0.09 80.24±0.12 70.38±0.15 41.22±2.07 81.19±0.27 72.47±0.19 67.67±0.79 18.66±0.17
Forward Loss[15] 85.36 83.31±0.45 80.25±0.11 71.34±0.30 28.77±0.19 77.60±0.34 69.21±0.13 39.23±1.98 11.61±0.48
Symmetric-CE[22] 84.66 82.72±0.32 79.79±0.44 74.09±0.32 54.56±0.48 76.21±0.16 67.76±3.11 fail fail
Joint Opt.[32] 88.70 83.74±0.29 78.75±0.38 68.17±0.62 39.22±1.04 81.61±0.16 74.03±0.13 72.15±0.32 44.15±0.30
MLNT[35] 87.50 83.20±0.21 78.14±0.13 66.34±0.57 40.80±1.31 82.46±0.24 72.52±0.38 70.12±0.51 41.12±0.82
PENCIL[33] 87.04 83.34±0.28 79.27±0.29 71.41±0.14 46.57±0.37 81.62±0.12 75.08±0.28 69.24±0.39 10.71±0.10
Meta-Weight[38] 88.38 84.12±0.29 80.68±0.16 71.78±0.38 46.71±2.18 81.06±0.22 71.50±0.27 67.50±0.45 21.28±1.01
MSLG 87.55 83.48±0.11 79.82±0.24 72.92±0.18 56.26±0.20 82.62±0.05 79.30±0.23 77.33±0.16 74.87±0.11

TABLE I: Test accuracy percentages for CIFAR10 dataset with varying level of uniform and feature-dependent noise. Results
are averaged over 4 runs.

noise ratio uniform feature-dependent
20% α = 0.5, β = 4000 α = 0.5, β = 4000
40% α = 0.5, β = 4000 α = 0.5, β = 4000
60% α = 0.5, β = 2000 α = 0.5, β = 4000
80% α = 0.5, β = 400 α = 0.5, β = 4000

TABLE II: Hyper-parameters for CIFAR10 experiments.

Fig. 2: Test accuracies for different numbers of meta-data.

noisy labels to construct noise transition matrix. Results are
presented in Table III, where we managed to outperformed
all baselines. Our proposed algorithm achieves 76.02% test
accuracy, which is 2.3% higher than state of the art.

E. Experiments on Food101N

In order to further test our algorithm under real-world noisy
label data, we conduct tests on Food101N dataset too. Since
none of the baselines provided results on Food101N dataset,
all results are taken from our own implementations. There
are excessively large number of classes (101) in the dataset,
hence some methods fail to succeed. For example, methods
depending on noise transition matrix fail since the matrix
becomes intractably large. We only present results of methods
which had fair performance. This dataset has a much smaller
noise ratio (20%), as a result all algorithms results around

method accuracy method accuracy
Cross Entropy 69.93 Symmetric CE [22] 71.02
Generalized CE [21] 67.85 Joint Optimization [32] 72.16
Bootstrap [26] 69.35 MLNT [35] 73.47
Co-Teaching [27] 69.63 PENCIL [33] 73.49
Forward Loss [15] 70.94 Meta-Weight Net [38] 73.72

MSLG: 76.02

TABLE III: Test accuracy percentages on Clothing1M dataset.
Results for cross-entropy, forward loss [15], generalized cross-
entropy [21], bootstrap [26], co-teaching [27] are obtained
from our own implementations. Rest of the results are taken
from the corresponding paper.

method accuracy method accuracy
Cross Entropy 77.51 Joint Optimization [32] 76.12
Generalized CE [21] 71.60 PENCIL [33] 78.26
Bootstrap [26] 78.03 Meta-Weight Net [38] 76.12
Co-Teaching [27] 78.95 MSLG 79.06

TABLE IV: Test accuracy percentages for Food101N dataset.
All values in the table are obtained from our own implemen-
tations.

similar accuracies with straight forward training with cross-
entropy loss. Therefore, there are no big gaps among top
accuracies, but still as presented in Table IV, our proposed
framework manages to get best accuracy in this dataset too.

V. CONCLUSION

We proposed a meta soft label generation framework to
train deep networks in the presence of noisy labels. Our
approach seeks optimal label distribution subjected to meta-
objective, which is to minimize the loss of the small meta-
dataset. Afterwards, the network is trained on these predicted
soft labels. These two stages are repeated consecutively during
the training process. Our proposed solution is model agnostic
and can easily be adapted to any system at hand.

We conduct extensive experiments on CIFAR10 dataset
with various levels of synthetic noise for both uniform and
feature-dependent noise scenarios. Experiments showed that
our framework outperforms all baselines with a large mar-
gin, especially in the case of structured noises. For further
evaluation, we conduct tests on real-world noisy label dataset
Clothing1M, where we beat state of the art with more than



2%. Moreover, for further evaluation, we tested our algorithm
on another real-world noisy labeled dataset Food101N, where
we outperformed all other baselines.
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