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Abstract—Training robust deep learning models for down-
stream tasks is a critical challenge. Research has shown that
down-stream models can be easily fooled with adversarial inputs
that look like the training data, but slightly perturbed, in a way
imperceptible to humans. Understanding the behavior of natural
language models under these attacks is crucial to better defend
these models against such attacks. In the black-box attack setting,
where no access to model parameters is available, the attacker
can only query the output information from the targeted model
to craft a successful attack. Current black-box state-of-the-art
models are costly in both computational complexity and number
of queries needed to craft successful adversarial examples. For
real world scenarios, the number of queries is critical, where
less queries are desired to avoid suspicion towards an attacking
agent. In this paper, we propose Explain2Attack, a black-box
adversarial attack on text classification task. Instead of searching
for important words to be perturbed by querying the target
model, Explain2Attack employs an interpretable substitute model
from a similar domain to learn word importance scores. We show
that our framework either achieves or out-performs attack rates
of the state-of-the-art models, yet with lower queries cost and
higher efficiency.

I. INTRODUCTION

Robustness in machine learning models is a critical chal-
lenge. Research has shown that common downstream deep
learning models can be easily fooled with malicious input that
looks like the training data, but slightly perturbed, in a way
imperceptible to humans. These perturbed inputs are called
adversarial examples, which can be used to attack trained
models, causing significant deterioration to down-stream task
performance. There has been a lot of work on generating
adversarial examples for different types of data, including
images and text. The better we understand how a model is
vulnerable to different attacks, the better we can increase
its robustness. For instance, augmenting crafted adversarial
examples in the training data can improve robustness of
models [1].

In general, attacks using adversarial examples can be crafted
in either white-box or black-box settings. In white-box attacks,
the attacker has access to the target model parameters, and
the gradient of these parameters is used to craft adversarial
examples [2], [3], [4], [5]. On the other hand, black-box attacks
do not have access to the model parameters [6], [7], [8], but
only to its outputs. In this paper, we are interested in black-
box attacks, since in practice, this is a more probable scenario
for real-world applications.

Specifically, we consider in this paper black-box attacks
on natural language classification task. Typical classification
models such as deep neural networks (DNN) with softmax
decision layer output a probability distribution of their input
belonging to each target class. Usually, the final label of the
model is decided to be the one with the maximum probability.
Hence, a classification model could be fooled if the confidence
of the output probability is affected by a malicious input,
switching the maximum probability to another incorrect target
class.

The key strategy used to craft adversarial text in existing
methods is to try to replace few words in an input sentence
with synonyms such that its meaning remains the same.
The classification model is then queried with these perturbed
sentences to find out which ones successfully changes the
output label. Existing state-of-the-art models have different
ways to search for most important words to replace, but the
common intuition is to compute the importance score for each
word as a function of the probability output of target model
(see Section IV for further details).

Since existing approaches rely on word by word querying
of the target model, they are costly in both computational
complexity and number of queries. For real world scenarios,
the number of queries is critical, where less queries are desired
to avoid suspicion towards an attacking agent.

In this paper, we propose Explain2Attack1, a black-box
adversarial attack on text classification, that employs cross-
domain interpretability to learn word importance for crafting
adversarial examples. The key idea is to replace the need to
querying the target model by learning a similar substitute
model with similar domain data, that can then be used to
generate word importance scores for the targeted model. The
advantages of our model are: (i) less costly in computational
complexity and number of queries, (ii) achieves or out-
performs state-of-the-art methods in attack rates, yet with less
number of queries, and (iii) has better scalability with longer
input lengths compared to current methods.

II. BACKGROUND

Here we formally define the adversarial attack problem, and
the details regarding adversarial crafting process. We discuss
related work in details compared to our work in Section IV.

1Code is available at: https://github.com/mahossam/Explain2Attack
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A. Problem Definition

Let D be a dataset of N sentences and corresponding labels
D = {X,Y}, where X = {X1, X2, ..., XN} is a corpus of N
sentences, and Y = {Y1, Y2, ..., YN} is the collection of the
class labels of M possible text classes. A pre-trained target
model F : X → Y is the classifier model we want to attack.
F maps the input space X to the label space Y. Starting from
an original sentence X ∈ X, a valid adversarial example Xadv

could be crafted such that:

F (Xadv) 6= F (X), andSim(Xadv, X) ≥ ε (1)

where Sim : X × X → (0, 1) is a similarity function and ε
is the minimum desired similarity between the original and
adversarial examples. In the case of natural language, this is
usually a combination of semantic and syntactic similarity [8],
[9].

B. Crafting Adversarial Examples

To craft an adversarial example for a given sentence X ∈ X
, the common strategy to follow is : i) selecting the most
important words/tokens to replace from the input sentence,
then ii) searching for synonyms to replace the most important
words such that the changed sentence changes the classifica-
tion label of the target model. iii) Finally, in order for the
final adversarial example to be plausible and imperceptible to
humans, the semantic similarity between the original candidate
sentence and the final one need to be close to each other or
restricted using some sentence similarity function Sim(·, ·).

C. Word Importance Ranking

Since the search space for all possible word placements to
attack sentence X is large, most black-box attacks use a word
importance ranking criteria, that helps prioritize which words
in X to replace first.

Let Iwi
be a score to measure the influence of a word

wi ∈ X towards the model output probability FY (X) of the
predicted label Y . Different black-box methods differ on how
to compute Iwi

for each word in a sentence, as discussed later
in Section IV. However, they share the same need for the
probability output of the classifier for class label Y , where
Iwi is computed as a function of these probability outputs:

Iwi
= ScoreFunction(FY (X)) (2)

D. Word Replacement

After word ranking is done, word replacement step begins.
In this step, the algorithm takes candidate words by order
of importance, and replaces the current word by chosen
synonyms till the target model label is changed. The candidate
sentence Xadv with changed words is considered a valid
adversarial example if it passes the condition in Eq.1. After
all word replacements are tried, if Xadv still could not change
the label, then we assume that no adversarial example can be
crafted from sentence X .

III. PROPOSED FRAMEWORK

We propose a more efficient word ranking and selection
model that alleviates the need for output probabilities for word
ranking, hence, is more efficient in number of needed queries
of target model. Our approach is to build an interpretable
substitute model that can closely resemble the target model
behaviour on the attacked data domain. Then, using the inter-
pretability capability of the substitute model, we can produce
importance scores that can benefit our attack task.

In order to adapt our setup to work in black-box setting,
where we do not have access to attacked training data, we rely
on the domain adaption capacity of deep models. Potentially,
there is a similarity of language sentences representing a
certain linguistic concept. For example, the words and se-
mantic structures of the reviews for a restaurant and a movie
can be usually similar, except that the subjects/objects of
the reviews are different. Therefore, if a model is trained to
capture such high-level features, the knowledge of the model
can be transferred between datasets. This means that, if we
do not have access to target model training dataset, we still
can train a close enough substitute model on similar dataset.
In practice, deep learning models exhibit domain adaptation
capacity, where a model trained on certain data, can still
behave well on other similar data that has similar high level
features. Thus, attacks produced for the proposed substitute
model [10] can also be used to efficiently attack the original
target model as long as they both are trained from similar
domains. In figure 1 we show the overview of our method.

In details, consider a target model F trained on some
target training dataset Dtrain

t =
{
Xtrain

t ,Ytrain
t

}
and testing set

Dtest
t = {Xtest

t ,Ytest
t }. Instead of querying target model F (·)

with context around each word in sentences from Xtest
t , we

consider learning a substitute interpretable model that can
provide importance scores for given words. For this purpose,
we leverage a framework extended from [11] to train the
substitute model.

A. Interpretable Substitute Model

In black-box attacks setup, we do not have access to target
training data Dtrain

t . Therefore, in order to train a substitute
model that can generate importance scores during attack, we
need to look for another dataset that is close enough to the
target model dataset. We call such a dataset the substitute
dataset, Db = {Xb,Yb}. We then use Db to train the substitute
model we call SUB.

Our goal from training SUB is to learn a network (called
the selector) that can select the most important features from
the input X ∈ Xb to let another network, the substitute
classifier, correctly predict the corresponding label Y ∈ Yb.
In details, inspired by [11], for a substitute pair (X,Y ) ∼ Db,
our goal is to learn a selector network E(X) that selects the
most important subset of k features from X that is sufficient
for substitute classifier Fb(.) to correctly predict Y . After
substitute training is finished, Fb(.) can be discarded, since
we are only interested in the selector E(X).
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Fig. 1. Overview of Explain2Attack

Formally, for a given positive integer k, let ρk be the set of
all possible subsets of size k:

ρk =
{
S ⊂ 2d | |S| = k

}
We denote the selected k features indices as S, and the
corresponding selected features sub-vector from X as Xs:

S∼ P(S | x) = E(X)

where S ∈ ρk and XS ∈ Rk. The choice of the number
of explaining features k can be tuned as a hyper-parameter.
The learning objective is to find E that maximizes the mutual
information I (XS ;Y ):

max
E

I (XS ;Y ) subject to S ∼ E(X) (3)

Since a direct solution to the Problem 3 is not tractable, an
approximate solution can be found using a lower bound on
the mutual information. We refer the reader to [11] for more
details on the final lower bound objective.

In the attack step, in order to generate word importance
scores from the trained SUB, we take the logit output of the
last layer of E(X) before the k selection process S ∼ E(X).
This way we obtain importance score vector I ∈ Rd that has
the same dimensions of the input.

The selector E takes the form of a multilayer deep convolu-
tional neural network. In order for E to select k features from
X , a Gumbel-Softmax layer [12] is used to generate k indices.

B. Adversarial Examples via Cross-Domain Interpretability

At inference time, when crafting the adversarial attacks,
we do inference on SUB using the target testing set Dtest

t .
This is the standard setup for black-box attack, where Dtest

t

is used as starting point and slightly perturbed to craft valid
adversarial examples. As described earlier, because of the
domain adaption capacity of deep learning models, the closer
the substitute domain is to the target, the better the generated
scores will be for the original target model.

C. Implementation

Our attack method is inspired by framework proposed in [8].
However, we modified the behaviour so that we alleviate the
need for querying F (·) for word ranking, since our proposed
method relies on interpretability architecture for this purpose.
We name our framework Explain2Attack. In Algorithms 1 and
III-C we describe in details how our algorithm works.

Algorithm 1 Train Substitute Model SUB

Input: Substitute training corpus Xb = {X1, X2, ..., XN}
of N sentences, and corresponding class labels Yb =
{Y1, Y2, ..., YN}
Output: Trained substitute model SUB with selector net-
work E

for each mini batch Bs ∈ {Xb,Yb} do
Update parameters of SUB model to find E that
maximizes an approximate to objective in Eq. (3)

end for



Algorithm 2 Explain2Attack

Input: Target test sentence example X test
t ∈ Xtest

t , where
X test

t = {w1, w2, . . . , wn}, the corresponding ground truth
label Y test

t , target model F , sentence similarity function
Sim(·, ·), sentence similarity threshold ε, word embed-
dings Emb over the vocabulary Vocab
Output: Perturbed Adversarial example Xadv

1: Initialization: Xadv ← X test
t

2: for each word index i in X test
t do

3: Retrieve word importance score:
Iwi = Get Word Score (X test

t , i)
4: end for

5: W ← Sorted list of words in wi ∈ X in descending order
of importance score Iwi

6: for each word wj ∈W do
7: Candidates← {}
8: for each nearest synonym word cm ∈ Vocab (by

embedding cosine similarity) do
9: X ′m ← Replace wj with cm in Xadv

10: Add X ′m to Candidates
11: end for

12: if ∃X ′ ∈ Candidates s.t. F (X ′) 6= Y test
t and

Sim (X test
t , X ′) ≥ ε then

13: Xadv ← argmax
X′∈Candidates

Sim (X test
t , X ′)

14: return Xadv

15: else if FY (Xadv) > min
X′∈Candidates

FY (X
′) then

16: Xadv ← argmin
X′∈Candidates

FY (X
′)

17: end if

18: end for
19: return None

20: function GET WORD SCORE(Xt, i)
21: word score = Elogits(Xt)i
22: return word score
23: end function

We follow Algorithm 1 to train the substitute model SUB
using Db. After that, selector E from SUB can be used in
algorithm III-C for crafting adversarial examples.

The procedure to craft adversarial examples is described in
Algorithm III-C. The algorithm starts from an input sentence
X test

t and terminates either after successfully finding a per-
turbed adversarial example Xadv that changes the label Y test

t ,
or if no such perturbation is found. In details, the algorithm
proceeds by inferring from E word scores for every word
in X test

t . These scores are sorted, called W , and then the
algorithm tries to replace word by word to find valid Xadv .
For each word wj in W a set of close candidate synonyms is

selected based on embedding cosine similarity as in [8], and a
set of sentences Candidates is created by replacing wj with
each synonym.

At the current word wj , the algorithm first checks if per-
turbing wj in Xadv using the set of synonyms in Candidates
can change Y test

t . If one or more such synonym are found, the
one which achieves the highest similarity Sim (X test

t , X ′) to
original sentence is picked, and the algorithm terminates.

Otherwise, if no synonym is found that can change Y test
t ,

the algorithm needs to choose the synonym perturbation
that yields the weakest (minimum) target model probability
FY (X

′) before moving on to the next word wj+1.

IV. RELATED WORK

There has been recent work on adversarial text attacks [2],
[3], [6], [4], [5], [7], [13], [8] . The main challenges for natural
language adversarial attacks is discrete nature of inputs, where
defining meaningful perturbations is not straight forward, and
the search space and complexity for black-box attack methods.

Specifically for black-box text attacks, several methods
[8], [13], [7] have been developed that share similar general
framework, where the attack starts by selecting the most
important words/tokens to replace from a candidate sentence,
followed by searching for some word replacement that can flip
the classification label of the target model. However, some
methods followed the heuristic optimization approach, for
example, [14] used genetic algorithm to find the best sentence
perturbation that fools the classifier.

Most of formerly mentioned black-box methods use the
word selection/replacement strategy. For instance, PWWS
[13] proposes computing a word saliency score using output
probabilities of the target model, while [7] computes sequen-
tial importance score based on forward and backward RNN
probabilities at the current word position in the sentence.
TextFooler [8] is a recent strong baseline for text attacks,
where the method uses a modified procedure for word ranking
that increases the ranking in label disagreement case. BERT-
Attack and BAE-Attack [15], [16] improve on TextFooler
synonym replacement by using a pretrained language model
to generate suitable substitute words based on the surrounding
context. This achieved higher attack rates and the number of
queries are reduced. The improvement in BERT-Attack can be
easily incorporated in our framework.

Our approach differs from previous work in solving the
word ranking problem. Unlike other methods, instead of
depending on the target model for word importance ranking,
we learn word importance scores. The main differences of our
approach compared exiting ones are: i) word ranking has no
dependence on the target model output, thus more efficient in
number of queries, ii) unlike exiting methods, our approach
is scalable with increased sentence lengths, since computing
the scores is not dependent on word by word query of target
model. This makes our approach more efficient, scalable, and
less computationally expensive compared to existing methods.
Moreover, our general approach can benefit from further query
reduction in the synonym replacement phase by incorporating



the pretrained language model technique in BERT-Attack and
BAE-Attack.

V. EXPERIMENTS

We report here the results of our method on text classi-
fication tasks. We apply our framework to several sentiment
classification datasets with WordCNN, WordLSTM and BERT
[17] target models. However, our model can be applied to
other classification models or datasets with proper choice of
substitute datasets . We compare our results to TextFooler [8],
a strong state-of-the-art baseline for black-box text attack on
the chosen target models. Below we describe the datasets,
metrics and discuss the results. In Table I we report the datasets
we used in our experiment with their statistics.

Datasets:
• IMDB and MR: Movie reviews for sentiment classifi-

cation [18], [19]. The reviews have binary labels, either
positive or negative.

• Amazon MR: Amazon polarity (binary) user reviews
on movies, extracted from the larger Amazon reviews
polarity dataset 2.

• Yelp Polarity Reviews: Sentiment classification on posi-
tive and negative businesses reviews [20]. We mainly use
this dataset as a substitute dataset when attacking other
models.

In all of the datasets except Amazon MR, we follow the data
preprocessing and partitioning in [8].

TABLE I
STATISTICS OF USED DATASETS

Dataset Train Test Avg. Length
IMDB 25K 25K 215

MR 9K 1K 20
Amazon MR 25K 25K 100

Yelp 560K 38K 152

Metrics: We evaluate our method using the following
metrics:
• After-attack accuracy (Adv Acc): We report for each

model the original clean accuracy Clean Acc of the target
model on the test set. Then we report the accuracy of
the target model against crafted adversarial examples
Adv Acc. The lower is this better, where the larger the
gap between these two accuracies means more successful
the attack method. Through-out discussion, when we
refer to “attack rate”, we mean the gap (Clean Acc −
Adv Acc).

• Average number of queries (Avg Queries): We report
the average number of queries needed to find successful
adversarial example per input sentence. The lower is
better, where lower number of queries is one of the main
desired goals of our method. This is an absolute measure
of the number of queries regardless of the achieved after-
attack accuracy.

2https://www.kaggle.com/bittlingmayer/amazonreviews

• Query Efficiency (QE): Since more successful attacks
need more queries in black-box setting, we cannot rely
only on Avg Queries for evaluating the performance of
our method. We need to measure the true benefit in
reduction of number of queries, and make sure that it
is not reduced because of sacrificing attack rate. This is
the motivation behind Query Efficiency (QE), the ratio
of successful attacks per query QE = Clean Acc−Adv Acc

Avg Queries .
The higher is better. This means that QE measures the
percentage of successful attacks per single query, hence
the true query efficiency related to the attack rate.

• Perturbation Query Cost (PQC): The number of
queries needed per perturbed word PQC = Avg Queries

Pertureb Words .
The lower is better. PQC measures the cost in terms
of queries needed for a useful word perturbation that
contributes towards label change.

Discussion

The main focus in evaluating the performance of our method
is the number of queries, both as absolute measure and its
efficiency relative to the achieved attack rate. These two
aspects of evaluation are critical to measure the true gains
we get from our approach.

In Table II, we compare after-attack accuracies and corre-
sponding average number of queries to the baseline. For each
target model and dataset, we report the best substitute dataset
that yielded the best result. Across all but one case, we find
that our method either achieves or out-performs attack rates
of the baseline, yet with lower number of queries. The gains
in terms of number of queries differs according to different
datasets. We discuss this in details later in this section.

It is important to study the cases where our method achieves
lower number of queries but does not achieve higher attack
rate than the baseline. In the black-box setting, higher attack
rate is related to number of queries, since there is a cost of
certain number of queries for every word perturbation. This
means that lower number of queries is only beneficial if it
improves or preserves the attack rate. Therefore, in order to
measure the true efficiency of our method in terms of queries
per successful attack, we report in Table II Query Efficiency
ratio QE . We find that when our method has lower number
of queries, it has better QE ratio, even if the attack rate is not
better than the baseline. This implies that the lower number
of queries achieved comes from true efficiency of our method,
not because of corresponding drop in attack rate.

Effect of Sentence Length: In the case of MR dataset in
Table II, we find that the reduction in number of queries is
the lowest among other datasets. By comparing the statistics
of the datasets (Table I) with the results in Table II, we
find a correlation between the dataset average sentence length
and the corresponding reduction in attack queries. The longer
the sentences are, the more reduction our method achieves
in number of queries. We summarize this finding in Table
III. This effect is in agreement with our design goals, since
unlike other existing methods, our method does not perform
word by word ranking through target model querying. Hence,

https://www.kaggle.com/bittlingmayer/amazonreviews


TABLE II
AFTER-ATTACK ACCURACIES, QUERIES AND QUERY EFFICIENCY

Classifier BERT WordCNN WordLSTM
Target Model IMDB MR IMDB MR Amazon MR IMDB MR Amazon MR

Clean Acc. 92.18 89.97 87.32 79.85 90.14 88.78 81.82 91.30

Adv Acc. ↓
TextFooler [8] 11.88 13.59 0.60 1.50 3.92 0.04 2.06 2.15
(Substitute Data) (Yelp) (Amazon MR) (Yelp) (IMDB) (Amazon MR) (IMDB)

Explain2Attack (ours) 11.32 13.34 0.61 1.31 3.97 0.06 2.27 2.38

Avg Queries ↓ TextFooler 980.5 181.6 444 112.8 378.7 500.2 117.5 392.7
Explain2Attack 873.5 184.07 404.5 108.7 349.4 440.5 114.2 369.3

Query Efficiency
(QE)

↑ TextFooler 0.082 0.421 0.195 0.695 0.228 0.177 0.679 0.227
Explain2Attack 0.093 0.416 0.214 0.723 0.247 0.201 0.697 0.241

TABLE III
EFFECT OF SENTENCE LENGTH ON NUMBER OF QUERIES

Target Dataset IMDB Amazon MR MR
Classifier BERT CNN LSTM CNN LSTM BERT CNN LSTM

Average Sentence Length 215 100 20

Avg Queries ↓ TextFooler 980.5 444 500.2 378.7 392.7 112.8 117.5 181.6
Explain2Attack 873.5 404.5 440.5 349.4 369.3 108.7 114.2 184.07

Difference 106.5 39.5 59.7 29.3 23.4 4.1 3.3 -3.0

TABLE IV
PERTURBATION QUERY COST (PQC)

Classifier BERT WordCNN WordLSTM
Target Model IMDB MR IMDB MR Amazon MR IMDB MR Amazon MR

Max Perturbed Words
TextFooler 222 20 56 14 35 89 13 75

(Substitute Data) (Yelp) (Amazon MR) (Yelp) (IMDB) (Amazon MR) (IMDB)

Explain2Attack 127 20 54.3 11 41.7 84.7 13.8 68

Avg. Perturbed Words
TextFooler 18.7 4.2 5.8 2.3 5.0 7.6 2.5 7.0

Explain2Attack 22 4.8 9.1 2.8 6.5 11.3 2.9 8.7

Perturbation Query Cost
(PQC)

↓ TextFooler 52.5 43.5 76.6 49.0 76.3 65.8 47.0 56.4
Explain2Attack 39.7 38.6 44.5 38.8 53.8 39.2 39.2 42.2

with longer input sentences, the re duction in number of
queries is improved by our method. This is a key advantage
of our method in terms of scalability to datasets with longer
sentences.

Query Cost of Perturbed Words: Another important mea-
sure is the number of queries needed for every word perturba-
tion; Perturbation Query Cost (PQC). We are interested in this
measure in order to understand the added cost of queries if the
model requires more words to be perturbed to find a successful
attack. In Table IV we report PQC against the baseline. In
addition, we report both the maximum and average number
of perturbed words needed for successful adversarial attack.
Results show that our method out-performs the baseline in
PQC measure, meaning that our method scales better with
number of perturbations needed for successful attacks.

Qualitative Assessment: We show in Table V examples
of successful adversarial examples from our method. We find
that the language semantic is preserved, and that the choice of
perturbed words resemble important keywords that contribute

to the original label.
Transferability Conditions: In all of our experiments, we

used the standard L2X [11] architecture as the choice for
the substitute architecture. However, we found that changing
the substitute architecture affects attack rates. This finding is
similar to [21], [22] where attack performance is found to be
related to the model’s architecture and complexity. We further
look to study in details why and when attacks transfer well
between substitute and target models. However, we leave such
comprehensive study for future work.

VI. CONCLUSION

We propose a general framework that employs interpretabil-
ity and domain transfer for crafting black-box text adversarial
attacks. The main intuition is to learn word ranking that
most probably impacts the target model instead of searching
for it expensively. To achieve this, we train an interpretable
substitute model on a substitute dataset, with no need for the
target dataset. Thus, the substitute model learns importance



TABLE V
ADVERSARIAL EXAMPLES SENTENCES. PERTURBED WORDS ARE HIGHLIGHTED

Label Sentence

Original (0=Negative) the film lapses too often into sugary sentiment and withholds delivery on the pell mell pyrotechnics
its punchy style promises

Adversarial (1=Positive) the film lapses too often into sugary emotions and withholds delivery on the pell mell pyrotechnics
its punchy style promises

Original (1=Positive) the movie sticks much closer to hornby ’s drop dead confessional tone than the film version of high fidelity did
Adversarial (0=Negative) the movie sticks much closer to hornby ’s drop dead confessional tone than the film version of high faithful did

Original (0=Negative) i’m not exactly sure what this movie thinks it is about
Adversarial (1=Positive) i’m not exactly sure what this cinematography concepts it is about

Original (1=Positive) the performances of the four main actresses bring their characters to life a little melodramatic
, but with enough hope to keep you engaged

Adversarial (0=Negative) the performances of the four underlying actresses bring their characters to life a littlest melodramatic
, but with enough wanting to keep you engaged

scores with less number of queries and higher efficiency. Re-
sults show that our method reduces queries cost for attacking
text classification models, while achieving or out-performing
the state-of-the-art attack rate. We show that our method is
superior in both query cost of perturbations and with longer
input sentences, which allows our method to scale better with
longer sentences.

For future work, we plan to overcome the current limitations
in our current framework. Specifically, we plan to i) train
the selector network to directly fool the target classifier by
leveraging its output information, in order to improve attack
rate, ii) study and formalize the transferability conditions from
substitute to target domains, and provide guides for choice of
suitable substitute models, and iii) further reduce dependence
on target model by learning replacement synonyms through a
pretrained language model.
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