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Abstract—In this work, we evaluate two different image clus-
tering objectives, k-means clustering and correlation clustering,
in the context of Triplet Loss induced feature space embeddings.
Specifically, we train a convolutional neural network to learn
discriminative features by optimizing two popular versions of
the Triplet Loss in order to study their clustering properties
under the assumption of noisy labels.
Additionally, we propose a new, simple Triplet Loss formulation,
which shows desirable properties with respect to formal cluster-
ing objectives and outperforms the existing methods. We evaluate
all three Triplet loss formulations for K-means and correlation
clustering on the CIFAR-10 image classification dataset.

I. INTRODUCTION

When grouping data with missing or noisy labels, unsuper-
vised approaches such as clustering are crucial. While fully
supervised classification methods might result in a higher
level of accuracy, they require a large amount of annotated
data. In contrast, clustering approaches leverage the intrinsic
data properties such as data density distributions or pairwise
distances instead of annotations in order to group. However,
finding a suitable distance metric is essential. One such a
metric could be the Euclidean distance of two data points
based on some features. For instance k-means clustering is
based on the Euclidean distance to some centroid. Thus, the
properties of the features space play a crucial role. In computer
vision, the simplest choice would be to use raw image pixel.
However, this is often neither effective nor feasible for images
with higher resolutions, and it shows poor generalization. An
effective way is to first reduce the dimension of the image (e.g.
raw image pixels) into a lower dimensional space (embedding)
with a non-linear mapping function. This can be achieved
using a convolutional neural network (CNN). A popular loss
function for learning such an embedding is the Triplet Loss [1],
where three images are given such that the CNN learns to
organize images of the same class closer to one another in
the embedding space than images of different classes. Using
the resulting embedding as features, one can run traditional
clustering methods such as k-means clustering as for example
done in [2]. k-means clustering assumes that the data points are
evenly distributed around the cluster centroids. Furthermore, it
is required that the number of clusters has to be specified be-
forehand. In many practical tasks, this specific scenario might
be unrealistic because, for example, the number of objects to
be grouped is simply unknown or because data points from the
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Fig. 1: Summary of the experiment setup in three steps: 1)
dataset is trained using the Triplet Loss. Here, we add random
noises (in red) by selecting wrong samples in the training
data. 2) We cluster data using graph-based approach based
on the learned embedding features (in blue). 3) Evaluation of
clustering accuracy.

same class lie on a more complex manifold. This motivates us
to additionally consider a graph-based approach, where no data
specific knowledge is required, i.e. the minimum cost multicut
problem, also known as correlation clustering [3], [4].

In the context of these two common clustering techniques,
we want to study the properties of embeddings resulting
from two common variants of the Triplet Loss [1], [5] and
investigate their susceptibility to label noise in the training
data. Additionally, we propose and study a third variant of
the Triplet Loss, which shows promise in the context of both
minimum cost multicuts as well as k-means clustering and
can be understood as a simplification of the loss proposed
in [5]. Both share the desired property to directly allow the
extraction of pairwise cut probabilities between data points
from the embedding space without an intermediate learning
step. Specifically, we train a CNN on the CIFAR-10 image
classification dataset [6] to learn discriminative features using
the three variants of the Triplet Loss, where we apply noise
to the training labels for positive and negative samples. We
evaluate the resulting embeddings by comparing the resulting
clustering performance using minimum cost multicuts and k-
means clustering. Figure 1 illustrates our experimental setup.
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In summary, our contributions are:
• We conduct a thorough study of the clustering behavior

of two popular clustering approaches, k-means and min-
imum cost multicuts, applied to learnt embedding spaces
from three Triplet Loss formulations on the CIFAR-10 [6]
dataset under a varying amount of label noise.

• Our study reveals that, while the traditional Triplet
Loss [1] is well suited for k-means clustering, its per-
formance drops under the looser assumptions made by
minimum cost multicuts.

• We propose a simplification of the Triplet Loss from
[5] (3), which allows to directly compute the probability
of two data points for belonging to disjoint components
and is robust against noise in both clustering scenarios.

• Our proposed Triplet Loss variant outperforms both pre-
vious versions in terms of clustering performance and
stability under label noise on the CIFAR-10 dataset.

II. RELATED WORK

A. Clustering

Many clustering approaches on computer vision problems
are based on dimensionality reduction, where a non-linear
mapping function is applied. One popular way is to use
an autoencoder, where an input image is encoded into a
embedding of lower dimension and then the decoder attempts
to reconstruct its original. The embedding is then used as
feature space for the clustering methods: For instance, Xie et
al. [2] first train an autoencoder and then use the same dataset
and fine-tune it by training it again using a KL-divergence loss.
Another approach based on autoencoder is [7], which uses the
reconstruction loss along with relative entropy to jointly train
the network. Similar approaches can be found in [8]–[10].
Recently, generative models have been proposed for clustering
tasks [11], [12]. A large scale study on clustering is proposed
by Caron et al. [13], which iteratively groups the features with
a k-means during the optimization.

B. Correlation Clustering

Correlation Clustering, also referred to as the minimum
cost multicut problem [3], [4] is a popular choice when the
number of clusters are unknown. One such practical scenario
is multiple object tracking, where pedestrians are tracked by
just providing their detections [14]–[18]. Correlation clustering
allows to group the data points based on pairwise cut probabil-
ities without any cluster size bias and optimizes the number
of clusters along with the data association. The crucial part
there is to define or learn cut probabilities based on features.
For instance [19] uses DeepMatching [20] as a similarity
measure, followed by a logistic regression. An alternative is
to use features from embeddings learnt through a Siamese
network [21]. The training is based on pairs of images where
the network outputs a binary decision.This is closely related to
our work, since we also want to obtain discriminative features
by training a CNN with the Triplet Loss. However, instead of
a binary output as done in [21], we want our network to learn
an embedding of a fixed vector length, e.g. 32 dimensions.

C. Deep Embedding Learning

The main idea of learning embeddings is to attract similar
data points to one another in a lower dimensional space while
pushing dissimilar samples away from one another. While the
Contrastive Loss [22] fixes the positive and negative pairs
by a fixed distance, it can be restrictive to variations in
the embedding space [23]. In contrast, the Triplet Loss [1]
captures the relative similarity of pairs of data points instead
of absolute similarities. It has been widely used for embedding
learning [24]–[27]. However, Zhang et al. [5] highlighted three
major issues and thus proposed an Improved Triplet Loss by
enforcing intra- and intercluster constraints. We compare these
two Triplet Loss formulations and propose a simplification of
the formulation from Zhang et al., which outperforms both
other formulations in practice.

III. STUDY SETUP

In this section, we describe the setup of our study. First, we
introduce the architecture and the different variations of the
Triplet Loss in Section III-A and III-B. Then, in section III-C,
we explain the correlation clustering method, also called the
minimum cost multicut problem. Section III-D describes the
used dataset as well as the evaluation metric.

A. CNN-Architecture

We use AlexNet [28] as a CNN-backbone as done in [13].
Furthermore, we also replaced the local response layers with
batch normalization as done in [13]. However, in order to
reduce the feature dimensionality, we changed the size of
the last two fully-connected layers from 4096 to 64 and 32,
respectively.

B. Loss Function

Given any model architecture with trainable parameters θ,
we want to map an input image xi with a non-linear function
fθ : X → Z, with f(xi) ∈ Rd. In our case, xi is the image
of the i-th sample from the dataset with a total number of n
samples, xi ∈ Xn

i=1 and d is the dimension of the embedding
space. d is much smaller than the dimension of the input im-
age. Given a set of three images, xai , xnj and xpk, the embedding
features are learned by simply minimizing the Triplet Loss [1]
over the parameters θ of our deep neural network. Here,
the parameter α sets the margin of the similarity difference
between the positive sample xpk and negative sample xnj and
the anchor image:

Ltriplet =

n∑
i=1

[‖f(xai )− f(x
p
i )‖

2 − ‖f(xai )− f(xni ‖2) + α]+

(1)

Our approach is based on the assumption that embedding
features, learned from the regular Triplet Loss (1) can produce
high variances in inter- and intra-cluster distances, because
it only considers relative differences between the distances
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Fig. 2: Visualization of a possible data distribution trained
with Triplet Loss [1]: different intra-cluster distances over
different classes make it impossible to learn one distance
threshold at which data points should belong to different
components. A logistic regression model could thus not learn
cluster boundaries for graph partition. The correct decision
boundaries are marked by green lines while the red line shows
a wrong separation of data. Our aim is to propose new Triplet
Loss to stabilize such distances.

of positive and negative pairs. This objective is suitable for
k-means clustering. Yet, the attempt to learn whether two
data points should belong to the same or to a different class
from their pairwise distances (for example through a logistic
regression model as in Section III-D) might fail, when the
intra- and inter cluster samples are equally far away. This
is shown in Figure 2 where the correct decision boundaries
are marked by green lines. In contrast, the red line, at the
same Euclidean distance as the green lines, indicates a false
separation of data. This motivates us to consider losses that
preserve the distance equally between the positive pairs during
the optimization. Similar to [5], we therefore add an additional
term to equation (1), which we denote as Triplet Loss 2 [5]:

Ltriplet 2 = Ltriplet + [‖f(xai )− f(x
p
i )‖

2 − β]+ (2)

The additive term in equation (2) introduces an additional
parameter β, which sets the maximum distance between the
positive pairs, e.g. the intra-cluster distance. As the regular
Triplet Loss only considers the distance difference between the
positive and negative pairs, set by the parameter α, we propose
a third loss function, which considers the absolute distance for
the positive and negative pairs (instead of distance difference):

Ltriplet 3 = [α−‖f(xai )−f(xnj )‖2]++[‖f(xai )−f(x
p
k)‖

2−β]+
(3)

We argue that this variant of the Triplet loss is more
intuitive than Triplet Loss 2 because it directly pushes positive
pairs within a certain margin β while driving negative pairs
apart with a minimum distance α. Within these margins, it
still allows for varying distances, which is in contrast to for
example Siamese approaches or the contrastive loss [22].

C. Minimum Cost Multicuts

We assume, we are given an undirected graph G = (V,E),
where nodes v ∈ V represent images and edges e ∈ E encode
their respective connectivity. Additionally, we are given real
valued costs c : E → R defined on all edges which represent
the node affinities. The goal is to determine edge labels y :
E → {0, 1} defining a graph decomposition such that every
partition of the graph corresponds to exactly one class. To infer
such an edge labeling, we can solve instances of the minimum
cost multicut problem with respect to the graph G and costs
c, defined as follows [3], [4]:

min
y∈{0,1}E

∑
e∈E

ceye (4)

s.t. ∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (5)

The objective is to minimize (4) with respect to the
assigned real valued costs of the edges and the corresponding
cycle inequality constraint in Eq. (5). The cycle inequality
constraint ensures that the edge labeling y induces a
decomposition of G. In [3], it was shown to be sufficient
to enforce Eq. (5) on all chordless cycles, i.e. all cycles.
Typically, if cut probabilities between pairs of nodes are
available, the costs are computed using the logit function
logit(p) = log p

1−p to generate the real valued edge costs.
With these costs set appropriately, the optimal solution of
minimum cost multicut problems not only yields an optimal
cluster assignment but also estimates the number of clusters
automatically. Furthermore, this problem is able to generate
small clusters and does not necessarily provide balanced
sized clusters.

Optimization: The minimum cost multicut problem (4) is
in the class of NP-hard [29] and even APX-hard [4], [30]
problems. Nonetheless, instances have been solved within tight
bounds, for example in [31] using a branch-and-cut approach.
While this can be reasonably fast for some easier problem
instances, it can take arbitrarily long for others. Thus, primal
heuristics such as the one proposed in [32]–[34] or [35] are
often employed in practice and show convincing results in
various scenarios [21], [32], [36].



D. Pairwise Cut Probabilities for Multicuts

We formulate the following task as a minimum cost multicut
problem: each node in the graph G represents an image xi that
we want to assign to a class label. The weight of the edges
between two nodes represents the similarity between the two
images. The similarity is computed based on the Euclidean
distance of in embedding feature using our CNN-model:

di,j = ‖f(xi)− f(xj)‖ (6)

Once the similarity of two images is obtained, we seek
to estimate their probability to belong to distinct classes. A
decision function can be learned through a logistic regression
using the label information, e.g. positive pairs are mapped to
the value 0 while negative pairs are mapped to 1.

However, with the Triplet Loss 2 (2) and the proposed
Triplet Loss 3 in (3), the distance threshold τ that decides
whether two points should belong to different components
(compare the distances in Figure 2) can be automatically
derived from the parameters α and β. Since β restricts the
maximum distance of positive pairs to exactly β = α/2, the
distance threshold τ of the logistic function is computed as:

τ =
√

(α+ β)/2 (7)

Note that this is not possible for the Triplet Loss from
Eq. (1) because it only considers relative distances.

A complete graph is built and the clusters are obtained by
optimizing equation (4) using [32]. We use clustering accuracy
(ACC) as evaluation metric, where the best map between
predicted clusters and true label is found.

IV. EXPERIMENTS AND RESULTS ON CIFAR-10

In this Section, we present the experiments and the results
of our study. CIFAR-10 [6] is a popular dataset for image
classification tasks. It contains 50.000 train and 10.000 test
data samples of tiny images (32px x 32px). Each sample is
assigned a label that belongs to one of the ten classes: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
All models are trained for 100 epochs with a batch size of
100 and a learning rate of 0.001 using AdamOptimizer [37].
First, we compare the performance of the minimum cost mul-
ticuts and k-means clustering using different Triplet Losses in
Section IV-A. Then, we present some insights related to inter-
and intra-cluster distances in Section IV-B. In Section IV-C,
we present our study on the feature learning under label noise.
The results are shown in Table I. In Section IV-D, we present
some qualitative results.

A. Evaluation of Cluster Accuracy

We compare the CNN models that are optimized with
the three different losses. Furthermore, we also run k-means
clustering on the same embedding features with k correctly
set to k = 10 (thus introducing external knowledge to
the clustering process). For Tripet Loss (1), an additional
regression model is trained using the label information
in order to estimate the threshold, while for (2) and (3),
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Fig. 3: Comparison of three different losses on clustering
performance. The numbers on the x-axis represent the triplet
loss type while the y-axis shows the average cluster accuracy
on five runs. The black line indicates the standard deviation.
Triplet Loss 2 (2) and our Triplet Loss 3 (3) perform better
than the regular Triplet Loss for minimum cost multicuts.
However, k-means consistently achieves better results given
the fact that the parameter k is set correctly (shown in right).
For k-means, the Triplet Loss 2 shows worse performance
than the regular one [1], while the proposed, simpler version,
Triplet Loss 3, performs best in both scenarios.

the threshold is computed directly from the optimization
parameters using equation (7). All experiments are executed
five times with different random seeds and we report the
average number over the clustering accuracy.

Results: Figure 3 shows the clustering accuracy for different
variants of the Triplet Loss. First, we observe that Triplet
Loss 2 (2) and Triplet Loss 3 (3) outperform (1) on multicut
clustering (left). However, K-Means (right) performs better on
all our experiments given the fact that k = 10 is known.
The highest performance is achieved when we train the CNN-
model with the Triplet Loss 3 (3), where the average accuracy
is 80.5% (red). For k-means, the Triplet Loss 2 shows worse
performance than the regular one [1], while the proposed, sim-
pler version, Triplet Loss 3, performs best in both scenarios.

B. Inter- and Intra-cluster distances

Figure 4 compares the cluster distances of the samples of
all three Triplet Losses. The red curve represents the average
pairwise distances of the samples within a cluster while the
blue curve shows the average distances of one cluster to its
nearest cluster. Furthermore, the color range represents the
standard deviation σ and 2σ of the cluster distances. As
illustrated in Figure 4 a), both distances show significant
variances when trained with the regular Triplet Loss (1).
Furthermore, class cat and dog show a significant overlap
in their inter- and intra cluster distances, which prevents the
logistic regression from setting the right decision boundary
as explained in Figure 2. In contrast, Triplet Loss 2 (2) and
Triplet Loss 3 (3) produce more consistent and stable results,
and produce higher clustering accuracy (see Figure 3).



a) Triplet Loss 1 (1) b) Triplet Loss 2 (2) c) Triplet Loss 3 (3)

Fig. 4: Euclidean inter and intra cluster distance trained with all three Triplet Loss variants (equation (1), (2) and (3)): the
average distance shows significant variance when trained with a) Triplet Loss 1 (1), especially for the class cat and dog. The
overlap of the distances prevents the logistic regression model to learn the cluster boundaries. Both other variants, b) and c),
produce more consistent and stable results, thus higher clustering accuracy.

Minimum Cost Multicuts
Triplet Loss (1) Triplet Loss (2) Triplet Loss (3)

Noise % random 7% 5% 2% 0% random 7% 5% 2% 0% random 7% 5% 2% 0%

20% 73.85 73.64 74.43 76.28 75.18 60.13 65.61 68.05 67.26 64.39 75.23 74.39 75.00 72.80 75.27
10% 77.90 77.02 76.93 78.04 77.87 74.23 75.64 75.23 74.75 75.48 77.10 76.53 76.47 76.06 76.29
5% 78.65 76.73 78.30 77.73 78.87 75.62 76.27 76.06 75.80 76.63 77.07 78.94 80.16 77.44 77.75
0% 78.14 77.76 78.31 78.56 78.44 77.07 77.46 77.47 80.41 79.96 80.25 80.38 80.65 80.42 80.51

k-means Clustering
Triplet Loss (1) Triplet Loss (2) Triplet Loss (3)

Noise % random 7% 5% 2% 0% random 7% 5% 2% 0% random 7% 5% 2% 0%

20% 79.83 80.26 80.29 80.60 80.55 71.71 74.70 74.86 74.62 74.61 79.66 80.54 77.83 78.20 80.53
10% 81.55 80.95 81.10 81.53 81.21 75.33 75.80 75.89 75.54 76.48 81.93 81.78 80.59 80.45 82.06
5% 81.62 80.82 81.27 81.19 81.68 76.79 77.01 76.14 76.97 76.93 82.07 82.11 81.98 81.90 82.08
0% 81.59 81.33 81.53 81.51 81.82 80.25 80.80 81.11 81.39 80.73 82.15 82.14 81.93 81.64 81.72

TABLE I: Evaluation of clustering accuracy using minimum cost multicuts (top) and k-means (bottom) based on the
embedding features of the CNN-model trained on three different Triplet Loss variants. The average accuracies of five runs are
reported in %. Furthermore, the numbers in bold are the reported numbers from Figure 3. The x-axis shows the amount of
label noise on the negative samples up to 7%, while y-axis shows the amount of label noise on the positive samples up to
20%, respectively. The column random selects the negative sample without employing the labels. On the CIFAR-10 dataset,
the chances are 90.0% to retrieve correct negative samples.

C. Triplet Loss with Label Noise

In this experiment, we investigate the sensitivity of the
different Triplet Losses towards label noise. Specifically, we
randomly select wrong triplets during the training process of
our CNN-model and evaluate the clustering performance based
on the embedding features, trained on all three loss variants
from Subsection III-B. The experiments were conducted re-
peatedly five times with different seeds and we report the mean
cluster accuracies in %. The parameters α and β are fixed to
0.8 and 0.4, respectively.

Results: Table I shows our complete evaluation with
various setups: we applied different amounts of label noise on
triplets for positive and negative pairs. The x-axis represents
the noise for the negatives while the y-axis indicates noise
on positive pairs within the triplet. These wrong pairs
are retrieved randomly. All results are reported as average

clustering accuracy over five runs of training. In Table I top,
we present the performance using minimum cost multicuts
while the bottom rows show the results of k-means clustering
Note that k-means requires to specify the number of clusters
k, beforehand (on CIFAR-10, we know k = 10), while
minimum cost multicuts do not require this dataset specific
knowledge. Without noise added, considering the CNN-
model trained with the same loss function, k-means seems
more stable against noise and outperforms the correlational
clustering on average by 1-2% and the highest clustering
accuracy when no noises are added. In Figure 5, we give a
more detailed analysis of these results.

Remark: When sampling the triplets randomly on balanced
dataset with k-clusters, the chance to get a true positive and
true negative pair is 1

k and k−1
k respectively.
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Fig. 5: Average cluster accuracy against the percentage of noise, that is applied to the sampling. Noises on positive and negative
pairs are applied on first and second row, respectively while the last row is evaluated on an equal amount of label noise of
both, positive and negative pairs. The first column shows the results of the minimum cost multicuts while the second column
employs k-means. The amount of noise (i.e. wrong pairs) is indicated in x-axis.

Figure 5 shows the clustering accuracy against the percent-
age of noise that is applied to the sampling. In Figure 5, top
left, we only add noise to the positive pairs while selecting
correct negative samples and evaluate using minimum cost
multicuts, i.e. without introducing knowledge on the number
of classes. Our first observation is that Triplet Loss 2 (2) is
the most sensitive to noise among all three loss variants. This
is shown in Figure 5 in blue. The regular Triplet Loss (1)
and Triplet Loss 3 (3) still achieve and average clustering
accuracy of 75.0%, respectively, even though 20% of wrong
samples are used for training. A similar behavior can be
observed in Figure 5, top right, where we evaluate the same
embeddings using k-means clustering. The observations are
slightly different when adding label noise to the negative pairs,

Figure 5, second row. Even when introducing 10% noise,
which corresponds to drawing negative samples completely
at random in a balanced 10 class classification problem, all
loss variants are relatively robust, especially for k-means
clustering (Figure 5, second row, right). Yet, the proposed
Triplet Loss 3 again performs best. In the bottom row of
Figure 5, we consider an equal amount of noise on both
positive and negative samples (corresponding to the diagonal
in Table I). In this setting, the proposed Triplet Loss 3 again
shows higher stability than the two previous variants when
clustering using minimum cost multicuts Figure 5(bottom left).
For k-means clustering, the improvement over the Triplet
Loss [1] is marginal. This result is actually expected: The
traditional Triplet Loss [1] creates an embedding such that,



Fig. 6: TSNE-Visualization of the clusters on CIFAR-10 using a multicut approach. In this example, the cluster accuracy is
80.27% trained on a CNN-model with the Triplet Loss (3) and the total number of clusters is 44. The color represents the
10 largest clusters found. There are 33 small clusters (< 10 items), for instance bottom left and right are two clusters shown
containing 7 images each. False positives within the clusters are marked as red. The cluster on the upper left corner contains
images from bird, cat, automobile (x3), planes and trucks.

for every data point, data points from the same class are
closer than points from any other class. This fits well with
the k-means clustering objective, assigning every points to the
nearest cluster center, regardless their absolute distance. Yet,
it can be problematic in the context of correlation clustering,
where the minimum absolute distance between two clusters
matters (compare again Figure 2).

D. Qualitative Results

Figure 6 shows a TSNE-visualization [38] of the embed-
ding features learned from the CNN-model using the Triplet
Loss 3 (3) variant. We use the minimum cost multicut ap-
proach to cluster CIFAR-10 test dataset. In the particular
experiment example, the total number of clusters are 44 with
a cluster accuracy of 80.27%. The different colors represent
the found class labels while in the ground truth, there are
only 10 classes on the CIFAR10 dataset (which is shown
in the legend). Any other found clusters are considered as
false positives and thus lower the cluster accuracy. However,
there are in fact 34 small clusters that contain less than 10
images. Three examples of such mini clusters are shown in
bottom left and right as well as on the top left corner. Even
though there are false positives shown in the examples of the
smaller clusters, the multicut approach explores meaningful

sub-clusters within a class label, which may be desirable on
real-world scenarios. For instance, instead of finding the class
horse (in cyan), a subclass white-horses is also found.

V. CONCLUSION

In this work, we presented an extensive study on three
different variations of the Triplet Loss. Specifically, we have
studied the clustering behavior of k-means and minimum cost
multicut clustering, applied to learnt embedding spaces from
three Triplet Loss formulations on the CIFAR10 [6] dataset
under a varying amount of label noise. We find that, while the
traditional Triplet Loss [1] is well suited for k-means cluster-
ing, its performance drops under the looser assumptions made
by minimum cost multicuts. We proposed a simplification of
the Triplet Loss from [5], which allows to directly compute
the probability of two data points for belonging to disjoint
components. In a line of experiments on the CIFAR-10 dataset,
we show that this proposed loss is robust against label noise
in both clustering scenarios and outperformes both previous
Triplet Loss versions in terms of clustering performance and
stability.
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