
Fast Approximate Modelling of the Next
Combination Result for Stopping the Text

Recognition in a Video
Konstantin Bulatov

Smart Engines Service LLC,
FRC CSC RAS, Moscow, Russia

Email: kbulatov@smartengines.com

Nadezhda Fedotova
Smart Engines Service LLC,

Moscow, Russia
Email: nfedotova@smartengines.com

Vladimir V. Arlazarov
Smart Engines Service LLC

MIPT, Moscow, Russia
Email: vva@smartengines.com

Abstract—In this paper, we consider a task of stopping the
video stream recognition process of a text field, in which each
frame is recognized independently and the individual results
are combined together. The video stream recognition stopping
problem is an under-researched topic with regards to computer
vision, but its relevance for building high-performance video
recognition systems is clear.

Firstly, we describe an existing method of optimally stopping
such a process based on a modelling of the next combined
result. Then, we describe approximations and assumptions which
allowed us to build an optimized computation scheme and thus
obtain a method with reduced computational complexity.

The methods were evaluated for the tasks of document text
field recognition and arbitrary text recognition in a video. The
experimental comparison shows that the introduced approxima-
tions do not diminish the quality of the stopping method in terms
of the achieved combined result precision, while dramatically
reducing the time required to make the stopping decision. The
results were consistent for both text recognition tasks.

I. INTRODUCTION

Video processing has become a rich and dynamic branch
of the research in the computer vision field. The problems of
video stream analysis include object detection and segmen-
tation [1], [2], object tracking [3], [4], super-resolution [5],
text recognition [6] and many more. Modern computer vision
applications employ methods of automated video processing
not only for high-end industrial vision systems but for mobile
devices such as smartphones or tablet computers as well.

One of the most relevant computer vision problems is
automated data entry by means of text recognition. Text
detection and recognition have applications in such fields as
business processes automation, road traffic monitoring, gov-
ernment services, mobile payments [7]–[9], life augmentation
for people with disabilities [10] and more. The research is
targeted on improving the speed and accuracy of camera-
based information extraction, given particular challenging con-
ditions, such as poor illumination, low camera quality [11],
optical distortions and noise, poor focus and motion blur [12].
Each year new and improved methods for arbitrary scene text
detection recognition are published [13]–[15], including the
works which focus on processing text in videos [16], [17]. An
important requirement in many applications of text recognition

Fig. 1. Illustration of identity document recognition and data extraction on a
mobile device

is for the system to be able to operate in real time, which is
especially relevant for such use cases as recognition of road
scene objects such as traffic signs [18], assisting the visually
impaired [19]–[21], and others.

A special case of text recognition is represented within
mobile identity document recognition systems. The recogni-
tion of identity documents is encumbered by specific features
of such documents, e.g. textured background, holographic
security elements which are obstructing the text recognition,
reflective document surfaces which is prone to highlights,
etc. [22]. At the same time, an important aspect of identity
document recognition systems is their low error tolerance – the
cost of recognition mistakes are high, as the recognized data
is then used for personal identification, government services,
financial transactions and in other sensitive fields. The scope of
computer vision problems related to identity documents recog-
nition includes document detection and location [23], [24],
document layout analysis [25], face detection [26], and, of
course, text fields recognition [27]–[29]. Fig. 1 illustrates the
use case for information extraction from an identity document
using a mobile device camera.

ar
X

iv
:2

00
8.

02
56

6v
1

 [
cs

.C
V

]
 6

 A
ug

 2
02

0

Using video input in recognition systems presents an oppor-
tunity to reduce the text recognition errors and thus increase
the information extraction reliability, both in the context of
arbitrary text recognition or in a more specialized case of
document fields recognition. Combination of multiple recogni-
tion results of the same object obtained from different frames
has been shown to be an effective way of improving the
recognition accuracy in a video [27], [30]. This approach,
however, gives rise to another problem – how to decide when
there is enough accumulated information and the video stream
recognition process should be stopped. Without access to the
ground truth, the stopping methods should be able to make
a decision whether the result could be improved or not and
whether it is justified to spend more time to recognize addi-
tional frame in an effort to improve the combined result. The
stopping rules are particularly crucial for real-time tracking
and recognition of multiple objects, such as vehicle license
plates or traffic signs [18].

However, after extensive research, we have found that
the problem of optimal stopping is left almost unexplored
in the field of computer vision, despite its importance for
video processing. At the same time, optimal stopping is a
known problem in the field of decision theory, mathematical
statistics, and economics, and new theoretical results continue
to be produced for its different variations [31], [32]. A few
methods have been proposed for the problem of stopping the
video stream recognition process [33], [34] in the context of
document recognition. The method proposed in [33] is based
on the clustering of the input results sequence and making
the stopping decision based on the statistical characteristics of
the obtained clusters. The stopping method described in [34]
is based on the modelling of the next combined result and
making the stopping decision based on the estimated expected
distance between the current combined result and the next one.
The latter method was tested on text recognition results using
both Levenshtein-based and end-to-end text string distance
metrics and exhibited higher effectiveness in comparison with
the clusters analysis method [33]. The method was also tested
for text recognition result model with per-character class mem-
bership estimations and also proved to be more effective [35]
in comparison with the other methods.

All the related works considered only the combined result
accuracy characteristics and the achieved mean number of
processed frames, without any attention to the time required
to compute the necessary estimations on which the stopping
decision is based. In particular, the process of modelling of the
combined result at the next stage, proposed in [34] has a high
computational complexity which could diminish the positive
effects of the stopping method, especially if executed in real
time on a mobile device. The goal of this paper is to construct
an approximate method of modelling of the next combined
result required to make the stopping decision according to the
method described in [34], which would have reduced com-
putational complexity, and evaluate the constructed methods
for the tasks of arbitrary text recognition as well as document
fields recognition in videos.

...

Y:0.6
V:0.4

λ:0.0
...

Z:0.9
2:0.1

λ:0.0
...

O:0.7
C:0.3

λ:0.0
...

R:0.9
B:0.1

λ:0.0

...

V:0.9
N:0.1

λ:0.0
...

Z:0.8
2:0.2

λ:0.0
...

C:0.8
Q:0.2

λ:0.0
...

R:0.8
G:0.2

λ:0.0
...

I:0.6
J:0.4

λ:0.0

...

...

Z:0.9
X:0.1

λ:0.0
...

O:0.8
C:0.2

λ:0.0
...

R:0.9
P:0.1

λ:0.0

...

V:0.43
λ:0.33

N:0.03
...

Z:0.87
2:0.10

λ:0.00
...

O:0.50
C:0.43

λ:0.00
...

R:0.87
G:0.07

λ:0.00
...

λ:0.67
I:0.20

J:0.13

X1:	YZOR

X2:	VZCIR

X3:	ZOR

R3:	VZOR

λ:1.0

λ:1.0

λ:1.0

Fig. 2. An illustration of per-frame text string recognition results alignment
and combination

Section II provides an overview of the studied stopping
method. The method was originally proposed in [34] and
further evaluated in [35]. In section III the proposed approx-
imations and optimizations are described. The experimental
evaluation of the base stopping method and the proposed
optimizations is presented in the final section IV.

II. EXISTING METHOD DESCRIPTION

In this section, we will provide a detailed description of
the procedure of combining the individual per-frame text
string recognition results using the algorithm described in [30],
and stopping the video stream recognition process using the
method described in [34], [35].

A text string recognition result X with per-character alter-
natives can be represented as a matrix:

X = (xjk) ∈ [0.0, 1.0]M×K , ∀j
K∑

k=1

xjk = 1.0, (1)

where M is the length of the string (number of char-
acters) and K is the number of character classes. Each
row (xj1, xj2, . . . , xjK) of the matrix represents the classifica-
tion result for each individual character and contains member-
ship estimations for each class. The value of each membership
estimation is a real number from the range [0.0, 1.0], and the
sum of all membership estimations for each given character
classification result equals to 1.0. The combined recognition
result of the text string in a video stream is represented with
the same data structure.

During the recognition process, we observe a sequence
of text string recognition results X1, X2, The goal is to
produce a combined result with the highest accuracy, that is,
the closest possible to the correct text string value X∗ in
terms of some predefined metric. In a more general case, there
is also a non-negative weight wi, associated with each Xi,
which represents the desired contribution of the result Xi in
the combination.

On stage n, after obtaining the observation Xn, it is com-
bined with the previously accumulated recognition results as
follows. Firstly, each character classification result is expanded
with an “empty” class label λ with membership estimation 0.0.
In terms of the matrix representation, this corresponds to
adding a zero-valued column at the beginning of the ma-
trix (1). Then an alignment is calculated between Xn and the

previously obtained combined result Rn−1 using a dynamic
programming procedure to determine the optimal matching
between rows of Xn and Rn−1. After the character alignment
is determined the corresponding character classification results
are combined by calculating a weighted average of member-
ship estimations for each class, and using an “empty” classifi-
cation result (with class λ having membership estimation 1.0)
for pairing with unaligned characters.

Fig. 2 illustrates the alignment and the combination result
for three text string recognition results. For ease of visual
representation, each frame result is represented as a weighted
identity transducer [36] with each character classification
result corresponding to a set of labelled transitions between
two consequent states.

After the combination is performed and the result Rn is
obtained, the stopping method is applied to make a decision
whether Rn should be returned as a final result or whether
the process should continue (i.e. the observation Xn+1 should
be acquired). Stopping method introduced in [34] operates
under the assumption that the expected distances between two
consecutive combined results do not increase from stage to
stage. Under this assumption the problem can be viewed as
a monotone stopping problem, at least starting from a certain
stage, and an optimal stopping rule for it should behave in a
“myopic” way, i.e. make the decision as if the next stage of
the process will be the last one. To approximate an optimal
stopping rule on stage n the expected distance is calculated
from the current combined result Rn to the next Rn+1. The
process is stopped if this expected distance is not higher than
the predefined threshold which represents the cost of each
observation.

The proposed method of calculation of the expected distance
to the next combined result is to perform modelling of the
next result by sampling already accumulated observations as
candidates for the next one:

∆̂n =
1

n+ 1

(
δ +

n∑
i=1

ρ (Rn, R(X1, . . . , Xn, Xi)

)
, (2)

where n is the stage number, δ – external parameter, ρ is a
metric function defined on the set of text string recognition
results, Rn is a combined result obtained on the n-th stage,
and R(X1, . . . , Xn, Xi) is the combined result obtained by
testing the individual frame recognition result Xi as a candi-
date for the next observation.

For the validity of the stopping methods as it is described
in [34] any metric function ρ between the text string recogni-
tion results can be used, provided that it satisfies the triangle
inequality. For experiments in [34] and [35] a normalized
version of the Generalized Levenshtein Distance (GLD) [37]
was used. For calculating GLD a metric ρC must be defined
on the set of individual character classification results (on
individual rows of the matrices). For this purpose a scaled
taxicab metric can be used:

ρC(a, b) =
1

2

K∑
k=0

|ak − bk|, (3)

where a and b are two matrix rows, a0 and b0 are the respective
membership estimations for the “empty” class λ, and ak and bk
are the respective membership estimations for character classes
in the alphabet for all k > 0.

The described stopping method was tested on text string
recognition results without membership estimations [34], us-
ing ROVER [38] as a combination algorithm. Later it was
tested with another per-frame recognition method and with
an extended text string recognition result model [35] using a
combination algorithm [30] based on a ROVER approach. In
both experiments, it was shown that using such an approach
for a given average number of processed frames the lower
error level could be achieved and vice versa.

However, the obvious downside of this stopping method
is the complexity of the decision making algorithm, in par-
ticular the time required to compute the expected distance
estimation (2). Given two text string recognition results X
and Y with lengths |X| and |Y | the complexity of their
combination using algorithm [30] is O(|X| · |Y | ·K), as the
alignment procedure requires O(|X| · |Y |) calculations of the
individual character classification metric function ρC (3). For
the same reason, the complexity of calculating GLD ρ(X,Y)
is also O(|X| · |Y | ·K). Consider M as the maximal length
of individual results Xi, and Sn as the length of combined
result Rn (both are in terms of the number of rows). The
complexity of performing each test combination required for
computing the sum in (2) is O(SnMK) and the worst-case
estimation for the length of the next combined result candidate
is O(Sn+M). Thus, to compute the distance sample from the
current combined result to the next, another O(SnK(Sn+M))
operations have to be performed. The total aggregate complex-
ity of computing the expected distance estimation ∆̂n (2) on
stage n is O(nSnK(Sn +M)).

III. PROPOSED OPTIMIZATIONS

In this section we will introduce approximations which
would help us to compute the approximate value of the
estimation (2) more efficiently.

A. General approximations

To obtain a more efficient method for computing the ex-
pected distance estimation (2) let us introduce the following
approximations:

Approximation 1: naive alignment. During the test com-
bination R(X1, . . . , Xn, Xi) the candidate frame recognition
result Xi has to be aligned with Rn, which already contains Xi

(as it was aligned with Ri−1 on the i-th stage of the process).
As an approximation of this alignment, we will assume that
rows of Xi will be aligned with the same rows of Rn

with which the corresponding components were combined on
stage i. This coarse assumption will allow to skip the costly
alignment for each test combination, as the row indices of Rn

with which the rows of Xi should be aligned are known in
advance.

Approximation 2: naive Levenshtein. Given approxima-
tion 1 the length of the combined result R(X1, . . . , Xn, Xi)

stays they same as the length of Rn. We will then assume that
alignment of Rn and R(X1, . . . , Xn, Xi), which is required
to compute the GLD between them, is direct, i.e. each j-th
row of Rn is aligned with j-th row of R(X1, . . . , Xn, Xi).
Thus, the distance between Rn and R(X1, . . . , Xn, Xi) is a
sum of distances in terms of the scaled taxicab metric ρC (3)
between their rows with the same index.

To quickly compute the approximate value of an expected
distance estimation (2), during the combination of input
results X1, X2, . . . we will maintain and update a three-
dimensional matrix Yn:

Yn = (yijk) ∈ [0.0, 1.0]n×Sn×(K+1), (4)

such that i is the index of input per-frame result, j is the index
of a row of the current combined result, k is the character class
index, yijk is a membership estimation of class k from a row
of input Xi which was aligned and merged into the j-th row
of the current combined result Rn.

Given the approximations 1 and 2, using a GLD as
the metric function ρ, for j-th component of the com-
bined result Rn and for each individual character class in-
dex k ∈ {0, 1, . . . ,K} (k = 0 being the index of an “empty”
class label λ), considering Xi as a candidate for the next frame
recognition result adds the following contribution to the sum
of distances in (2):

∆ijk =
1

2

∣∣∣∣∣Ajk

W
−
Ajk + yijkwi

W + wi

∣∣∣∣∣ , (5)

where wi is the weight associated with an input per-frame
result Xi; Ajk is the weighted sum of membership esti-
mations of class k corresponding to j-th component of the
combined result: Ajk =

∑n
i=1 yijkwi; and W is the sum of

all weights: W =
∑n

i=1 wi.
The approximation of the expected distance estimation (2)

can now be computed as follows:

∆̂n ≈
1

n+ 1

δ +

n∑
i=1

Sn∑
j=1

K∑
k=0

∆ijk

 . (6)

Since for all j and k the weighted sum Ajk of membership
estimations can be computed on-the-fly during combination
of Xn and Rn−1, the approximate estimation (6) can be
computed with complexity O(nSnK).

B. Unweighted case

Often there are no weights wi associated with input text
string recognition results Xi, i.e. all input recognition results
have an equivalent contribution to the final combined result.
In this case the expression (5) can be further simplified:

∆ijk =
1

2

∣∣∣∣∣Ajk

n
−
Ajk + yijk

n+ 1

∣∣∣∣∣ =
|Ajk − n · yijk|

2n(n+ 1)
. (7)

If Ajk are precalculated the three sums in the ap-
proximate estimation scheme (6) are independent, thus the
higher-level summation across the input sequence can be

brought to the lowest level. The sum
∑n

i=1 ∆ijk can
then be computed with complexity lower than O(n). Con-
sider Ljk ⊂ {1, 2, . . . , n} as a subset of indices such
that ∀i ∈ Ljk : n · yijk < Ajk. Let Bjk denote the sum of
elements with such indices: Bjk =

∑
i∈Ljk

yijk. By perform-
ing separate summations across indices in Ljk we can remove
the absolute value bars in the expression (7):

n∑
i=1

∆ijk =
1

2n(n+ 1)

n∑
i=1

|Ajk − n · yijk| =

=
1

2n(n+ 1)

(
|Ljk| ·Ajk − n ·Bjk+

+ n · (Ajk −Bjk)−Ajk · (n− |Ljk|)
)

=

=
1

n(n+ 1)
(Ajk · |Ljk| − n ·Bjk). (8)

Thus, to efficiently compute (8) we need to be able to
quickly calculate the values of |Ljk| and Bjk for each j
and k. In order to do that we need to set up a data structure
for y1jk, y2jk, . . . , ynjk which supports fast insertion (which
is required when Yn−1 is updated to incorporate Xn and
produce Yn) and fast computation of the quantity |Ljk|
and sum Bjk of elements lower than the average. For this
purpose we can use balanced binary search trees such as
treaps [39], with which both insertion and the queries would
require O(log n) operations. The complexity of computing the
approximate expected distance estimation (6) is thus reduced
to O(SnK log n).

For large n this computation scheme is significantly more
efficient than the direct summation (6), however for small
values of n it could be impractical to implement due to high
computational overhead relative to the number of elements in
each binary search tree. Thus in the experimental section IV
we will evaluate both computational schemes.

C. Using a normalized GLD

Optimizations proposed in subsections III-A and III-B con-
sider a GLD as the distance function ρ. In this subsection we
will consider a normalized version of the GLD [37], which
was used for measuring a character-level recognition error rate
in [34] and [35]. The normalized GLD always has a value in
the range [0.0, 1.0] and satisfies triangle inequality. It is defined
as follows:

nGLD(X,Y) =
2 ·GLD(X,Y)

GLD(X,Y) + α · (|X|+ |Y |)
, (9)

where α is the maximal component-wise distance between
empty and non-empty characters. With a scaled taxicab met-
ric ρC (3) the value of α is 1.

If the approximation of the expected distance ∆̂n (2) is
calculated directly using the computation scheme (6), the
two internal sums in (6) compute the approximation of GLD
between Rn and R(X1, . . . , Xn, Xi). Thus, each computed
GLD can then be normalized under the higher-level sum sign if
a normalized version of the GLD is used as a metric function ρ.

However, to apply the further optimization (8) for an
unweighted case, an additional assumption needs to be allowed
to convert the computed summation of GLD values to a sum
of normalized GLD values.

Let us denote as Gn the sum of GLD between the current
result Rn and the modelled candidates for the next combined
result: Gn =

∑n
i=1 GLD(Rn, R(X1, . . . , Xn, Xi)). In order

to be able to apply the optimization (8) we will introduce the
following approximation:

Approximation 3: naive normalization. the GLD con-
stituents of Gn may be normalized after summation. Given
approximation 1 (naive alignment) the lengths of Rn

and R(X1, . . . , Xn, Xi) are both equal to Sn, thus approx-
imation 3 can be expressed as:

n∑
i=1

nGLD(Rn, R(X1, . . . , Xn, Xi)) ≈
2Gn

Gn + 2Sn
. (10)

Since, given the approximation 2 (naive Levenshtein), the
value of GLD(Rn, R(X1, . . . , Xn, Xi)) is not higher than Sn,
the approximation 3 in its essence relies on an assumption
of local linearity of function f(t) = (2t)/(t + 2) in the
range t ∈ [0.0, 1.0]. Using the optimization (8) and balanced
binary search trees we can efficiently compute the approxi-
mation of Gn, and then use the approximate equation (10) to
convert it to a sum of normalized GLD between the current
result and the modelled candidates for the next one, required
to compute the estimation ∆̂n.

IV. EXPERIMENTAL EVALUATION

In this section, we provide results of an experimental
evaluation of the proposed optimization against the direct
application of method evaluated in [35]. The source code and
data necessary to reproduce the experiments are available at
the following link: https://github.com/SmartEngines/stoppers
modelling.

A. Experimental setting

The proposed approximations were tested on two different
text recognition tasks: the recognition of text fields of identity
documents in a video stream, and the recognition of arbitrary
text in videos.

For the first task we used open datasets MIDV-500 [22]
and MIDV-2019 [40] which contain video sequences of iden-
tity documents of various types. The provided ground truth
contains coordinates of the document on each frame, for
each unique document there are coordinates of each text field
and their correct values. The experimental setting closely
followed the one described in [35] (which only considered
MIDV-500) in order to provide a just comparison of the
methods. As in [35] we considered only frames which fully
contain the document boundaries, and to avoid normalization
effects each clip was repeated in a loop until the common
length of 30 was reached. Four text field groups were analyzed:
document numbers, numerical dates, names written in the
Latin alphabet, and machine-readable zone lines. In total there
were 2239 evaluated clips of MIDV-500 dataset and 992 clips

of MIDV-2019 dataset. Each text field image was cropped with
the resolution of 300 DPI and with margins equal to 30% of the
smallest text field bounding box side, then recognized using a
text string recognition subsystem of Smart IDReader document
recognition solution [29], thus obtaining string recognition
results in form (1).

For evaluating the stopping rules on the task of arbitrary
text recognition we used a training subset for the Text in
Videos task of the ICDAR 2015 Competition on Robust
Reading (IC15-Train) [41] and the YouTube Video Text
dataset (YVT) [42]. From both datasets, we selected text
objects with only alphanumeric characters and which were
present on at least 30 frames, then split the video sequences
for each object into clips of exactly 30 frames. Thus, a total
of 851 clips were produced from IC15-Train dataset, and 409
clips from YVT dataset. Each text object was then cropped
using the coordinates provided in the ground truth in the
original resolution and recognized using the pre-trained model
described in [15] with thin-plate spline (TPS) transformation,
ResNet feature extraction, BiLSTM sequence modelling, and
attention-based sequence prediction. The recognition results
in form (1) were extracted by removing the softmax outputs
corresponding to “start” and “end-of-sentence” tokens and
normalization of the remaining character estimation values.

For both tasks the per-frame text recognition results were
combined using the algorithm described in [30] without
weights, and a normalized GLD [37] was used as a metric ρ
between recognition results. The value of δ parameter in the
expected distance estimation (2) was taken to be 0.1.

For each experiment, three methods were evaluated:
1) Base method [35]. Estimation value ∆̂n is computed

using direct modelling (2). The complexity of computing
the estimation on stage n is O(nSnK(Sn +M)).

2) Method A. Estimation is computed using an approximate
modelling using direct summation (6) with ∆ijk com-
puted using a simplified expression (7) for unweighted
case. The complexity of computing the estimation on
stage n is O(nSnK).

3) Method B. Estimation is computed using an approximate
modelling using a summation scheme optimization (8)
with balanced binary search trees. Conversion to normal-
ized GLD is performed using the approximation 3 (10)
(naive normalization, see section III-C). Treaps with ran-
dom priorities [39] were used as balanced binary search
trees due to implementation simplicity. The complexity
of computing the approximation of ∆̂n on stage n
is O(SnK log n).

B. Comparing the distance estimation value

For the first experiment we compared the value of the
estimated expected distance ∆̂n from the current combined
result to the potential combination result on the next stage.
Fig. 3 illustrates the plot of the mean estimation value on
each simulation stage on both datasets for both tasks.

If can be seen from Fig. 3 that the estimation value
calculated with Method A equals on average to the estimation

https://github.com/SmartEngines/stoppers_modelling
https://github.com/SmartEngines/stoppers_modelling

1 5 10 15 20 25 30
Number of processed frame results

0.01

0.02

0.03

0.04

0.05

0.06

M
ea

n
es

tim
at

io
n

va
lu

e
a) MIDV-500 and MIDV-2019

Method A
Method B
Base method

1 5 10 15 20 25 30
Number of processed frame results

0.01

0.02

0.03

0.04

0.05

0.06

M
ea

n
es

tim
at

io
n

va
lu

e

b) IC15-Train and YVT
Method A
Method B
Base method

Fig. 3. Mean estimation value ∆̂n computed using the three evaluated
stopping methods on each stage: (a) fields from MIDV-500 and MIDV-2019,
(b) text objects from IC15-Train and YVT

1 5 10 15 20 25 30
Number of processed frame results

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
tim

e
in

 se
c.

 p
er

 d
ec

isi
on

a) MIDV-500 and MIDV-2019
Method A
Method B
Base method

1 5 10 15 20 25 30
Number of processed frame results

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
tim

e
in

 se
c.

 p
er

 d
ec

isi
on

b) IC15-Train and YVT
Method A
Method B
Base method

Fig. 4. Comparison of the time required to construct the combined result Rn

and calculate distance estimation ∆̂n, for the evaluated methods: (a) fields
from MIDV-500 and MIDV-2019, (b) text objects from IC15-Train and YVT

calculated using the full modelling (2). This signifies that the
approximations 1 and 2 (naive alignment and naive Leven-
shtein) introduced in subsection III-A are justified for efficient
approximate computation of the expected distance estimation.
The approximation error of Method B is an effect of the naive
normalization (10).

C. Comparing the modelling time

To evaluate the computational performance of the proposed
approximations we compared the combined time required to
produce the result Rn (as the proposed method involve on-the-
fly modifications of some internal structures during the results
combination process) and calculate on stage n the estimation
of the expected distance from the current combined result
Rn to the next result Rn+1. The combined time to perform
such operations for the fields in MIDV-500 and MIDV-2019
are presented in Table I, and the same for the text objects
in IC15-Train and YVT is presented in Table II. Fig. 4
shows the timing comparison for each stage n for both tasks.
Measurements were performed for a single-thread Python
prototype implementation (Python 3.7.4 under Jupyter 6.0.1,
AMD Ryzen 9 3950X, 64Gb RAM, GTX 1050 GPU).

It is evident from the data in Fig. 4 that approximate
computation of the estimation ∆̂n allows to make the stopping
decision much quicker in comparison with direct modelling,
and that the increase of required computations from stage to
stage becomes negligible. As mentioned in section III-B, the

TABLE I
TIME REQUIRED TO CONSTRUCT THE COMBINED RESULT AND

CALCULATE THE EXPECTED DISTANCE ESTIMATION:
FIELDS FROM MIDV-500 AND MIDV-2019

Method
Time on stage n (in seconds)

n = 5 n = 10 n = 15 n = 20 n = 25

Base [35] 0.228 0.448 0.678 0.906 1.143

Method A 0.022 0.022 0.023 0.024 0.024

Method B 0.027 0.030 0.032 0.033 0.034

TABLE II
TIME REQUIRED TO CONSTRUCT THE COMBINED RESULT AND

CALCULATE THE EXPECTED DISTANCE ESTIMATION:
TEXT OBJECTS FROM IC15-TRAIN AND YVT

Method
Time on stage n (in seconds)

n = 5 n = 10 n = 15 n = 20 n = 25

Base [35] 0.024 0.050 0.078 0.107 0.136

Method A 0.002 0.003 0.003 0.003 0.003

Method B 0.004 0.004 0.005 0.005 0.005

difference between the direct summation in Method A and the
optimized summation scheme (8) with balanced search trees
in Method B is insignificant, and the latter is even slightly less
computationally efficient, due to the data structure overhead.

D. Comparing the stopping method performance

The final experiment was aimed at comparing the perfor-
mance of the resulting modified stopping methods. A “good”
stopping method should be able to achieve lower error level
given a fixed mean number of frames, or, respectively, the
lower mean number of processed frames given a fixed mean
error level. A convenient method of comparing stopping
methods is to compare their expected performance profiles,
which are used for anytime algorithms analysis [43]. Such
performance profile can be obtained by plotting the mean
error level (in terms of distance to the correct result) of the
combined result at the stopping stage and the mean number
of the stopping stage, while varying observation cost value.
The lower position of the plotted curve indicates the greater
performance of the stopping method. The observation cost in
the analyzed methods corresponds to the threshold with which
the estimation ∆̂n is compared when making the stopping
decision.

Fig. 5 illustrates the expected performance profiles of the
three evaluated methods, as well as a baseline stopping method
which stops the process after a fixed stage, for text fields in
the MIDV-500 and MIDV-2019 datasets. The varied parameter
for the baseline stopping method is the number of the stage
on which it should stop. The corresponding profiles for the
arbitrary text recognition task are presented in Fig. 6.

It can be seen from Fig. 5 and 6 that the approximations
introduced in sections III-A and III-C had almost no effect

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00
Mean number of frames

0.06

0.07

0.08

0.09

0.10

0.11

0.12

M
ea

n
er

ro
r l

ev
el

a) MIDV-500
Stopping at fixed stage
Method A
Method B
Base method

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00
Mean number of frames

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

M
ea

n
er

ro
r l

ev
el

b) MIDV-2019
Stopping at fixed stage
Method A
Method B
Base method

Fig. 5. Expected performance profiles of the three evaluated methods: mean distance from the obtained combination result to the correct value against the
mean number of processed frames before stopping, with a varied stopping threshold: (a) fields from MIDV-500 dataset, (b) fields from MIDV-2019 dataset

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00
Mean number of frames

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

M
ea

n
er

ro
r l

ev
el

a) IC15-Train
Stopping at fixed stage
Method A
Method B
Base method

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00
Mean number of frames

0.195
0.200
0.205
0.210
0.215
0.220
0.225
0.230
0.235
0.240

M
ea

n
er

ro
r l

ev
el

b) YVT
Stopping at fixed stage
Method A
Method B
Base method

Fig. 6. Expected performance profiles of the three evaluated methods: mean distance from the obtained combination result to the correct value against the
mean number of processed frames before stopping, with a varied stopping threshold: (a) text objects from IC15-Train, (b) text objects from YVT dataset

on the performance of the stopping method in terms of the
achieved error level and required number of observations.
There is a slight disadvantage of the Method B against the
Method A, which could be an effect of utilizing the naive
normalization approximation 3 (10) when using a normalized
GLD as a metric function ρ. Given the significant advantage
in computational performance, it can be concluded that the
proposed approximate modelling method is more favourable
for stopping the text recognition process in a video stream,
applicable for both document analysis, and for recognition of
an arbitrary text.

V. CONCLUSION

In this paper, we described the problem of making the stop-
ping decision efficiently for text string recognition in a video
stream. An overview was given for an existing method based
on modelling of the next combined result. The disadvantage
of this method is its high computational complexity of the
modelling, resulting in a slow decision making process. In
the paper, we proposed two approximate modelling schemes,
one which is applicable for a general weighted case, and one
for unweighted case. Both optimizations were evaluated on
two open datasets and in the same experimental setting as the
previously introduced method.

It can be seen from the presented experimental evalua-
tion that the assumptions and approximations introduced in
the paper had almost no effect on the performance of the

stopping method in terms of the achieved mean error level
and a mean number of consumed observations. At the same
time, the proposed computational schemes have significantly
higher computational performance. The obtained results were
consistent for two different text recognition tasks: identity
documents recognition, and arbitrary text recognition, each
with a different text recognition algorithm.

Optimal stopping of object recognition in a video stream is
an important pattern recognition problem. The role of stopping
methods as components of modern video recognition systems
is very valuable, not only from the perspective of the real-time
interaction with the user but from the more general perspective
of being able to achieve more accurate recognition results with
adequate response time.

ACKNOWLEDGMENT

This work is partially financially supported by the Russian
Foundation for Basic Research (projects 19-29-09055 and
18-07-01387).

REFERENCES

[1] Y. Chen, J. Pont-Tuset, A. Montes, and L. V. Gool, “Blazingly fast
video object segmentation with pixel-wise metric learning,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 1189–1198.

[2] H. Xiao, J. Feng, G. Lin, Y. Liu, and M. Zhang, “Monet: Deep
motion exploitation for video object segmentation,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp.
1140–1148.

[3] R. Girdhar, G. Gkioxari, L. Torresani, M. Paluri, and D. Tran, “Detect-
and-track: Efficient pose estimation in videos,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp.
350–359.

[4] C. Lin and Y. Hung, “A prior-less method for multi-face tracking in
unconstrained videos,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 538–547.

[5] Y. Jo, S. W. Oh, J. Kang, and S. J. Kim, “Deep video super-resolution
network using dynamic upsampling filters without explicit motion com-
pensation,” in 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 3224–3232.

[6] Z. Cheng, J. Lu, J. Xie, Y. Niu, S. Pu, and F. Wu, “Efficient video
scene text spotting: Unifying detection, tracking, and recognition,” arXiv
preprint:1903.03299, 2019.

[7] B. A. Dangiwa and S. S. Kumar, “A business card reader application
for iOS devices based on Tesseract,” in 2018 International Conference
on Signal Processing and Information Security (ICSPIS), 2018, pp. 1–4.

[8] N. Islam, Z. Islam, and N. Noor, “A survey on optical character
recognition system,” arXiv preprint:1710.05703, 2017.

[9] K. Ravneet, “Text recognition applications for mobile devices,” Journal
of Global Research in Computer Science, vol. 9, no. 4, pp. 20–24, 2018.

[10] H. Jabnoun, F. Benzarti, and H. Amiri, “A new method for text detection
and recognition in indoor scene for assisting blind people,” in Proc. SPIE
(ICMV 2016), vol. 10341, 2017.

[11] M. Ki, M. Hradi, and O. Kodym, “Brno Mobile OCR Dataset,” in Inter-
national Conference on Document Analysis and Recognition (ICDAR).
IEEE, 2019, pp. 1352–1357.

[12] M. O. V. Ngoc, J. Fabrizio, and T. Graud, “Document detection in videos
captured by smartphones using a saliency-based method,” in Interna-
tional Conference on Document Analysis and Recognition Workshops
(ICDARW), 2019, pp. 19–24.

[13] S. Mohanty, T. Dutta, and H. P. Gupta, “An efficient system for hazy
scene text detection using a deep cnn and patch-nms,” in 2018 24th
International Conference on Pattern Recognition (ICPR), 2018, pp.
2588–2593, doi:10.1109/ICPR.2018.8545198.

[14] W. Sui, Q. Zhang, J. Yang, and W. Chu, “A novel integrated framework
for learning both text detection and recognition,” in 2018 24th Interna-
tional Conference on Pattern Recognition (ICPR), 2018, pp. 2233–2238,
doi:10.1109/ICPR.2018.8545047.

[15] J. Baek, G. Kim, J. Lee, S. Park, D. Han, S. Yun, S. J. Oh, and
H. Lee, “What is wrong with scene text recognition model com-
parisons? dataset and model analysis,” in 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 2019, pp. 4714–4722,
doi:10.1109/ICCV.2019.00481.

[16] Z. Cheng, J. Lu, Y. Niu, S. Pu, F. Wu, and S. Zhou, “You only
recognize once: Towards fast video text spotting,” in Proceedings of the
27th ACM International Conference on Multimedia, 2019, pp. 855–863,
doi:10.1145/3343031.3351093.

[17] Y. Cai and W. Wang, “Robustly detect different types of text in videos,”
Neural Computing and Applications, 2020, doi:10.1007/s00521-020-
04729-6.

[18] J. Greenhalgh and M. Mirmehdi, “Recognizing Text-Based Traf-
fic Signs,” IEEE Transactions on Intelligent Transportation Systems,
vol. 16, no. 3, pp. 1360–1369, 2015, doi:10.1109/TITS.2014.2363167.

[19] F. S. Bashiri, E. LaRose, J. C. Badger, R. M. D’Souza, Z. Yu, and
P. Peissig, “Object detection to assist visually impaired people: A deep
neural network adventure,” in Advances in Visual Computing, 2018, pp.
500–510.

[20] M. Cutter and R. Manduchi, “Towards Mobile OCR: How to take a
good picture of a document without sight,” in Proceedings of the ACM
Symposium on Document Engineering, 2015, pp. 75–84.

[21] E. Tekin, J. M. Coughlan, and H. Shen, “Real-time detection and reading
of led/lcd displays for visually impaired persons,” in IEEE Workshop on
Applications of Computer Vision (WACV), 2011, pp. 491–496.

[22] V. Arlazarov, K. Bulatov, T. Chernov, and V. Arlazarov, “MIDV-500: a
dataset for identity document analysis and recognition on mobile devices
in video stream,” Computer Optics, vol. 43, pp. 818–824, October 2019,
doi:10.18287/2412-6179-2019-43-5-818-824.

[23] M. O. V. Ngoc, J. Fabrizio, and T. Graud, “Saliency-based detection of
identy documents captured by smartphones,” in 13th IAPR International
Workshop on Document Analysis Systems (DAS), 2018, pp. 387–392.

[24] N. Skoryukina, V. V. Arlazarov, and D. P. Nikolaev, “Fast method of
ID documents location and type identification for mobile and server

application,” in International Conference on Document Analysis and
Recognition (ICDAR). IEEE, 2019, pp. 850–857.

[25] M. A. Povolotskiy, D. V. Tropin, T. S. Chernov, and B. I. Savelyev,
“Dynamic programming approach to textual structured objects segmen-
tation in images,” Informatsionnye tekhnologii i vychislitelnye sistemy
(Information technologies and computational systems), vol. 3, pp. 66–78,
2019, (In Russian).

[26] S. Bakkali, Z. Ming, M. M. Luqman, and J.-C. Burie, “Face detection
in camera captured images of identity documents under challenging
conditions,” in International Conference on Document Analysis and
Recognition Workshops (ICDARW), 2019, pp. 55–60.

[27] K. Bulatov, V. V. Arlazarov, T. Chernov, O. Slavin, and D. Nikolaev,
“Smart IDReader: Document recognition in video stream,” in 14th Inter-
national Conference on Document Analysis and Recognition (ICDAR),
vol. 6. IEEE, 2017, pp. 39–44.

[28] M. Ryan and N. Hanafiah, “An examination of character recognition on
ID card using template matching approach,” Procedia Computer Science,
vol. 59, pp. 520–529, 2015.

[29] Y. S. Chernyshova, A. V. Sheshkus, and V. V. Arlazarov, “Two-
Step CNN Framework for Text Line Recognition in Camera-
Captured Images,” IEEE Access, vol. 8, pp. 32 587–32 600, 2020,
doi:10.1109/ACCESS.2020.2974051.

[30] K. Bulatov, “A method to reduce errors of string recognition based on
combination of several recognition results with per-character alterna-
tives,” Bulletin of the South Ural State University. Ser. Mathematical
Modelling, Programming & Computer Software, vol. 12, no. 3, pp.
74–88, 2019.

[31] S. Christensen and A. Irle, “The monotone case approach for the
solution of certain multidimensional optimal stopping problems,” arXiv
preprint:1705.01763, 2019.

[32] T. Ferguson and M. Klass, “House-hunting without second moments,”
Sequential Analysis, vol. 29, no. 3, pp. 236–244, 2010.

[33] V. V. Arlazarov, K. Bulatov, T. Manzhikov, O. Slavin, and I. Janiszewski,
“Method of determining the necessary number of observations for video
stream documents recognition,” in Proc. SPIE (ICMV 2017), vol. 10696,
2018.

[34] K. Bulatov, N. Razumnyi, and V. V. Arlazarov, “On optimal stopping
strategies for text recognition in a video stream as an application
of a monotone sequential decision model,” International Journal on
Document Analysis and Recognition, vol. 22, no. 3, pp. 303–314, 2019.

[35] K. Bulatov, B. Savelyev, and V. V. Arlazarov, “Next integrated result
modelling for stopping the text field recognition process in a video using
a result model with per-character alternatives,” in Proc. SPIE (ICMV
2019), vol. 11433, January 2020, pp. 710–716, doi:10.1117/12.2559447.

[36] R. Llobet, J. Cerdan-Navarro, J. Perez-Cortes, and J. Arlandis, “OCR
post-processing using weighted finite-state transducers,” in 20th Inter-
national Conference on Pattern Recognition, 2010, pp. 2021–2024.

[37] L. Yujian and L. Bo, “A normalized levenshtein distance metric,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 29,
no. 6, pp. 1091–1095, 2007.

[38] J. G. Fiscus, “A post-processing system to yield reduced word error
rates: Recognizer Output Voting Error Reduction (ROVER),” in IEEE
Workshop on Automatic Speech Recognition and Understanding, 1997,
pp. 347–354.

[39] G. E. Blelloch and M. Reid-Miller, “Fast set operations using treaps,”
in Proceedings of the Tenth Annual ACM Symposium on Parallel
Algorithms and Architectures, ser. SPAA ’98. ACM, 1998, pp. 16–26.
[Online]. Available: http://doi.acm.org/10.1145/277651.277660

[40] K. Bulatov, D. Matalov, and V. Arlazarov, “MIDV-2019: challenges
of the modern mobile-based document OCR,” in Twelfth International
Conference on Machine Vision (ICMV 2019), vol. 11433. SPIE, January
2020, pp. 717–722, doi:10.1117/12.2558438.

[41] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. Ghosh, A. Bag-
danov, M. Iwamura, J. Matas, L. Neumann, V. R. Chandrasekhar,
S. Lu, F. Shafait, S. Uchida, and E. Valveny, “Icdar 2015 compe-
tition on robust reading,” in 2015 13th International Conference on
Document Analysis and Recognition (ICDAR), 2015, pp. 1156–1160,
doi:10.1109/ICDAR.2015.7333942.

[42] Phuc Xuan Nguyen, K. Wang, and S. Belongie, “Video text de-
tection and recognition: Dataset and benchmark,” in IEEE Winter
Conference on Applications of Computer Vision, 2014, pp. 776–783,
doi:10.1109/WACV.2014.6836024.

[43] S. Zilberstein, “Using anytime algorithms in intelligent systems,” AI
Magazine, vol. 17, no. 3, pp. 73–83, 1996.

http://dx.doi.org/10.1109/ICPR.2018.8545198
http://dx.doi.org/10.1109/ICPR.2018.8545047
http://dx.doi.org/10.1109/ICCV.2019.00481
http://dx.doi.org/10.1145/3343031.3351093
http://dx.doi.org/10.1007/s00521-020-04729-6
http://dx.doi.org/10.1007/s00521-020-04729-6
http://dx.doi.org/10.1109/TITS.2014.2363167
http://dx.doi.org/10.18287/2412-6179-2019-43-5-818-824
http://dx.doi.org/10.1109/ACCESS.2020.2974051
http://dx.doi.org/10.1117/12.2559447
http://doi.acm.org/10.1145/277651.277660
http://dx.doi.org/10.1117/12.2558438
http://dx.doi.org/10.1109/ICDAR.2015.7333942
http://dx.doi.org/10.1109/WACV.2014.6836024

	I Introduction
	II Existing method description
	III Proposed optimizations
	III-A General approximations
	III-B Unweighted case
	III-C Using a normalized GLD

	IV Experimental evaluation
	IV-A Experimental setting
	IV-B Comparing the distance estimation value
	IV-C Comparing the modelling time
	IV-D Comparing the stopping method performance

	V Conclusion
	References

