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Rémi Giraud, Rodrigo Borba Pinheiro, Yannick Berthoumieu
Bordeaux INP, Univ. Bordeaux, CNRS, IMS, UMR 5218

F-33400 Talence, France
remi.giraud@ims-bordeaux.fr, rodrigo.borba pinheiro@bordeaux-inp.fr, yannick.berthoumieu@ims-bordeaux.fr

Abstract—Most of existing superpixel methods are designed to
segment standard planar images as pre-processing for computer
vision pipelines. Nevertheless, the increasing number of applica-
tions based on wide angle capture devices, mainly generating 360o

spherical images, have enforced the need for dedicated superpixel
approaches. In this paper, we introduce a new superpixel method
for spherical images called SphSPS (for Spherical Shortest Path-
based Superpixels). Our approach respects the spherical geome-
try and generalizes the notion of shortest path between a pixel
and a superpixel center on the 3D spherical acquisition space. We
show that the feature information on such path can be efficiently
integrated into our clustering framework and jointly improves
the respect of object contours and the shape regularity. To
relevantly evaluate this last aspect in the spherical space, we also
generalize a planar global regularity metric. Finally, the proposed
SphSPS method obtains significantly better performance than
both planar and recent spherical superpixel approaches on the
reference 360o spherical panorama segmentation dataset.

Index Terms—Superpixels, Spherical images, Regularity

I. INTRODUCTION

The growing in resolution and quantity of image data
has highlighted the need for efficient under-representations to
reduce the computational load of computer vision pipelines. In
this context, superpixels were popularized with [1] to reduce
the image domain to irregular regions having approximately
the same size and homogeneous colors. Contrary to regular
multi-resolution schemes, a result at the superpixel scale can
be very close to the optimal one at the pixel scale. Superpixels
have been successfully used in many applications such as:
semantic segmentation [2], [3], optical flow estimation [4] or
style transfer [5]. The main issue to deal with is the irregularity
between all regions that may prevent from using the standard
neighborhood-based tools. Nevertheless, this issue has been
addressed in graph-based approaches [6], using neighborhood
structure [7], or within deep learning frameworks [8].

At the same time, the use of new acquisition devices
capturing wide angles, such as fish eyes, generally covering a
360o field of view has become more and more popular. These
devices offer a global capture of the environment, particularly
interesting for applications such as autonomous driving. With
a depth-aware system, the intensity can be projected on a 3D
point cloud. Otherwise, the image sphere is generally projected
on a discrete 2D plane to generate an equirectangular image
inducing distortions [9]. In this context, several works, e.g.,
[10], [11] have used standard planar superpixels although they
do not consider the geometry distortions in the equirectangular

image, that may limit the segmentation accuracy and their
interpretation on the spherical acquisition space [12].

Many superpixel approaches have been proposed over the
years, most exclusively to segment standard planar images.
These methods use watershed [13], region growing [14],
eikonal-based [15], graph-based energy [16], or even coarse-
to-fine algorithms [17]. A significant breakthrough was ob-
tained with the SLIC method [1], locally adapting a K-
means algorithm on a trade-off between distances in the spatial
and CIELab color space to generate superpixels. The method
has few parameters and a low processing time, but may
struggle to jointly capture object borders and provide regular
shapes. Many improvements of SLIC have been proposed
using boundary constraint [18], advanced feature space [19],
non-iterative clustering [20], a shortest path approach [21], or
even deep learning processes [8] although these last methods
present the usual limitations, in terms of resources, training
time, large dataset needed, and applicability to other images.

For spherical images, The unsupervised segmentation ap-
proach of [22] has been extended in [23], but generates
very irregular regions, not considered as superpixels. More
recently, the SLIC method was extended to produce spherically
regular superpixels [12]. Pixels are projected on the unit sphere
for computing the spatial constraints and produce regular
superpixels in the spherical space. Besides the display interest,
the respect of the acquisition space geometry enables to more
accurately segment the image objects [12]. Nevertheless, this
approach comes with the same limitations as SLIC, i.e., limited
adaptability to different contexts with severe non robustness
to textures or noise due to the use of a standard color feature
space, and no explicit integration of contour information.
These limitations are addressed in [21], for which authors
obtain significantly higher accuracy for standard planar image
segmentation by considering the color and contour features
along the shortest path between the pixel and the superpixel.

Contributions: In this paper, we address the limitations of
the spherical approach of [12], by proposing in Section II
a new superpixel method called SphSPS (Spherical Shortest
Path-based Superpixels). SphSPS is based on the same spher-
ical K-means approach of [12] but exploits more advanced
features [19] and generalizes the notion of shortest path [21],
to the acquisition space, here the spherical one. To this end,
a dedicated fast shortest path algorithm is defined to integrate
the information of this large number of pixels into the method.
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Standard planar superpixels using [19]

Spherical superpixels using the proposed SphSPS method

Fig. 1. Example of superpixel segmentation with a planar [19] and the
proposed spherical SphSPS method on a 360o panorama image. SphSPS
provides accurate superpixels that are regular in the spherical acquisition space
(red square) and connected at horizontal boundaries (blue ellipse).

SphSPS generates in very limited processing time accurate
and regular spherical superpixels (see Figure 1). To relevantly
evaluate the regularity aspect in the spherical space, we also
propose a generalization of the global regularity measure [24]
(Section III). SphSPS obtains higher segmentation perfor-
mance than the state-of-the-art methods on the reference 360o

spherical panorama segmentation dataset [25] (Section IV).

II. SPHERICAL SHORTEST PATH-BASED SUPERPIXELS

To introduce SphSPS, we first present the K-means method
[1] (Section II-A) and its spherical adaptation [12] (Section
II-B). Then, we present the feature extraction method on a
planar shortest path [21] (Section II-C1) and our generalization
to the spherical space (Sections II-C2 and II-C3).

A. Planar K-means Iterative Clustering

SphSPS is based on SLIC (Simple Linear Iterative Cluster-
ing) [1] using an iteratively constrained K-means clustering of
pixels. Superpixels Si are first initialized as blocks of size s×s,
described by the average CIELab colors CSi

and barycenter
position XSi

= [xi, yi] of pixels in Si. The clustering for
each pixel p relies on a color dc(p, Si) = ‖Cp − CSi

‖22, and a
spatial distance ds(p, Si) = ‖Xp −XSi

‖22. At each iteration,
each superpixel Si is compared to all pixels p = [Cp, Xp],
of color Cp at position Xp, within a (2s+1)×(2s+1) area
Ai around its barycenter XSi . A pixel p is associated to the
superpixel minimizing the distance D defined as:

D(p, Si) = dc(p, Si) + ds(p, Si)
m2

s2
, (1)

with m, the trade-off parameter setting the shape regularity.
Finally, a post-processing step ensures the region connectivity.

B. Spherical Geometry

In the spherical acquisition space, vertical and horizontal
coordinates are respectively projected to the meridians and
circles of latitude, so the spherical image has a width twice su-
perior to its height. SphSPS is based on the same adaptation of
the planar K-means method to the spherical geometry as [12],
that requires three steps. The first one is the initialization of
the K superpixels. To spread the barycenters along the sphere,

we also use the Hammersley sampling [26]. The second step
is the search area that must consider the proximity of pixels in
the spherical space. For instance, superpixels on the image top
and bottom have larger search areas. This area Ai, is defined
for each superpixel Si of barycenter XSi

= [xi, yi] as:

Ai ={[x, y]|xi−
S

sinφ
≤x≤ xi +

S

sinφ
, yi−S ≤ y ≤ yi+S}, (2)

with φ = yπ/h the polar angle corresponding to the y-th
row for an image of height h and width w, and the average
superpixel size S = w/

√
Kπ. The 360o geometry aspect must

also be handled to horizontally connect the pixels. This is done
with a left/right warping when the search region falls outside
the image boundaries [12]. The third aspect is the computation
of the spatial distance, that must also be done in the spherical
space. For each image pixel X = [x, y] the projection on the
3D acquisition space Xa = [xa, ya, za] is computed as:

xa = sin( yπ
h
)cos( 2xπ

w
)

ya = sin( yπ
h
)sin( 2xπ

w
)

za = cos( yπ
h
)

↔

x = b arctan2(ya,xa)w
2π

c

y = b arccos(za)h
π

c
. (3)

Note that x ∈ [−w2 ,
w
2 ], when computed from Xa, so we map

x on the image domain with x← x+ w, if x ≤ 0.
The most straightforward 3D spatial distance is the Eu-

clidean one ds(X
a
p , X

a
Si
) = ‖Xa

p − Xa
Si
‖22. SphSPS uses

the spherical and computationally costless cosine dissimilarity
distance proposed in [12] as ds(Xa

p , X
a
Si
) = 1 −

〈
Xa
p , X

a
Si

〉
.

Note that with adjusted parameter m (1), both distances can
achieve almost similar performances for [12] (see Section IV).

C. Generalized Shortest Path Method
1) Feature extraction on a shortest path: In [21], color

and contour information of pixels q on the planar shortest
path Pp,Si

between a pixel p and a superpixel Si are used to
improve segmentation accuracy and regularity. SphSPS also
integrates these features and has the same clustering distance
D than [21]. Nevertheless, in the following, the shortest path
Pp,Si differs since we compute it in the spherical space.

First, to relevantly increase the regularity and prevent non-
convex shapes from appearing, the color distance of the pixels
on the path is added to the color distance dc such that:

dc(p, Si,Pp,Si)=λdc(p, Si) +
1− λ
|Pp,Si |

∑
q∈Pp,Si

dc(q, Si), (4)

with λ a trade-off parameter usually set to 0.5.
The contour information can also be considered to increase

the respect of objects borders using any contour map C, with
values between 0 and 1. A contour term dC is defined as:

dC(Pp,Si) = 1 + γ max
q∈Pp,Si

C(q), (5)

with γ the parameter penalizing the crossing of a contour.
The final clustering distance of SphSPS is defined as:

D(p, Si) =

(
dc(p, Si,Pp,Si) + ds(p, Si)

m2

s2

)
dC(Pp,Si), (6)

with the spherical spatial distance ds using the cosine dissim-
ilarity as ds(Xa

p , X
a
Si
) = 1 −

〈
Xa
p , X

a
Si

〉
[12], and Pp,Si the

proposed spherical shortest path computed as follows.
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Fig. 2. Examples of planar (dotted lines) and spherical shortest path (full
lines) between points in the 2D image space (left) and 3D acquisition space
(right). The spherical path follows the shortest geodesic path on the sphere.

2) Generalized shortest path: In Figure 2, we compare
shortest paths in the planar space, as in [21], and in the spheri-
cal one as in SphSPS. With planar images, since no distortions
are introduced between the acquisition and the image space
(N2), they are considered equivalent. Hence, the shortest path
reduces to a linear path and can be easily computed with a
discrete algorithm [27]. Nevertheless, in general, the shortest
path should be computed in the acquisition space, than can be
spherical or even circular using fisheyes with different capture
angles. Hence, the generalized formulation of the shortest
path problem computes it in the acquisition space (Pap,Si

) and
projects it back to the planar image space:

Pp,Si = Pa
p,Si

−−→
proj {N2}. (7)

3) Shortest path in the spherical space: The spherical
shortest path consists in following the geodesic along the
sphere [28], lying on a great circle (in orange color in Figures
2 and 3), containing the two points and the sphere center.
Tangential methods to extract way-points on the great circle
have been formalized for instance in [29]. Nevertheless, such
theoretical approaches use many trigonometric computations
that impact the performance. In the following we propose a
simpler reformulation of the spherical geodesic path problem.

Fast geodesic path implementation: For each comparison of
a pixel at Xa

p to a superpixel of barycenter Xa
Si

, we propose
to first compute an orthogonal coordinate system [ ~Xa

p , ~Xa∗
Si
]

within their great circle. To build such system, we perform an
orthogonalization process to get the position Xa∗

Si
, creating an

orthogonal vector to Xa
p within the great circle such as:

Xa
Si

∗ =
Xa
Si
−
〈
Xa
p , X

a
Si

〉
Xa
p∥∥∥Xa

Si
−
〈
Xa
p , X

a
Si

〉
Xa
p

∥∥∥
2

, (8)

with the scalar product
〈
Xa
p , X

a
Si

〉
already computed for the

spatial distance ds. Then, the angle between the two points
is simply obtained with α = arccos

(〈
Xa
p , X

a
Si

〉)
. Finally, the

geodesic path Pap,Si
is defined within [ ~Xa

p , ~Xa∗
Si
], by starting

from the pixel position, and linearly increasing the angle shift
from 0 to α, to reach the superpixel barycenter such as:

Pa
p,Si

= cos(αN)Xa
p + sin(αN)Xa∗

Si
, (9)

with αN = [0,N−1]
N−1 α ∈ RN , intermediate angles to linearly

sample N points between the two positions. The geodesic path
is finally projected in the planar space (3) to get Pp,Si (7). By

1

Fig. 3. Computation of the spherical shortest path. The orthogonal coordinate
system [ ~Xa

p ,
~Xa∗
Si

] is computed from projection of Xa
Si

on Xa
p (8). The angle

α between the positions is then is used to sample 3D points on the path (9).

this way, we obtain the shortest spherical path coordinates with
simple calculations, dividing the processing time by a factor 2
compared to tangential approaches. An example of spherical
shortest path on a great circle with the the computation of the
corresponding coordinate system is illustrated in Figure 3.

Optimization: First, for each superpixel, we can store the
color distance computed to each tested pixel, reducing the
processing time by 50%. Then, contrary to the planar linear
path algorithm [27] we can exploit path redundancy. If the
path of a pixel to a superpixel crosses a previously computed
path to the same superpixel, the rest of the path should be the
same since they lie on the same great circle. So we can also
store the average color and contour information on the path
for each crossed pixel. This is done efficiently using recursive
implementation. By this way, for many pixels we are able to
directly access the large quantity of information contained in
the shortest path, again reducing the processing time by 50%.

III. GENERALIZED GLOBAL REGULARITY MEASURE

Superpixels tend to optimize a color and spatial trade-
off, so metrics should mainly evaluate object segmentation
and regularity performances. This last aspect has rarely been
evaluated although most methods have a regularity parame-
ter that may significantly impact superpixel-based pipelines.
Moreover, the standard compactness metric [30], which is the
only one extended to the spherical space [12] was proven
very limited [24]. In this section, we propose a new way to
relevantly evaluate the regularity in the acquisition space.

A. Limitation of the Compactness Measure
In [12], the compactness measure COM [30] is extended to

the spherical case. The regularity of a segmentation S = {Si}
is only seen as a notion of circularity, computed as:

COM =
1∑

Si∈S
|Si|

∑
Si∈S

Q(Si)|Si|, (10)

with Q(Si)=(4π|Si| − |Si|2)/|P (Si)|2 the spherical isoperi-
metric quotient using P (Si) the perimeter of Si in the
spherical space [31]. Hence, each superpixel is independently
compared to a circular shape, such that for instance, ellipses
can have higher COM measures than squares. In [24], this
metric has been proven highly sensitive to boundary noise and
inconsistent with the superpixel size. Moreover, in [12] it even
fails to differentiate spherical and planar-based methods.
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Fig. 4. Illustration of the projection process of the proposed Generalized
Global Regularity (G-GR) metric (12). A superpixel shape Si is projected
in the acquisition space (Sai ), then on a two dimensional one using a PCA

(Sa→{R
2}

i ), then downsampled to generate a 2D matrix (Sa→{N
2}

i ), allowing
for instance to compute a convex hull to measure its regularity.

B. Generalized Global Regularity Metric

1) Global regularity metric: In [24], a global regularity
metric (GR) is introduced, to address the issues of the com-
pactness. First, the Shape Regularity Criteria (SRC) is defined
to robustly evaluate the convexity, the contour smoothness,
and the 2D balanced repartition of each superpixel. Convexity
and smoothness properties are computed with respect to the
discrete convex hull containing the shape.

As for the compactness COM (10), SRC is independently
computed for each superpixel, so [24] also introduces a
Smooth Matching Factor (SMF) to evaluate the consistency
of superpixel shapes. Each superpixel is compared, after
registration on its barycenter, to the average superpixel shape,
created from the superposition of all registered superpixels.

Finally, the notion of regularity is defined by the GR (Global
Regularity) metric combining these two metrics such that:

GR(S) = 1∑
Si∈S

|Si|
∑
Si∈S

|Si|SRC(Si)SMF(Si). (11)

2) Generalization in the acquisition space: Ideally the
regularity should be evaluated in the acquisition space. In our
context, Si in the spherical acquisition space gives Sai , a set
of 3D positions on the unit sphere (3). GR being based on
the computation of convex hull, and barycenter registration, it
cannot be directly applied to such point clouds in R3.

To generalize the metric, we propose to simply project the
3D points of Sai on a discrete 2D plan, and then apply the
initial GR. The whole process is illustrated in Figure 4. To
do so, we first project a superpixel Si in the discrete image
space to its acquisition one, here to get a spherical point cloud
Sai . Then, we apply a Principal Component Analysis (PCA)
on Sai , and project the points on its two most significant
eigenvectors to reduce to a 2D point cloud Sa→{R

2}
i . Finally,

a downsampling is performed to obtain a discrete 2D shape

S
a→{N2}
i . By this way, each superpixel shape has a relevant

discrete projection in the acquisition space. The proposed
Generalized Global Regularity (G-GR) metric is defined as:

G-GR(S)=

∑
Si∈S

∣∣∣Sa→{N2}
i

∣∣∣ SRC(Sa→{N
2}

i )SMF(Sa→{N
2}

i )∑
Si∈S

∣∣∣Sa→{N2}
i

∣∣∣ .(12)

With the proposed G-GR metric, a gap is now visible such
that no planar methods have higher regularity than spherical
ones for a given number of superpixels (Section IV-C).

IV. RESULTS

A. Validation Framework
1) Dataset: We consider the Panorama Segmentation

Dataset (PSD) [25], containing 75 360o equirectangular images
of 512×1024 pixels, having between 115 and 1085 segmented
objects with an average size of 1334 pixels. These images are
taken from the standard spherical dataset SUN360 [32], and
accurate ground-truth segmentations are provided by [25].

2) Metrics: To relevantly evaluate SphSPS performances
and compare to state-of-the-art methods, we use the superpixel
metrics recommended in [24], for several superpixel numbers.
The main aspects to evaluate are the object segmentation and
spatial regularity performances, which is robustly evaluated in
the acquisition space with the proposed G-GR metric (12).

For the segmentation aspect, the standard measure is the
Achievable Segmentation Accuracy (ASA) [16], highly corre-
lated to the Undersegmentation Error [33] as shown in [24].
The ASA measures the overlap of a superpixel segmentation
S with the ground truth objects, denoted G, such as:

ASA(S,G) = 1∑
Si∈S

|Si|
∑
Si

max
Gj∈G

|Si ∩Gj |. (13)

The Boundary-Recall (BR) is a commonly employed metric
to evaluate the detection of the ground truth contours B(G) by
the boundaries of the superpixels B(S) such that:

BR(S,G) = 1

|B(G)|
∑

p∈B(G)

δ[ min
q∈B(S)

‖p− q‖ < ε], (14)

with ε a distance threshold set to 2 pixels [24], and δ[a] = 1
when a is true and 0 otherwise. To prevent methods generating
superpixels with fuzzy borders to get high performances [24],
BR results are compared to the Contour Density (CD), i.e.,
the number of pixels of superpixel borders.

The standard Precision-Recall curves can also be repre-
sented to illustrate the overall object contour detection per-
formances. These are computed on a contour probability map
∈ [0, 1] generated by averaging the superpixel borders obtained
at different scales K ∈ [50, 3000]. This map is thresholded
by several intensities to get a binary contour map. For each
threshold, the Precision (PR), the percentage of accurate
detection among the superpixel borders, is computed with the
BR measure. For all PR curves, to synthesize the contour
detection performance, we also report the maximum on all
thresholds of the F-measure defined as:

F =
2PR BR
PR + BR

. (15)
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Fig. 5. Impact of the SphSPS distance parameters. The contributions enable
to significantly improve the accuracy and regularity performances.

(a) Initial image (b) 3-Lab, λ=1, γ=0

(c) 6-Lab, λ=1, γ=0 (d) 6-Lab, λ=0.5, γ=0 (e) 6-Lab, λ=0.5, γ=10

Fig. 6. Visual impact of SphSPS parameters. Each contribution relevantly
increases the regularity and γ = 10 integrates the contour prior information.

3) Parameter settings: SphSPS was implemented with
MATLAB using C-MEX code, on a standard Linux computer
with 12 cores at 2.6 GHz with 64GB of RAM. Contrary to
[12], using the 3 average color features of the CIELab space,
we use the 6 CIELab dimension space of [19], also including
the features of neighboring pixels [21]. In the shortest path,
N = 15 pixels are considered (9). The number of iterations is
set to 5, and the parameter λ (4), setting the trade-off between
the central pixel and the ones on the shortest path, is set to 0.5
as in [21]. When used, the contour prior is computed from [34]
and γ set to 10 (5). Finally, the parameter m (6) is empirically
set to 0.12 to provide a visually satisfying trade-off between
the respect of object contours and spatial regularity.

B. Impact of Contributions

In this section, we show the impact of contributions within
SphSPS. We report for different distance settings the contour
detection PR/BR curves, with the maximum F-measure (15),
and the regularity G-GR (12) curves in Figure 5, and a
zoom on a segmentation example in Figure 6. With a 3
feature dimension space, SphSPS reduces to the spherical
SLIC algorithm [12]. With the 6 dimension space, SphSPS
uses the CIELab features of [19], and the neighboring pixels
information as in [21], with λ = 0.5 the color distance (4),
and γ = 10, the contour information on the shortest path (5).

We demonstrate that each contribution improves the seg-
mentation performance. We can especially observe that the
color distance on the shortest path, that strengthens the super-
pixel convexity and homogeneity, indeed provides much more
regular superpixels while also increasing the accuracy.

C. Comparison with the State-of-the-Art Methods

We compare the performances of the proposed SphSPS
approach to the ones of the state-of-the-art methods. We
consider the planar methods SLIC [1], LSC [19], SNIC [20]
and SCALP [21], and the spherical approach SphSLIC [12] in
2 different settings, i.e., considering the Euclidean (SphSLIC-
Euc) and the Cosine (SphSLIC-Cos) distances (see Section
II-B). To ensure fair comparison, planar and SphSLIC-Euc
methods are used with their default settings, since they provide
a good trade-off between accuracy and regularity. Note that
for the SphSLIC-Cos method [12], results are reported for the
regularity setting optimizing the segmentation accuracy, since
low performance was obtained with default settings.

In Figure 7, we report the contour detection results mea-
sured by PR/BR curves with F-measure (15), and BR/CD (14),
the segmentation of objects with ASA (13), and regularity with
the proposed G-GR metric (12), obtained for several numbers
of superpixels. SphSPS overall obtains the best segmentation
results, with for instance the higher F-measure (0.776), and
significantly outperforms the other spherical method SphSLIC,
in both distance modes, while producing very regular super-
pixels. Note that even without the contour prior (γ = 0), i.e.,
only using color information on the shortest path, SphSPS still
significantly outperforms the other state-of-the-art methods.
We also observe that by using a linear path approach, SCALP
[21] degrades the segmentation accuracy of LSC [19]. This
result highlights the need for considering our spherical shortest
path instead of the linear one.

The regularity measured with the proposed G-GR (12)
appears to be very relevant and able to differentiate planar
and spherical methods. It evaluates the convexity and contour
smoothness of each superpixel along with their consistency,
while COM (10) is only based on a non robust and independent
circularity assumption. Hence, with G-GR, the regularity in
the spherical space is accurately measured such that no planar
methods have higher regularity than spherical ones for a given
number of superpixels, contrary to COM [12].

In Figure 8, we show segmentation examples of SphSPS
compared to the state-of-the-art methods, on 360o equirectan-
gular images and projected on the unit sphere. SphSPS pro-
duces regular superpixels in the spherical space and accurately
captures the object contours compared to the other methods.

Finally, in terms of processing time, the relevance of our
features enables SphSPS to rapidly converge in a low number
of iterations. For instance, only using the 6 dimensional feature
space [19], SphSPS generates superpixels in 0.85s per image
of size 512×1024 pixels and already obtains higher accuracy
(F = 0.764) than the state-of-the-art methods (see Figure
5). With the significant optimizations proposed in Section
II-C3, SphSPS can use the information on the shortest path to
obtain significantly higher accuracy in only 2.30s, i.e., faster
than existing spherical approaches [12]. Moreover, with basic
multi-threading, we easily reduce the processing time of our
implementation to 0.7s to further facilitate the use of SphSPS1.

1Available code at: https://github.com/rgiraud/sphsps

https://github.com/rgiraud/sphsps
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Fig. 7. Quantitative comparison on PR/BR, BR/CD, ASA and G-GR of the proposed SphSPS method to the state-of-the-art ones on the PSD [12].
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Fig. 8. Visual comparison between SphSPS and the best planar (left) and spherical (right) state-of-the-art methods on PSD images, for two superpixel
numbers K = 1200 (top-left) and K = 400 (bottom right). The compared methods may generate inaccurate superpixels, while SphSPS produces regular
spherical superpixels with smooth boundaries that adhere well to the image contours.

V. CONCLUSION

In this work, we generalize the shortest path approach
between a pixel and a superpixel barycenter [24] to the case
of spherical images. We show that the complexity resulting
from the large number of pixels to process can be extremely
reduced using the path redundancy on the 3D sphere. Color
features on this path enable to generate both very accurate and
regular superpixels. Moreover, SphSPS can consider a contour
prior information to further improve its performances.

To ensure a relevant evaluation of regularity, we intro-
duce a generalized metric measuring the spatial convexity
and consistency in the 3D spherical space. While providing
regular results in the acquisition space, SphSPS significantly
outperforms both planar and spherical state-of-the-art methods.

Accuracy and regularity in the acquisition space are crucial
for relevant display and for computer vision pre-processing.
Future works will extend our method to spherical videos and
other acquisition spaces, e.g., circular or polarimetric.
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