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Abstract—Explainable machine learning has become increas-
ingly prevalent, especially in healthcare where explainable models
are vital for ethical and trusted automated decision making.
Work on the susceptibility of deep learning models to adversarial
attacks has shown the ease of designing samples to mislead a
model into making incorrect predictions. In this work, we propose
a model agnostic explainability-based method for the accurate
detection of adversarial samples on two datasets with different
complexity and properties: Electronic Health Record (EHR) and
chest X-ray (CXR) data. On the MIMIC-III and Henan-Renmin
EHR datasets, we report a detection accuracy of 77% against the
Longitudinal Adversarial Attack. On the MIMIC-CXR dataset,
we achieve an accuracy of 88%; significantly improving on the
state of the art of adversarial detection in both datasets by over
10% in all settings. We propose an anomaly detection based
method using explainability techniques to detect adversarial
samples which is able to generalise to different attack methods
without a need for retraining.

Index Terms—Adversarial Attacks, Explainability, SHAP,
Medical Data

I. INTRODUCTION

Recently, applications of machine learning in healthcare
have shown great success. Machine learning models trained on
EHR data are able to predict (with high accuracy) heart failure
[1], interpret mammograms [2] and diagnose CXR [3], and
in some cases can match the performance of human experts.
However, it is now well demonstrated that such models are
susceptible to adversarial attacks: attacks that generate samples
designed to mislead a machine learning model into making
an incorrect prediction [4]. Examples of such attacks are
also effective on medical data such as EHR [5] and medical
imaging data [6]. The presence of adversarial attacks is of
particular concern in the medical domain as it would be
unethical to deploy a machine learning model to clinical
practice if it is considered vulnerable to such malicious attacks,
even if the likelihood of an attack is low [6].

Healthcare ML models are at particular risk of adversarial
attacks [6]–[8]. Fraud is already pervasive in the US’ health-
care economy, with institutions systematically inflating costs
and physicians billing for the largest amount possible [6],
[9], [10] and, with machine learning algorithms likely to be
used for medical decisions in the near future [11], adversarial
attacks on ML models will be a new avenue for fraud to
occur. The pharmaceutical and medical device markets are

also domains where adversarial attacks on medical machine
learning systems are a risk. The large amounts of money
involved in these markets (the median revenue for a single
cancer drug is estimated to be $1.67 billion [12]) combined
with the increasing number of drug/device approval decisions
being made based on digital surrogates for patient responses
(for example, in medical imaging [13]) means that extremely
valuable decisions are being made by machine learning algo-
rithms and as such are a likely target for adversarial attacks.

There are also technical vulnerabilities present in many ML
models used in healthcare [7], [14]: from low variance in
training sets to similar models being used for many different
tasks increasing their vulnerability to attacks. Healthcare pro-
fessionals commonly cite susceptibility to adversarial attacks
as a challenge to further adoption of ML in healthcare [8],
with the UK’s National Health Service (NHS) identifying it
as a problem that must be overcome for a machine learning
model to be used within the healthcare system [15]. For these
reasons, it is prudent to develop methods of defending against,
and detecting, adversarial attacks to provide trust in machine
learning solution in medical settings [6]–[8], [15]

In parallel, there has recently been an increased effort to
improve the explainability of machine learning models. This
area of research aims at explaining the decisions made by
black-box machine learning models by making the decisions
and the processes behind those decisions understandable to
a non machine learning expert [16]. This has resulted in a
number of methods being developed that allow for post- and
ante-hoc explanations of models and their decisions [17].

The paper’s main contributions are: I) The first adversarial
sample detection technique that works effectively with EHR
data. II) We propose a novel and simple method for de-
tecting adversarial attacks using explainable techniques and
demonstrate that it beats the state of the art on both medical
imaging and EHR data despite the sparse, temporal and high-
dimensional nature of the data. III The method is model
agnostic and will support any machine learning model IV)
By framing the adversarial detection as an anomaly detection
problem this work presents an approach that generalises to any
attack type without the need to retrain 1.

1We will publish code upon acceptance to ensure reproducibility.



II. RELATED WORK

In this section we provide an overview of current state-of-
the-art in explainability and techniques for adversarial gener-
ation and detection.

A. Adversarial Attacks on Medical Data

Adversarial attacks have been developed for numerous data
modalities and scenarios [18]. Finlayson et al. [6] demonstrate
that, despite the challenges that medical imaging data presents,
traditional adversarial attack techniques such as Projected
Gradient Descent (PGD) [19] and patch attacks [20] can still
successfully produce inputs that force a classifier to predict
the incorrect label. The authors in [21] demonstrated that
adversarial samples can be transferable across models. The
authors also introduced a set of three attacks, known as C&W
attacks, that are capable of bypassing some of the most robust
machine learning models to adversarial attacks.

Longitudinal AdVersarial Attack (LAVA) [5] is designed
to generate attacks that are effective on EHR data. LAVA
is a saliency score based method that works on discrete and
sequential EHR data. By utilising the saliency score it avoids
perturbing features that would easily be detected by a human
expert whilst maintaining a minimal number of perturbations.
The authors showed that it can reduce the accuracy of an
attention-based model from 50% to 8%.

B. Adversarial Attack Detection

Metzen et al. [22] show that it is possible to detect ad-
versarial samples, despite their imperceptible feature changes,
through the training of a simple binary classifier. Feinman
et al. [23] proposed methods of detecting adversarial sam-
ples utilising density estimates of the final hidden layer of
the model, and a Bayesian uncertainty estimate. These are
designed to complement each other: the density estimate
detects adversarial samples as they tend to lie outside the data
manifold, and the Bayesian uncertainty detects points in low-
confidence regions of the input space. Ma et al. [7] show that
the methods of [23] can also be successfully applied to medical
imaging data. However, no adversarial detection methods have
yet been proposed to work on EHR data mainly due to the
challenge of dealing with its temporal dependency and high-
dimensionality. Significantly, these adversarial detection meth-
ods are extremely model-dependent (e.g. Bayesian uncertainty
requires dropout networks) and most require retraining for
different types of adversarial attacks.

The methods presented in [24] are designed to detect any
abnormal sample that is sufficiently far away from training
distribution; this includes adversarial samples, but also out-of-
distribution samples. The method is based on the probability
density of the test sample on the feature space of the neural
network using a generative classifier and is able to generalise
to unseen attack methods with only a small reduction in
accuracy. However, it is only able to be used with classifiers
which utilise Softmax.

ML-LOO [25] uses the Leave-One-Out (LOO) explainabil-
ity technique to detect adversarial samples. LOO is a feature

attribution method that uses the reduction in the probability
of the selected class when the feature is masked/removed.
The authors show that LOO results in the best performance
for adversarial detection when compared with other feature
attribution methods, however it can be very computationally
expensive to compute and as such is impractical when datasets
contain a large number of features (i.e. CXR images).

C. Explainable Machine Learning

The development of explainable machine learning tech-
niques has significantly increased recently. This is mainly
driven by regulator’s and end user’s increased awareness of the
impact of machine learning models and the need to understand
their decisions. This is of particular interest in healthcare,
where interpretable machine learning is seen highly important
due to the need for ethical and validated decision making [15].
A comprehensive review of explainable methods can be found
in [26]. The most common method to date is SHAP [27].
SHAP approximates the change in expected model prediction
when conditioning on each (combination of) feature(s) and
is closely tied to Shapley values [28]. Lundberg et al. [27]
propose a number of both model-agnostic and model-specific
approximations that enable the practical computation of SHAP
values.

III. METHODOLOGY

We introduce novel solutions that utilise SHAP values to
detect adversarial attacks and demonstrate that it works on
both medical imaging and EHR data. The proposed solutions
consist of both fully- and semi-supervised methods, and ex-
ploits the differences between the distribution of SHAP values
of genuine and perturbed samples in order to accurately detect
adversarial samples. Furthermore, as SHAP values are con-
sistent across the entire genuine dataset, our semi-supervised
solution is able to generalise to adversarial attacks generated
by alternative methods without the need for retraining.

A. Datasets and Classification Models

Due to privacy concerns around healthcare data, there
has traditionally been few sufficiently large, open datasets
available in the literature. We utilise 2 EHR datasets: MIMIC-
III [29] and Henan-Renmin2, and 1 medical imaging dataset:
MIMIC-CXR [30].

MIMIC-III [29] is a large EHR dataset collected from the
Beth Israel Deaconess Medical Center in Boston. It contains
53,423 records of adult admissions of 38,597 distinct patients
to the Intensive Care Unit (ICU) between 2001 and 2012,
in addition to 7870 neonatal cases admitted between 2001
and 2008. On average, each admission contains 4579 charted
observations and 380 laboratory measurements. All data was
collected during routine clinical care and includes bedside
monitoring notes, lab and microbiology test results, diagnosis
and procedure codes, and demographic information.

The Henan-Renmin dataset contains records from 110,300
patients, with significantly fewer features; 62 features per

2http://pinfish.cs.usm.edu/dnn/
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patient comprised of basic examinations and clinical tests. The
class label for each record is a combination of three possible
diagnoses: hypertension, diabetes and/or fatty liver.

RETAIN [1] is a state-of-the-art model designed specifically
to work with EHR data. The model aims to mimic typical
physician practice by inspecting EHR data in reverse-time
order, such that more influence is given to more recent visits
when making the final classification. In order to provide
interpretable results, RETAIN has a two-level neural attention
model that first detects key visits and then detects the key
diagnoses from these visits.

We train RETAIN on the MIMIC-III dataset [29]. This re-
sults in an accuracy of 81% when predicting patient mortality.
To ensure that our adversarial attack detection method adapts
to different datasets, we also train the RETAIN model on
the Henan-Renmin dataset to predict hypertension, with an
accuracy of 73%. Hypertension is chosen as it is the most
prevalent single label, providing mostly balanced classes. The
RETAIN model is not as accurate with this dataset compared
to MIMIC-III mainly due to lower number of features.

MIMIC-CXR [30], also collected from the Beth Israel
Deaconess Medical Center, is a database of 377,110 chest x-
rays from 227,827 studies collected between 2011 and 2016.
Each study has an associated free text summary report by a
radiologist. The reports are analysed using a label extraction
tool such as CheXpert [31] to generate 14 weak labels (of
different diagnoses) for the x-ray images. On a stratified
test set of 687 manually labelled (by a certified radiologist)
images from the MIMIC-CXR dataset, [30] report that the
label extraction method has an accuracy of 95% for the
Cardiomegaly label.

First, we run CheXpert on the radiologists’ reports to
extract the diagnosis, resulting in 14 labels, each of which
is classified as either a positive mention, a negative mention
or an uncertain mention. Following [31] we treat all uncertain
labels as positive mentions. We focus on the Cardiomegaly
label as this is both a common diagnosis and provides a
balance between positive/negative labels with a low number
of uncertain mentions.

Furthermore, we ignore any chest x-rays whose reports
do not contain any mention of Cardiomegaly. If these were
included, it would be difficult to apply a label to them without
making further assumptions. This process generates a set
of weak labels for each chest x-ray. An image may have
multiple labels (e.g. a patient may have both Cardiomegaly
and Pneumonia). We fine-tune Densenet-121 [32] (pre-trained
on ImageNet [33]) on MIMIC-CXR, based on the method
presented by Rajpurkar et al. [34], to predict a diagnosis of
Cardiomegaly, achieving an accuracy of 82%.

B. Adversarial Sample Generation

We use state-of-the-art adversarial sample generation tech-
niques that are known to be successful on medical data. LAVA
[5] is used for the two EHR datasets. Both RETAIN trained
on MIMIC-CXR and RETAIN trained on Henan-Renmin see

a significant reduction in accuracy, as shown in Table I. The
reduction in accuracy is similar to that reported in [5].

TABLE I
TABLE SHOWING ACCURACY OF THE MODELS ON THE ORIGINAL AND
ADVERSARIAL ATTACK DATASETS. AS PGD NECESSARILY PERFORMS

PERTURBATIONS UNTIL THE SAMPLE IS CLASSIFIED INCORRECTLY, THE
MIMIC-CXR MODEL MUST ACHIEVE AN ACCURACY OF 0% ON THE

ADVERSARIAL SET.

Model Acc. original data Acc. adv. data
MIMIC-III RETAIN 81% 43%

Henan-Renmin RETAIN 73% 44%
MIMIC-CXR Densenet121 82% 0%

Projected Gradient Descent (PGD) [19] is used to gener-
ate the CXR adversarial samples. PGD produces adversarial
images to mislead the machine learning model whilst keeping
the perturbations small enough that they are not easily detected
via traditional methods or even the human eye. Fig. 1 shows
examples generated from random samples in the MIMIC-CXR
dataset. As shown in Table I, PGD successfully produces
adversarial samples that are able to mislead the model into
making an incorrect classification.

In order to test our method’s ability to generalise to different
attack types, we use the attack method proposed by Carlini
& Wagner [21] (C&W). Unlike PGD which uses L∞ norm,
C&W uses the L2 distance metric to produce a second set
of adversarial samples for the MIMIC-CXR dataset. These
two approaches are chosen as they perturb the images differ-
ently and hence we can better test the generalisation of our
approach.

C. Adversarial Attack Classification

As adversarial attacks subtly change small parts of the input,
we hypothesize the SHAP values for an adversarial sample
will be different than those for a genuine sample. This is
illustrated by Fig. 2, which shows how PGD and C&W affect
the distribution of SHAP values compared to the SHAP values
of genuine data (correlation is low between the two with most
values away from the ideal linear line). This demonstrates that
although adversarial attacks methods aim to make the minimal
feature perturbations possible, they still greatly impact the
distribution of the explanation of the model predictions. Fig.
2 also demonstrates that the PGD and C&W attacks perturb
the samples differently.

In order to quantify the importance that our models place
on different parts of their respective inputs, we utilise SHAP
values as calculated by GradientSHAP [27]. SHAP values
reflect the contribution of each individual feature to a model’s
prediction, which is important when only a small number of
features are changed under perturbation during the adversarial
attack.

SHAP values are the (approximate) solution to Eq. 1, where
φi(f, x) is the importance of feature i of input x to model f ,
M is the number of features, |z′| is the number of non-zero
entries in z′, z′ ⊆ x′ represents all z′ whose non-zero entries
are a subset of the non-zero entries in x′ and S is the set of
non-zero indices in z′.



Fig. 1. Random adversarial examples generated on the MIMIC-CXR. Images on the left are the original images, the middle have been generated via PGD,
and the right via C&W.

φi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !

[
E[f(x)|zS ]

− E[f(x)|zS\i]
] (1)

We calculate SHAP values for the unperturbed (genuine)
dataset and the set of perturbed samples to generate the
data for the negative and positive class respectively. Fig. 3
demonstrates how the SHAP values for a sample change when
the model is looking at a perturbed sample, illustrating how a
model focuses on different parts of the input when presented
with an adversarial sample. The model seems to utilise clusters
of pixels in the chest area in the original picture while the
important pixels are scatter across the attack images.

We propose both fully- and semi-supervised methods us-
ing SHAP values to detect adversarial samples utilising this
information.

SHAP-MLP: We train a simple multi-layer perceptron
(SHAP-MLP) on the set of SHAP values from both genuine
and adversarial samples of the dataset. The model consists of
an input layer, output layer and a single hidden layer. More
details about the model are in Section IV.

SHAP-Conv: We train a convolutional neural network
(CNN) on the set of SHAP values from both genuine and
adversarial samples. The CNN consists of two convolutional
layers, the first going from 3 channels to 16 with a kernel
of size 5 and the second going from 16 channels to 32 with
a kernel size of 5. We use max pooling with a kernel size

and stride of 2, and the ReLU activation function throughout.
Following the convolutional layers is a series of 3 fully
connected layers of sizes 89888× 256, 256× 84 and 256× 1.
We apply dropout with a probability of 0.4 after the second
convolutional layer and again after the second fully connected
layer.

SHAP-AE & SHAP-VAE: Typically, an adversarial attack
can be seen as any sample which a model classifies incorrectly;
this can include genuine images which the model misclassifies.
SHAP-MLP and SHAP-Conv both attempt to classify these
images as adversarial. However, it is often more useful to only
detect samples which have been specifically perturbed to be
adversarial [23]. This results in a smaller number of samples
being present in the adversarial set. Therefore we propose the
use of anomaly detection methods to detect the adversarial
samples.

We experiment with two semi-supervised models: autoen-
coders (SHAP-AE) and variational autoencoders (SHAP-VAE)
[35] trained to reproduce SHAP values of genuine samples.
The reconstruction error of the autoencoder, i.e. the error
between the original and reconstructed value, is then used
as a measure to detect an adversarial sample. For SHAP-
AE, mean squared error (MSE) is used as the loss function.
For SHAP-VAE, MSE plus the Kullback-Liebler divergence
is used. As the autoencoder is trained only on genuine SHAP
values, the reconstruction error from adversarial SHAP values
are expected to be higher - the (V)AE has not learned how
to reproduce the adversarial values. We thus train an SVM to



(a) (b)
Fig. 2. Figures showing the average absolute importance of each feature in the original MIMIC-CXR dataset, calculated using SHAP values against the
adversarial samples. (a) Scatter plot of the SHAP values of PGD adversarial samples on the Y axis against the SHAP values of original sample on the X
axis, the dashed line represents the ideal line while the red line is the linear fit. The histogram of each axis is plotted. The Spearman Rank correlation value
is reported.(b) Scatter plot of the SHAP values of C&W adversarial samples on the Y axis against that of the original set on the X axis.

classify reconstruction error into two classes (adversarial and
genuine). The performance of both methods are reported in
Section IV. As both of these methods are semi-supervised ap-
proaches, they are able to generalise to different attack types;
they learn to reproduce the SHAP values of a genuine dataset,
so anything that deviates from that is labelled adversarial. This
would be a useful property, as it enables the model to detect
novel, unseen attacks.

IV. EXPERIMENTS AND RESULTS

A. Experiments on EHR data

We first report the results of experiments on EHR data.
Throughout all experiments, we normalise the SHAP values
so they have a mean of 0 and variance of 1, and have a
train/test split of 80/20. We train SHAP-MLP on the genuine
and adversarial SHAP values from the MIMIC-III dataset. A
grid-based cross validation search method is used to find the
optimal hyperparameters for SHAP-MLP, resulting in a hidden
layer of dimension 160 and a learning rate of 0.01 with the
Adam optimiser. This leads to an accuracy of 77%. Similarly,
on the Henan-Renmin dataset, a hidden layer dimension of 140
and learning rate of 0.01 are optimal, achieving an accuracy
of 81%.

A similar approach is used for testing the autoencoder-based
methods. SHAP-AE and SHAP-VAE are both trained on the
set of genuine SHAP values from MIMIC-III and Henan-
Renmin. After performing the same hyperparameter optimi-
sation method described above, we find that an autoencoder
with 2 hidden layers (in both the encoder and decoder), a

code size of 20 and a learning rate of 0.01 with an Adam
optimiser provides optimal results. Experiments find that an
SVM with an RBF kernel with C = 1 and γ = 1

M (where M
is the number of features) gives the best results compared to
logistic regression, and SVMs with other parameters, that are
validated using grid-based cross validation search. Similarly,
SHAP-VAE has a code size of 5 and a learning rate of 0.01
with an Adam optimiser. For the loss function, the MSE is
added to the Kullback-Leibler divergence. An SVM using an
RBF kernel with C = 1 and γ = 1

M (where M is the number
of features) gives the optimal results.

B. Experiments on Imaging Data

To test the proposed solutions ability to work on differ-
ent data modalities, we run the same set of experiments
on MIMIC-CXR data. CNNs are shown to achieve superior
performance when compared to other model structures [36],
hence the use of convolutions in SHAP-Conv allows the model
to work well on imaging data. This is highlighted by the fact
that they outperform all other methods on all medical imaging
experiments carried out with a 100% accuracy on both attack
types (Table II).

To test the semi-supervised models’ ability to generalise
to different attack types, we test the models trained on the
MIMIC-CXR PGD data on MIMIC-CXR data perturbed by
the C&W attack and vice versa. Table II shows that both
SHAP-AE and SHAP-VAE are able to generalise to differ-
ent attack types, achieving identical accuracy when C&W-
perturbed examples are added to the test set, confirming that
our model can generalise to different attack methods without



(a) (b) (c)
Fig. 3. (a) The heatmap of SHAP values overlayed on a genuine sample from the MIMIC-CXR dataset, (b) The heatmap of SHAP values overlayed on the
same image after being perturbed via PGD, (c) The heatmap of SHAP values overlayed on the same image after being perturbed by C&W.

TABLE II
RESULTS OF ADVERSARIAL SAMPLE DETECTION. HR COLUMN REPORTS THE ACCURACY ON THE HENAN-RENMIN. CXR (C&W) REPORTS THE

ACCURACY ON C&W GENERATED SAMPLES, HAVING BEEN TRAINED ON C&W SAMPLES AND CXR (PGD) THE ACCURACY OF A MODEL TRAINED ON
PGD SAMPLES TESTED ON PGD SAMPLES.

Method Datasets
MIMIC-III HR CXR (C&W) CXR (PGD) CXR (Train: PGD;Test: C&W) CXR (Train: C&W;Test: PGD)

SHAP-MLP 77% 81% 100% 99% 58% 46%
SHAP-AE + SVM 65% 53% 79% 79% 77% 79%
SHAP-VAE + SVM 66% 53% 85% 88% 86% 88%
SHAP-Conv N/A N/A 100% 100% 55% 65%
Kernel Density [23] 67% 67% 84% 83% 72% 66%
ML-LOO [7] N/A N/A 71% 78% 71% 71%

the need for retraining. This is extremely useful, as it means
our model is able to detect unseen attacks. However, as
SHAP-MLP and SHAP-Conv are both fully-supervised and
are trained on both the genuine and adversarial samples, they
are unable to generalise to different attack types. Interestingly,
while neither model are able to generalise, SHAP-Conv per-
forms better when trained on PGD images whereas SHAP-
MLP achieves a better performance when trained on the C&W
samples. This could indicate that PGD perturbs images in
such a way that higher-level features are affected (which will
be more difficult for SHAP-MLP to detect), whereas C&W
changes features on a lower level which SHAP-MLP has more
success in recognising.

The ability of SHAP-AE and SHAP-VAE (both with SVMs)
to generalise to different adversarial attack techniques is
further demonstrated through Fig. 4; both of these techniques
have a significantly smaller inter-quartile range than the other
techniques tested, showing that the performance of these
models is not affected by the type of attack that they are
attempting to detect. SHAP-VAE is the clear best performer
on CXR data with a stable high performance in all settings.

C. Comparison to existing methods

The adversarial sample detection method outlined in [7]
is used to run the kernel density based adversarial detection
method presented in [23] on the MIMIC-CXR and MIMIC-III
datasets. We estimate the kernel density of the final hidden

layer of Densenet-121 and RETAIN respectively, perform-
ing grid-based cross validation search to find the optimal
bandwidths, and fitting a logistic regression classifier on the
estimated densities to detect adversarial samples. A bandwidth
of 0.1 produces optimal results; the results are reported in
Table II. This method is unable to generalise to different attack
types without retraining, as the accuracy drops to 66% when
C&W attacks are introduced into the test dataset.

We also compare our methods against the state-of-the-art
explainability-based adversarial detection method ML-LOO
[25]. We follow the experiments of the authors on Densenet-
121, extracting the LOO features from the same layers and
utilising the inter-quartile range of these feature attribution
maps. We test ML-LOO’s ability to generalise in the same way
as SHAP-AE and SHAP-VAE. ML-LOO is able to maintain
comparable accuracy on the unseen attack type with a > 10%
lower detection accuracy compared to SHAP-VAE. The Leave-
One-Out (LOO) feature attribution method is also extremely
computationally intensive, and is impractical for datasets with
large feature spaces. Our method, however, does not suffer
from the same issue as we are able utilise one of many possible
approximations when calculating SHAP values (for example,
throughout this paper the GradientSHAP approximation [27]
is used).

Our proposed methods outperform the state of the art on all
data modalities, as reported in Table II. Additionally, SHAP-



Fig. 4. Box plot reporting the performance of adversarial sample detection
methods on CXR data.

AE and SHAP-VAE are both able to generalise to different
attack types without retraining. In contrast, Kernel Density
suffers a significant drop in accuracy when tested on unseen
attack types in the test set, showing it is unable to accurately
classify attacks it has not been trained on, while ML-LOO
maintains it is performance but at a significant computational
cost. Our results are compatible with those of [6], [7] in terms
of EHR being a more difficult data to address with SHAP-
MLP beating Kernel Density’s performance by over 10% in
accuracy.

V. DISCUSSION

The presented results demonstrate the difficulty to detect
adversarial attacks on EHR data. This is due to both the
challenges associated with the data, and how LAVA gener-
ates adversarial samples; unlike the PGD and C&W attacks
on medical imaging data, LAVA is a saliency-based attack
method. This results in smaller changes being made to the
SHAP values of adversarial samples, and so they are naturally
more difficult to detect.

The MIMIC-CXR data is easier to work with. However,
through inspection of the distribution of original labels of
the adversarial examples that our model fails to detect, we
find that for all labels apart from Cardiomegaly (the label our
model is trying to predict) the distribution of positive/negative
labels is the same as in the original dataset. However, upon
investigation of the distribution of Cardiomegaly labels, we
find that our semi-supervised adversarial detection methods
incorrectly classifies a higher proportion of positive samples
as adversarial than negative samples (40% of the incorrectly
classified samples are CXRs with the Cardiomegaly diagnosis,
whereas in the dataset only 29% of images have the label).

This shows that class imbalance in the dataset leads to difficult-
to-detect adversarial samples. As the original model will most
likely have an inherent difficulty to classify one of the classes
(due to the class imbalance in the training data), the adversarial
sample classifier needs to learn to classify both perturbed
samples and misclassified-genuine samples as adversarial. As
the SHAP values of misclassified-genuine samples will be
much closer to that of the genuine training set, this is difficult
to do.

The ability of all the proposed models to work on different
datatsets is useful in medical scenarios where multi-modal
data [37] and non-standardised data formats [6] are common.
Additionally, the ability to detect adversarial samples from
unseen adversarial attacks is invaluable, as it reduces the need
for bespoke detection techniques to be developed when new
attack methods are discovered.

VI. CONCLUSION

We present a novel method of detecting adversarial samples
using SHAP values that is able to adapt to different attack
types and data modalities. Our method is the first such method
designed specifically to work on both EHR and medical
imaging data, despite the challenges of high-dimensionality,
sparsity and temporality that it presents, and as such beats the
current state of the art adversarial attack detection techniques
on these data modalities. It is also able to generalise to
different attack methods without any additional training. By
using SHAP values we are able to explain how different attack
methods work on different datasets, and use this information
to detect samples which have been adversarially perturbed.

Further work will investigate the possibility of modifying
current attack methods such as PGD and C&W to minimise the
perturbation of SHAP values rather than features, and explore
the effectiveness of such an attack against our detection
methods. Additionally, it will explore how explainability, and
SHAP in particular, can be used to inspect the distributions of
different types of generated data (for example, synthetic data)
and utilise these findings to evaluate the usefulness of such
data.
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