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Abstract—Given an unknown audio source, the estimation
of time differences-of-arrivals (TDOAs) can be efficiently and
robustly solved using blind channel identification and exploiting
the cross-correlation identity (CCI). Prior “blind” works have
improved the estimate of TDOAs by means of different algorith-
mic solutions and optimization strategies, while always sticking
to the case N = 2 microphones. But what if we can obtain a
direct improvement in performance by just increasing N?
In this paper we try to investigate this direction, showing that,
despite the arguable simplicity, this is capable of (sharply)
improving upon state-of-the-art blind channel identification
methods based on CCI, without modifying the computational
pipeline. Inspired by our results, we seek to warm up the
community and the practitioners by paving the way (with two
concrete, yet preliminary, examples) towards joint approaches
in which advances in the optimization are combined with an
increased number of microphones, in order to achieve further
improvements.

Index Terms—Acoustic Impulse Response, Blind Channel
Identification, Incremental and Ensembling Approaches, TDOA
Estimation

I. INTRODUCTION

Sound source localisation applications can be tackled by
inferring the time-difference-of-arrivals (TDOAs) between a
sound-emitting source and a set of microphones. Among the
referred applications, one can surely list room-aware sound
reproduction [1], room geometry’s estimation [2]–[6], speech
enhancement [7], [21] and de-reverberation [8]–[10]. Despite
a broad spectrum of prior works estimate TDOAs from an
known audio source [22]–[24], even when the signal emitted
from the acoustic source is unknown, TDOAs can be inferred
by comparing the signals received at two (or more) spatially
separated microphones [10], [11], [14], [17], [18] using the
notion of cross-corrlation identity (CCI) - see Fig. 1. This
is the key theoretical tool, not only, to make the ordering of
microphones irrelevant during the acquisition stage, but also
to solve the problem as blind channel identification [10], [11],
[14], [17], [18], robustly and reliably inferring TDOAs from
an unknown audio source (see Sec. II).

Fig. 1. We are given an unknown sound-emitting source, where in the
actual applicative scenario that we encompass, we have no prior knowledge
about the sound source and can be therefore arbitrary. We are interesting
in (robustly) inferring TDOAs in an (unknown as well) environment given
a pool of microphones, using the the following principle. Given the pair of
grey microphone, the audio that each of them acquires from the source (solid
arrow) must “agree” with the other. That is, if any of the two mic could “hear”
the other, the registered signal has to be the very same (dashed arrows). This
is called cross-correlation identity and it was empirically studied in the case
N = 2, only. In this paper we answer to what happens then if N > 2? Can
we improve in robustness and/or accuracy in the estimate, for instance, by
adding the yellow microphones?

However, when dealing with natural environments, such
“mutual agreement” between microphones can be tampered
by a variety of audio ambiguities such as ambient noise. Fur-
thermore, each observed signal may contain multiple distorted
or delayed replicas of the emitting source due to reflections or
generic boundary effects related to the (closed) environment.
Thus, robustly estimating TDOAs is surely a challenging prob-
lem and CCI-based approaches cast it as single-input/multi-
output blind channel identification [10], [11], [14], [17], [18].
Such methods promotes robustness in the estimate from the
methodological standpoint: using either energy-based regular-
ization [11], sparsity [10], [17], [18] or positivity constraints
[17], while also pre-conditioning the solution space [10].

In this paper, we posit that there is a much easier practical
strategy to ensure robustness while inferring TDOAs: the
possibility of exploiting a larger pool of microphones. In fact, it
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is surprising to observe that, in prior state-of-the-art methods
based on CCI, experimental evidences are provided for the
case N = 2 microphones only [10], [11], [14], [17], [18].
Despite such a number is the bare minimum to solve the
problem, it remains elusive whether N > 2 can, by itself,
boost the estimate of TDOAs in accuracy/robustness, without
requiring any changes in the computational pipeline. In fact,
since all methods [10], [11], [14], [17], [18] can theoretically
accommodate for N > 2, why not test them in such a regime?

The purpose of this work is to answer this question and back
up the investigation of state-of-the-art methods based on CCI
[10], [11], [14], [17], [18] in handling the case N > 2. Our
goal is to understand whether an increase in the number of
microphones will translate into an improved TDOAs estimate.

Our contributions. Among all state-of-the-art methods
based on CCI [10], [11], [14], [17], [18], we consider the most
effective one: IL1C [10]. Despite, in fact, recent advances were
essentially devoted in estimating TDOAs given a known audio
source in how to exploit the TDOAs [22]–[24], the problem
of achieving the very same task while being blindly unaware
of which audio source was deployed can be still efficiently
and effectively solved using methods such as [10], [11], [14],
[17], [18] out of which IL1C [10] is the best in terms of
robustness and efficacy. IL1C infers TDOAs by solving a stack
of convex problems through a weighted sparsity promoting
(`1) constraint, leveraging the non-negativity of the Acoustic
Impulse Response (AIR), from which TDOAs are easily
estimated using peak finding [10]. To guarantee robustness
while inferring TDOAs, in addition to sparsity, IL1C [10] takes
advantage of a pre-conditioning mechanism to better initialize
the AIRs using a data-driven initialization.

We setup a broad experimental validation, measuring the
performance of IL1C on a variety of audio signals, going well
beyond the experimental evidences provided in [10]. That is,
on the one side, we test the effectiveness of this method on
many more audio signals: synthetic (pink and white) noise and
a list of natural audio sources (two different plastic rustles –
obtained from either scraping a bag or compacting a bottle
before thrashing, adult male voice, dog barking, stapler and
hand-clapping). On the other side, differently to [10], we do
not only consider the case N = 2, but we also consider a
bigger number of microphones N = 3, 4, 5, 10 motivated by
encompassing the scenario of multiple microphones.

As our experimental evidences show, we stably register
improvements in either the robustness (towards outliers) or
the accuracy in retrieving the peaks of the AIRs. We evaluate
on that by exploiting two well known performance metrics as
in prior work [10], [11], [14], [17], [18], and, although there
are (sound-specific) cases in which one of the two indicators
show a damaged performance, still the other one shows im-
provements. In fact, we can demonstrate that, across the wide
number of different audio sources that we consider, the general
trend is that, while averaging the absolute improvement across
different choices for N = 3, 4, 5 or 6 over the baseline case
N = 2, we score positive signed improvements (see Table
III) which seems not to be effected on whether the source is

emitting synthetic or natural sounds. At the same time, we
register a very positive trend if we are enriched by an oracle
knowledge of the optimal number of microphones that have
to be arranged before the acquisition stage. In such a case,
we always register positive improvements over the baseline
N = 2, which are, in the worst case, by +3%, while achieving
more than +28% as well.

Inspired by our evidences, in Section V, we attempt to warm
up future research directions towards optimization approaches
which explicitly account for the case N > 2. Although
proposing a new paradigm which falls inside this new family
of methods is out of scope for us, we still deem interesting
to inform practitioners about the effect of two straightforward
modifications of IL1C [10], using either an incremental pre-
conditioning or an ensemble strategy - see Section V. Re-
gardless of the scores results (in which the ensemble strategy
is better than the incremental pre-conditioning, while also
improving the baseline IL1C method [10]), we deem our effort
to be effective in stimulating the research towards methods
which explicitly account for the case N > 2 when dealing
with an unknown audio source.

II. PROBLEM STATEMENT & RELATED WORK

Let us formalize the problem of inferring TDOAs, so that
we can easily refer to prior related works. Let us consider
a given enviroment (e.g., a room) of unknown geometry in
which an audio source emits together with N microphones:
the task is to reconstruct TDOAs.

Let hn represent the AIR (Acoustic Impulse Response) from
a fixed audio source and the n-th microphone, n = 1, . . . , N .
The signal hn is sampled into a fixed number of temporal
bins hn(k). The signal yn(k) received at microphone n can
be written as the discrete convolution between the transmitted
signal x(k) and the n-th AIR:

yn(k) = hn(k) ∗ x(k) + νn(k), n = 1, . . . , N (1)

where νn(k) is an additive noise term. The ultimate goal of
the problem is leveraging the measurements yn(k) to recover
the AIRs hn(k) without knowing the transmitted signal x(k).

Cross-correlation identity. When multiple microphones are
recording the same audio source, the acquisition should be
independent of the order of the microphones according to the
following constraint:

hm(k) ∗ hn(k) ∗ x(k) = hn(k) ∗ hm(k) ∗ x(k), (2)

for every pairs of microphones m and n. In turn, using eq.
(1), we rewrite eq. (2) as hm(k) ∗ yn(k) = hn(k) ∗ ym(k).
Hence, by using the well-known fact that the convolutional
operator ∗ is linear, we obtain

Ynhm = Ymhn, m, n = 1, . . . , N (3)

where hn is the column vector which stacks the AIRs hn(k)
by columns, while Yn is the diagonal-constant matrix with
first row and column given by [yn(k − K + 1), yn(k −
K), . . . , yn(k−K−L+ 2)] and [yn(k−K+ 1), yn(k−K+
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2), . . . , yn(k), 0, . . . , 0]> respectively, with K and L being the
signal length and channel length.

In order to solve for (3), a number of prior approaches have
took advantage of regularization [10], [11]. For instance, Tong
et al. [11] have framed the problem of TDOAs estimation as
the following regularized Least Squares fitting

min
h1,...,hN

∑
m 6=n

‖Ynhm − Ymhn‖22 s.t.
∑
i

‖hi‖22 = 1, (4)

to ensure robustness by means of regularization. Clearly,
adding a regularization term is fundamental to avoid the
optimization to converging towards the trivial solution hn = 0
for every n = 1, . . . , N. Remarkably, the real problem is
choosing a proper regularization term.

In fact, when using `2 regularization - as in eq. (4), the solu-
tion can be computed in closed-form by means of eigenvalue
decomposition [11]. Unfortunately, L2 regularization neglects
some crucial physical properties of the expected solution -
such as non-negativity [13], [14].

Additionally, requiring
∑

i ‖hi‖22 = 1 as in (4) makes the
AIRs to be co-prime [15] and constraint each of them to
have a fixed norm - each of such requirements are likely
to introduce numerical instabilities and artifacts during the
optimization process. As a remedy for this, sparsity priors have
been successfully applied to a broad spectrum of prior work
in TDOAs estimation [1]–[6] [15], while also encompassing
speech enhancement [16] and de-revereberation [8]. Therefore,
as to impose sparsity in the reconstructed hn, replacing the
L2 regularization in eq. (3) with a L1 counterpart [10], [17],
[18] seems an appealing solution. Precisely, in [18] a L1-norm
penalty was added to eq. (4), yielding

min
h1,..,hN

∑
m 6=n

‖Ynhm − Ymhn‖22 s.t.

{∑
i ‖hi‖22 = 1,∑
i ‖hi‖1 < ε.

. (5)

Unfortunately, a quadratic optimization subject to mixed
quadratic and linear constraints do not preserve the convexity
of (4). Hence, the method as in (5) is prone to local solutions.

To cope with this issue, we can relax eq. (3) into

min
h1,..,hN

∑
m 6=n

‖Ynhm − Ymhn‖22 s.t.

{
|h1(a)| = 1,∑

i ‖hi‖1 < ε.
, (6)

where the fixed index a is an anchor constraint [17] which
makes the optimization in eq. (6) convex and more robust
towards spectrum holes of x(k) if compared to eq. (4).

However, the anchor constraints |h1(a)| = 1 together with∑
i ‖hi‖1 < ε penalizes all the peaks intensities but one,

often leading to peak cancellations in noisy conditions. The
approach of [17] has been modified in [14] adding an ancillary
non-negativity constraint on the AIRs

min
h1,..,hN

∑
m 6=n

‖Ynhm − Ymhn‖22 s.t.


|h1(a)| = 1,∑

i ‖hi‖1 < ε

h1, ..,hN ≥ 0.

, (7)

where, for each n, hn ≥ 0 means hn(k) ≥ 0 for each k. Non-
negativity yields increased robustness against noise by further

regularizing the problem [19], [20], but it is arguably limited
in addressing the limitations of the anchor constraints.

To directly tackle the latter problem, Crocco et al. [10]
replaced the anchor constrained |h1(a)| = 1 by means of the
introduction of a slack variables p1, . . . ,pN such that

min
h1,..,hN

∑
m 6=n

‖Ynhm − Ymhn‖22 s.t.


p>n hn = 1,∑

i ‖hi‖1 < ε

h1, ..,hN ≥ 0.

(8)

In this way, all the components of the AIRs are equally taken
into account without privileging the a-th of the h1. At the
same time, differently from eqs. (5), (6), the constraints as
in eq. (8) are differentiable, since h1, ..,hN ≥ 0 implies∑

i ‖hi‖1 =
∑

i

∑
a hi(a). The optimization problem as in

eq. (8) is convex with respect to hn while fixing the slack
variables pn and vice-versa. Inspired by this consideration,
Crocco et al. [10] proposed an alternated iterative scheme
in which, pn are firstly initialised as the AIRs computed
using Tong et al. method’s [11], while cycling between: 1)
optimizing for h1, ..,hN in (8) given p1, ..,pN and 2) use the
newly computed AIRs to update pn for every n. As discussed
in [10], although the proposed initialization introduces a
distortion in the amplitude of the AIRs, then the iterative
procedure is able to compensate. More crucially, initializing
pn at the first iteration by using [14] makes the slack variable
sparse. Therefore, the first two constraints as in eq. (8) make
the computed AIRs sparse again. Such property is preserved
during optimization because of the updating scheme in which
slack variables at a given iteration are selected as the solution
of eq. (8) as in the prior iteration.

A sharp limitation of prior blind methods. None of the prior
methods [10], [11], [14], [17], [18] was generalized to the case
N > 2. Despite N = 2 has the appealing formal property
of achieving minimality among the number of microphones
necessary to solve the optimization problem, still it remains
elusive from a practical standpoint whether allocating for
a bigger number N of microphones can effectively boost
the estimate of TDOAs. And, in the likely event of this
case effectively happening, are we improving upon robustness
towards outliers or in accuracy as well? The scope of the
present work is to answer this question.

III. MULTIPLE CROSS-CORRELATION IDENTITIES

In this Section, we evaluate the effect of increasing the
number of microphones when tackling the problem of infer-
ring TDOAs by means of well established notion of cross-
correlation identity (CCI) [10], [11], [14], [17], [18]. In
details, we focus on IL1C [10], the best out of such class
of approaches: we optimize equation (8) for the case of N =
2, 3, 4, 5, 10. By doing so, we are capable of starting from the
minimal setup from which the problem can be solved (N = 2):
note that this is the experimental playground analysed in prior
works [10], [11], [14], [17], [18]. Differently, for the sake
of inspecting whether a higher number of microphones can
provide an improvement in the estimate of TDOAs, we also
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consider the cases N = 3, 4, 5 up to the N = 10 microphones.
This range of variability in N is, in our opinion, a good trade-
off between having a sufficiently large number of acquisition
devices, while still framing a scenario which can be still useful
from the applicative standpoint.

Let us briefly introduce the types of source signals consid-
ered in this study, as well as the reproducibility and imple-
mentation details about our evaluation protocol and the error
metrics to check on performance. The results of our analysis
are reported in Tables I and II, while showing relative and
absolute improvements in Table III. An extended discussion
on our findings is reported in Section IV.

The different types of source signals we considered. We
considered two types of synthetic audio signals white noise
and pink noise, which differ among each others in the con-
sidered frequencies of their spectrum (all vs. only wide ones,
respectively). We also encompass a broad list of natural sounds
as audio source: plastic rustle no. 1 (bag), plastic rustle no.
2 (bottle), adult male voice, dog barking, stapler and hand-
clapping, all of them characterized by a narrow frequency
spectrum.

Evaluation. We run experiments by considering any of the
source audio signals described in the prior paragraph located
in the same environment analyzed in [10]. We model the
Acoustic Impulse Response (AIR) for each microphones as
seven different peaks, corresponding to one direct path source-
microphones, together with six (first-order) reflections. In
details, we applied the simulating image method as in [16],
using a reflection coefficient of 0.8. We also introduce another
degree of variability, by considering different Noise-to-Signal
ratios (s). This is done by injecting additive Gaussian white
noise on the output microphones according to the following
specs: 0 dB, 6 dB , 14 dB, 20 dB and 40 dB. This induces
a signal-to-noise ratio s = 10−dB/20 from the following
inverse relationship dB = 20 log10(1/s). When running the
optimization (8) of IL1C [10], we take advantage of the official
code directly shared by authors, while following the same pre-
processing and evaluation techniques as in the referred prior
work. In addition, as done (8), we perform model selection by
doing cross-validation on the threshold ε which controls the
sparsity-promoting constraint.

Error metrics. Once the AIRs have been computed through
(8), we apply the peak finding method of [10] and we evaluate
performance by means of two standard error metrics: the
Average Peak Position Mismatch (APPM) and the Average
Percentage of Unmatched Peaks (APUP) [15]. To ensure
statistical robustness towards the random generation of reflec-
tions using [16], we performed Z = 50 random repetitions
of the experiments using Monte-Carlo simulation [10]. A
ground truth peak is considered to be unmatched if the closest
estimated number is more than a fixed number of samples
aways from it (we follow [10] in setting this value equal to 20).
In formulæ, we compute APPM and APUP in the following

manner

APPM =
1

Z

Z∑
i=1

P̄i∑
p=1

|τp,i − τ̃p,i|
P̄i

(9)

APUP =
1

Z

Z∑
i=1

K − P̄i

K
(10)

where P̄i is the number of ground truth peaks for which a
matching has been found among the estimated ones: such
value is indexed over the Monte-Carlo simulations i =
1, . . . , Z. For every i and given an arbitrary p = 1, . . . , Pi

τp,i, in eq. (9), τp,i and τ̃p,i are the p-th ground truth peak
location and its corresponding estimate, respectively. In eq.
(10), K denotes is the number of ground truth peaks of the
source signal.

By means of such metrics, we can decouple the effect of the
outliers (quantified by APUP) from the overall peak position
accuracy (expressed by APPM), ultimately better evaluating
on the robustness with which TDOAs are estimated.

IV. THE PROPOSED TEST-CASE: A DISCUSSION

Performance differences across variable s values. An in-
creasing value for s will make the acquired signal noisier, so
that, in Tables I and II the case s = 0.01 is (much) easier
with respect to s = 1. This visually translates into errors
(and histogram bars) which increase when moving from left
to right in the referred error tables. A sharp increase of errors
is registerd on white noise (synthetic) and bag plastic ruslte,
adult male voice and dog barking (natural). Differently, on
either pink noise (synthetic) or stapler, hand-clapping (natural),
we can see that already the case s = 0.01 is challenging per
se. We posit that a reason for that is the highly oscillatory
natura of those sounds that, if compared to other cases, make
them less influeced by the additive Gaussian noise (since they
behave as if they were intrinsically noisy)

Differences between synthetic and natural sound-emitting
sources. Let us comment on whether the usage of a synthetic
versus a natural source emitting sound can have an impact on
the final performance. According to the experimental results
reported in Tables I and II, while also inspecting the signed
absolute/relative improvements of Table III, we can get that
there seems not to be a sharp difference in performance
between these two categories. In fact, we did not register
any drop/raise when swapping from white/pink noise to the
other sounds considered in this work. We deem this a valuable
property of the cross-correlation identity (CCI) which can
naturally accommodate for a variety of applicative scenarios
where the audio source is unknown.

Does adding microphones improves upon performance?
We are intended in enriching this discussion with a detailed
analysis on the ultimate question that our work is trying to
respond. We believe that the findings of Tables I and II are
plain: the honest answer to the aforementioned question we
are intended to respond is neither positive nor negative, in
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TABLE I
AVERAGE PEAK POSITION MISMATCH (APPM)) METRICS FOR IL1C [10] WHEN N = 2, 3, 4, 5, 10. SYNTHETIC SOURCE NOISE ARE DENOTED IN

ITALIC, WHILE BOLD ITALIC REFERS TO THE NATURAL SOURCE SIGNAL CONSIDERED IN THIS STUDY. FOR EACH SOURCE SIGNAL CONSIDERED, WE
PROVIDE AN HISTOGRAM VISUALIZATION TO BETTER PERCEIVE THE VARIABILITY OF THE ERROR METRICS: THE RANGE OF VARIABILITY OF EACH DATA

BAR IS NORMALIZED WITHIN EACH DIFFERENT SOURCE SIGNAL. A BETTER PERFORMANCE CORRESPONDS TO A LOWER (APPM)) VALUE OR,
EQUIVALENTLY, TO A LOWER BAR. THE VALUE s QUANTIFIES THE IMPACT OF THE ADDITIVE GAUSSIAN NOISE ON THE REGISTERED SIGNAL: WE SPAN

THE CASE s = 0.01 (EASIER) TO s = 1 (HARDER), WHILE TRANSITIONING ON THE INTERMEDIATE CASES s = 0.1, 0.2 AND s = 0.5.

general. In fact, there is a quite number of cases in which
the addition of microphones is not clearly beneficial, on
the contrary damaging performance: for the sake of brevity,
let us report the worst cases for the two metrics. That is,
the cases s = 1, N = 10 and hand-clapping for APPM

(-1.4031 absolute improvement) and s = 1, N = 4 and adult
male voice for APUP (-0.0393 absolute improvement). These
are definitely failure cases and, specifically, hand-clapping,
s = 1 for APPM is clearly not positive since the trend is
that performance drops while N increases. Albeit these cases
are surely negative, let us observe that there are actually
no cases where concurrently the two metrics deteriorate. In
fact, in the worst cases, only one of the two is damaged: we
either loose in effectiveness on how we handle outliers or in
how accurately we retrieve the peaks. But, globally the case
N > 2 is never inferior to the baseline N = 2 with respect
to both metrics concurrently.

At the same time, let us observe that these failure cases are

limited since, in the majority of the (remaining) cases, the
performance is either stable (therefore adding microphones
is not detrimental) or better (and thus addding microphones
actually help). The fact that performance is stable when
varying the number of microphones is true for the (less noisy)
cases s = 0.01, pink noise, for APPM; s = 0.01, adult male
voice, for both APPM and APUP; s = 0.01, pink noise, for
APUP; s = 0.01 dog barking, for APPM.

Finally, let us concentrate on the ideal cases, where the
performance improves when N raises. This happens for (the
more challenging) cases such as s = 1 dog barking, for
APPM; s = 0.5 adult male voice, for APPM; s = 0.1, stapler,
for APPM and s = 0.5, adult male voice, for APUP, s = 0.1
and s = 0.2, plastic rustle no. 2 (bottle) for APUP; s = 0.2,
dog barking for APUP.

Given the alternate nature of the results, when switching
from one error metric to another and while varying different s
and N values, we deem necessary to summarize the highlights
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TABLE II
AVERAGE PERCENTAGE OF UNMATCHED PEAKS (APUP) METRICS FOR IL1C [10] WHEN N = 2, 3, 4, 5, 10. SYNTHETIC SOURCE NOISE ARE DENOTED
IN ITALIC, WHILE BOLD ITALIC REFERS TO THE NATURAL SOURCE SIGNAL CONSIDERED IN THIS STUDY. FOR EACH SOURCE SIGNAL CONSIDERED, WE

PROVIDE AN HISTOGRAM VISUALIZATION TO BETTER PERCEIVE THE VARIABILITY OF THE ERROR METRICS: THE RANGE OF VARIABILITY OF EACH DATA
BAR IS NORMALIZED WITHIN EACH DIFFERENT SOURCE SIGNAL. A BETTER PERFORMANCE CORRESPONDS TO A LOWER (APUP)) VALUE OR,

EQUIVALENTLY, TO A LOWER BAR. THE VALUE s QUANTIFIES THE IMPACT OF THE ADDITIVE GAUSSIAN NOISE ON THE REGISTERED SIGNAL: WE SPAN
THE CASE s = 0.01 (EASIER) TO s = 1 (HARDER), WHILE TRANSITIONING ON THE INTERMEDIATE CASES s = 0.1, 0.2 AND s = 0.5.

of our findings in the next part of our discussion.

A summary of the improvements. In Table III (bottom),
we report the average absolute signed improvement δavg over
the two error metrics APPM and APUP: the overall majority
of the cases show a superiority of the case N > 2 with
respect to the baseline case N = 2 of IL1C [10]. This is
exemplified from the fact that the signed improvement is
positive (δavg > 0) for 5 out of 8 different audio signals,
in terms of APPM, and 7 times out of 8, in terms of APUP.
Despite of their sign, the absolute value of such improvements
is controlled (it never exceeds 0.5). This trend is explained
from the fact that, there are high fluctuations, sometimes,
between different configurations inside the case N > 2 for
an unknown audio source.

To better investigate this trend, we also consider the signed
relative improvements ∆O of the error metrics APPM and
APUP (Table III, top). In this case, we allow for an oracle

selection of the best number N of the microphone configu-
ration so that we can understand what is the “upper” bound
on the improvement that we can expect to register. The results
are extremely encouraging: we always have significant positive
improvements. In the worst cases (plastic rustle no. 2 (bottle),
APPM), we get a +2.8% while, in the most favorable case
(adult male voice, APPM), the relative improvement sharply
raises, reaching +28.4%.

V. FUTURE PERSPECTIVES

In shed of the results of our test-case (Table III), we
deem now reasonable for practitioners to start investigating
the regime N > 2 (unknown source) with computational
methods which take advantage of this scenario in explicit
terms. Although this actual effort is beyond the scope of the
present submission, we are nevertheless interested in warming
up the research in this direction by considering what are, to
our opinion, the easiest modification that can be applied to the
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TABLE III
SIGNED IMPROVEMENTS FOR THE METRICS APPM AND APUP WHEN

COMPARING N > 2 WITH THE BASELINE N = 2 USING THE
STATE-OF-THE-ART METHOD [10]. Top: WE PROVIDE THE PERCENTAGE

RELATIVE IMPROVEMENTS ∆O USING THE ORACLE SELECTION FOR
MICROPHONE NUMBER’S CONFIGURATION (REPORTED AS A
SUPERSCRIPT). Bottom: WE PROVIDE THE MEAN ABSOLUTE

IMPROVEMENT δavg ACROSS all CASES N = 3, 4, 5, 10 WITH RESPECT TO
THE BASELINE N = 2. Top and Bottom: WE REPORT THE

AFOREMENTIONED STATISTICS FOR THE MORE CHALLENGING
NOISE-TO-SIGNAL RATIO s = 1.

state-of-the-art method IL1C [10]. In the rest of the present
Section, we will present two computational variants of IL1C
which are either based on an incremental pre-codintioning or
an ensemble mechanism.

Incremental pre-conditioning. Given the core contribution
of pre-conditioning the solution that IL1C introduced, we can
think about an incremental preconditioning in which we grad-
ually introduce one microphone, intertwining this operation
with a fine-tuning of the AIRs. That is, we start from a pair
of microphones and we optimize for it. Then, we use the
solutions of IL1C for that pair to pre-condition the solution
when solving for a third microphones: we the update also the
AIRs for the first two microphones. The procedure iterates
until the N -th microphones is added (so that the N − 1 AIRs
of the other microphones are fine-tuned, at least one time). Let
us formalize the prior argument in the following pseudocode.
1. Sample two random microphones m1, m2.
2. Optimize eq. (8), using the standard pre-conditioning [10],
thus obtaining the AIRs for m1 m2.
3. Add a third microphone m3: optimize eq. (8) again but now
changing the preconditioning. The AIRs of m1 and m2 will
be the ones obtained at the previous stage, while the AIR of
m3 will be initialized using the standard approach [10].
4. Update the AIRs for all solved microphones.
5. Keep adding microphones, following the same procedure,
until all N ones are covered

Results & Discussion. We did not register any substantial
improvement using this sequential addition, to the point that
even the case N = 2 is superior in performance. For the sake

of brevity, let us report a glance of the scored results, providing
a peculiar case which is aligned with the general trend which
we do not report for the sake of brevity. For white noise,
the results of incremental strategy describe above are 0.0036
(s = 0.01), 0.0357 (s = 0.1), 0.09 (s = 0.2), 0.1536 (s = 0.5)
and 0.2343 (s = 1) for APUP and 0.2658 (s = 0.01), 0.5866
(s = 0.1), 1.0023 (s = 0.2), 1.7345 (s = 0.2) and 2.2391
(s = 1) for APPM – all error values refer to the case with
N = 4, while averaging over Z = 50 random extraction of the
sequence with which microphones are incrementally added.
We explain this lack of improvement with the fact that, despite
adding microphones in a single solution maybe beneficial,
their sequential addition can be detrimental since, albeit on
the one side the case N > 2 is providing more cues than the
baseline N = 2, the sequential addition of microphone would
lead to “over-fitting” the AIRs of some of the microphones,
ultimately damaging the final performance.

Ensemble mechanism. Let us observe that the inference
stage of IL1C [10] is based on peaks finding, a method
which is known to suffer when spurious peaks are present. To
accommodate for that, let us take advantage of the following
approach. We can split the case N > 2 into several N = 2 sub-
problems, by pairing microphones into couples. We therefore
create a number of playgrounds with 2 microphones only
(unknown source) - so that we match the operative conditions
on which IL1C [10] was originally tested. We therefore create
some redundancy in the estimate of the AIRs: this is because
one microphone can belong to several pairings at the same
time, so there will be multiple candidate solutions for the same
AIRs - two candidates, referring to two different microphones,
from each artificial pairing. We solve for this redundancy by
averaging out all different candidates referring to the same
microphone. We deem this approach to be arguably simple,
perhaps rough, but still effective in handling a well known
computational issue which damages peak findings algorithm.
In fact, the presence of spurious (noisy) peaks surely affect
the estimate of TDOAs. We attempt to mitigate this problem
by exploiting the well known smoothing and regularizing
properties of averaging as our ensemble mechanism.

Results & Discussion. The reader can refer to Table IV for
the quantitative evaluation of our ensemble strategy applied
to IL1C [10] evaluated in the test-case N = 10. We are
expecting to register a very interpretable phenomenon out of a
simple strategy such as averaging multiple candidate solutions
corresponding to the same AIR: we should expect to register
a regularizing effect which smooths out the AIRs, removing
spurious peaks due to, for instance, numerical instability.
This explains the improvements achieved from our proposed
ensemble mechanism versus the IL1C [10] baseline: once
spurious peaks have been removed, we expect that a peak
finding algorithm such that the one applied in [10] can be more
effective in finalizing the estimate of TDOAs. This consistently
happen in the cases s = 0.01, s = 0.1 (for both APPM and
APUP) and s = 0.2 (only for APUP), while, when considering
the “more difficult” cases s = 0.5 and s = 1 we do not see a
sharp improvement of the ensemble method. This is probably
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TABLE IV
THE ENSEMBLE MECHANISM. WE THE REPORT THE PERFORMANCE OF

IL1C [10] (N = 10, white noise) VERSUS THE ENSEMBLE MECHANISM IN
WHICH COUPLES OF MICROPHONES ARE SOLVED, FIRST, AND THE

AGGREGATED BY AVERAGING ACROSS THE REDUNDANCY OF AIRS
REFERRING TO THE SAME MICROPHONES. WE DENOTE A BETTER

PERFORMANCE IN BOLD, ACROSS DIFFERENT SIGNAL-TO-NOISE VALUES
s.

APPM

s = 0.01 s = 0.1 s = 0.2 s = 0.5 s = 1
IL1C [10] 2.2250 2.0199 2.2215 4.1515 4.1766

Ensemble (us) 1.6982 1.8995 2.2643 4.4532 4.4647

APUP

s = 0.01 s = 0.1 s = 0.2 s = 0.5 s = 1
IL1C [10] 0.3750 0.3543 0.3971 0.7186 0.7214

Ensemble (us) 0.2157 0.2414 0.2550 0.7421 0.8250

due to the fact that the candidate solutions that are averaged
are, each of them, noisier. Therefore, the averaging effect
produces an excessive over-regularization which excessively
smoothens the peaks, damaging the performance of the peak
finding. Nevertheless, the regularizing effect of averaging can
be inspirational for practitioners in exploiting a large number
of microphones to better estimate TDOAs.

VI. CONCLUSIONS

In this work, we generalized the traditional experimental
playground in which the notion of cross-correlation identity
(CCI), applied to the estimation of TDOAs using blind channel
deconvolution methods [10], [11], [14], [17], [18], switching
from the case N = 2 to N > 2. Our analysis shows that, by
simply allowing for a increased number of microphones, the
very same state-of-the-art method ILC1 [10] can be sharply
boosted in performance (see Tab. III) without requiring any
change in the computational pipeline.

We deem that our findings open up to a novel research
trend in which CCI identities are better combined with the
case N > 2, so that improvements in the error metrics can
come from two different, yet complementary, factors: advances
in the optimization standpoint and multiple CCI relationships.
We warm-up the research efforts in this directions with two
simple modifications of IL1C, showing that, with respect to
an incremental addition of the microphones, the practitioners
should preferred a late fusion ensemble mechanism - which
has the understandable property of easing the peaks finding-
based inference stage of [10].
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