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Abstract—We present an approach to perform 3D pose estima-
tion of multiple people from a few calibrated camera views. Our
architecture, leveraging the recently proposed unprojection layer,
aggregates feature-maps from a 2D pose estimator backbone into
a comprehensive representation of the 3D scene. Such interme-
diate representation is then elaborated by a fully-convolutional
volumetric network and a decoding stage to extract 3D skeletons
with sub-voxel accuracy. Our method achieves state of the art
MPJPE on the CMU Panoptic dataset using a few unseen views
and obtains competitive results even with a single input view.
We also assess the transfer learning capabilities of the model by
testing it against the publicly available Shelf dataset obtaining
good performance metrics. The proposed method is inherently
efficient: as a pure bottom-up approach, it is computationally
independent of the number of people in the scene. Furthermore,
even though the computational burden of the 2D part scales
linearly with the number of input views, the overall architecture
is able to exploit a very lightweight 2D backbone which is orders
of magnitude faster than the volumetric counterpart, resulting
in fast inference time. The system can run at 6 FPS, processing
up to 10 camera views on a single 1080Ti GPU.

I. INTRODUCTION

Multi-person 3D pose estimation is a complex problem, with
many applications in different fields of computer vision, like
people tracking or augmented reality. This problem is usually
tackled with a two steps approach. At first, every view is
processed independently in order to produce a set of 2D poses
- or possibly, some intermediate feature representation. In this
stage, all the achievements in 2D pose estimation field can
be exploited (see [1] for a survey). Next, these poses have
to be matched across views and eventually triangulated, in
order to produce a final estimate of the 3D scene. Usually,
occlusions between people - or even self-occlusions - are the
main difficulties to deal with: crowded scenes and complex
poses produce noisy 2D detections, which are hard to filter
out or recover in the matching and triangulation phase.

Hence, the idea of creating a system which is able to handle
occlusions in a global way, and that is not affected by the
limitations brought by single-view inferences. Inspired by [2]],
[3] and [4], we developed a multi-person 3D reconstruction
system, which takes a set of images capturing the scene from
different views and outputs a set of 3D pose reconstructions
in a global reference frame. Its main building block is a
fully convolutional neural network, where low-level features
of the input views are unprojected, fused and transformed
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Fig. 1.
3D pose estimation. Feature representations extracted from each views are
aggregated and exploited to perform unified triangulation and pose estimation.

in order to produce a 3D representation of the probabilistic
space. Following the general bottom-up approach of pose
estimation, we extended the notion of part affinity field in
three dimensions, making the pose reconstruction from density
maps quick and agile. By doing this, we avoided all the
limitations of the top-down strategies, where scalability is
penalized as the number of people grows, and where inter-
person occlusions and self-occlusions cannot be encoded - and
recovered - by the network in a global way. On the contrary,
thanks to the huge variety of pose configurations available
in the CMU Panoptic dataset and with clever augmentation
strategies about view-points, we could prove that our system
is not affected by those limitations: our system can exploit
activations and “shadows” in the feature space to estimate
occlusions. Moreover, it does not depend on sophisticated
algorithms of detection-view assignment, and it does not pay
the computational burden of adding more views and subjects
in the reconstruction process. Furthermore, we found that our
system can produce good results even with just a single view
suggesting that this approach can be further investigated also
for monocular depth estimation tasks with multiple poses.

We conducted several experiments, which show the feasi-

bility of our work and compare it to the other state-of-the-art
approaches.

Our main contributions are the following:

e as far as we know this is the first complete bottom-
up approach adopted in this context. In particular, it is
capable of handling crowded scenes with good accuracy
results and computational time.

o We show that even a very light backbone can produce
good results. This implies that adding more views is
almost computationally free.
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Fig. 2. An overall view of the complete processing pipeline. 2D pose backbone replicas process each view separately. Feature maps are then aggragated by
the Unprojection layer into a 3D input representation of the scene. A volumetric network produces an output representation. A further decoding produces the

final 3D pose estimations.

o We introduce 3D-data augmentation policies that greatly
enhance the number of samples seen by the volumetric
network.

o Our post-processing strategy leads to a sub-voxel local-
ization, overcoming the issue of a quantized 3D space.

II. RELATED WORKS

Multi-view, multi-person 3D pose estimation tries to fuse
the achievements coming from 2D pose estimation, structure
from motion and monocular depth estimation research fields.
All of them are very well studied and pretty active topics
nowadays.

Pose estimation from a single image is usually tackled
following one of these two main strategies: bottom-up or
top-down approaches. The former try to infer all key-points
(i.e. parts) and/or limbs simultaneously and aggregate them
eventually, using specific post-process logic. These methods
can claim higher speed over their competitors since neural
inference is done only once. At the same time, they usually
have to deal with down-scaled feature maps, which limit the
accuracy in terms of localization. In this group, we cannot
omit [4]]. Inspired by the work of [5], they introduced the
notion of part-affinity fields. Their work has been extended
by [6], [7] leading to a better part association, and by [8],
where stronger descriptors led to a finer sub-pixel resolution.
Other insights on the resolution issue were provided by [9],
with heatmap encoding/decoding refinements. On the contrary,
top-down approaches [10], [[L1], [[12], possibly combined with
multi-scale strategies [13], [14], rely on object detectors to
identify humans in the scene, then a single-person neural
inference is performed for each of them. These techniques
generally outperform their bottom-up competitors on public
challenges, while suffering in scalability with increasing num-
ber of subjects. Some hybrid approaches have emerged as well
[15]. Finally, we want to mention some attempts [16], [[17] to
reduce the computational burden of pose estimation networks.

Three-dimensional pose estimation has emerged following
two different tracks. The first one aims to recover the third
dimension from a monocular view [18], [19], [20], [21],
[22], [23]], [24]. These methods usually start from 2D pose
estimations, and lift them in a second stage in order to

obtain their depth. In particular, they all deal with single-pose
scenarios. We mention two attempts to extend this task to a
multiple poses: Moon et al. [25] adopted a top-down strategy;
Rogez et al. [20] introduced pose proposals (from anchor-
poses) in the spirit of the Faster R-CNN approach. The second
research track takes advantage of multiple views and claims to
reconstruct 3D poses in a global reference frame. Sometimes
this is the initial step of detection-to-track pipelines, like in
[27], [28], where temporal evolution can be exploited in order
to refine predictions. Multiple-view pose reconstruction may
focus on single [29], [30], [31]], [32], [2] or multiple poses
[33], and they can exploit geometrical constraints [34]], [35],
in pair with visual features [36]. In particular, we highlight
two works where multi-view projections have been combined
with deep learning. [32] exploited the epipolar geometry in
order to refine 2D pose estimation model, and consequently
improve the final single pose 3D reconstruction. [2] showed
that 2D features of each view can be fused and processed into a
volumetric representation, which is analyzed to achieve a neat
3D reconstruction of the pose - again - for a single subject.
However, to the best of our knowledge there is not any attempt
to extend this approach to a multi-person scenario.

III. METHOD

We call Light3DPose our system. In this section, we out-
line the architecture of Light3DPose, followed by a detailed
explanation of all its components.

We are given a detection space S with fixed boundaries and
a set of fixed setup cameras {C; };=1,... n, whose intrinsic and
extrinsic parameters are known. In particular, the projections
P, . S — F; are known, where F; denotes the frame of the
camera C;. The cameras are synchronized, so for any time ¢
we have a set of images If,... [ }"VC, one for each camera. We
will assume the time fixed throughout the paper, and omit the
superscript t.

The input of Light3DPose is a set of pairs {I;, C,, }i=1,...m
where I, is an image and C,, is one of the setup cameras. The
number of input pairs m is variable and can range from 1 to
N.. In Section [V| we study both from the performance and
computational sides the impact of the number of input views.

The output of Light3DPose is a set of 3D human poses
{44, ..., Ay}, with k an arbitrary number. A 3D human pose



A; is a list (aé)lepose_layout of joints. Each joint is a pair
composed of a point in the space S and a label identifying
the joint type, but when no confusion arises we identify the
joint with the underlying point in S. The joint type ranges in
a pose layout named CMU14, described in Section

The internal pipeline of Light3DPose is composed of three
main stages (see Figure [2):

e a 2D Views Processing stage which returns a 2D feature
map for each camera;

o an Unprojection layer [2l] which aggregates the informa-
tion coming from all the 2D views into a 3D features
space representation;

o a Volumetric Processing that process the aggregated 3D
representation and produces the output;

and each of these stages are composed of a different number
of modules.

A. 2D Views Processing

This processing stage takes as input one image [ and pro-
duces a 2D activation R(B(I)). When Light3DPose processes
a set of pairs {(I;,C;)}, each I; is fed independently to the
2D Views processing stage. The different 2D View Processing
stages share the same weight.

The stage is composed of two modules: a 2D Pose Backbone
followed by a Reduction module.

1) 2D Backbone: The input to the 2D Backbone module
is an image I, and the output is a 2D feature map B([). The
2D backbone is a MobileNet V1 [37] with some modifications
from [16] on the latest layers. The stride of conv4_2dw has
been removed and all succeeding convolutions have been set
to dilation 2. This operation makes the network global stride
to be 16 instead of 32 which is common for classification
networks. We used weights pretrained on COCO dataset from
[16].

2) Reduction Module: Input to the reduction module is the
2D feature map B(I), and the output is a 2D feature map
R(B(I). The purpose of this module is to project the feature
space produced by the 2D Backbone to a lower-dimensional
feature space. This module is crucial in order to encode
the information of the backbone into a lighter feature map,
to maintain the computations performed by the Volumetric
Network feasible. Our Reduction Module is essentially a
residual module composed of three depth-wise convolutions
+ ReLUs. We borrow this architecture from [16].

B. Unprojection

This processing stage represents the contact point between
the 2D feature maps and the 3D model of the scene, collecting
the result of the 2D Processing stage into a 3D feature map
representation. This is the only stage of Light3DPose that
uses the calibration parameters of the cameras, and it has no
trainable parameters.

Fix integer numbers @), Qy, -, and a positive float value
Qsize. Construct a cube C C S composed of QQ, X Qy X Q)
voxels with edge of length Q... In C one has the integer

coordinate system (iy,,,7,) corresponding to the index of
the voxels of C, and we denote by ¢+ : C — S the embedding.

The input to this stage is a set of pairs {(R;, Cy,) }i=1,...m-
where each R; is the output of one of the 2D View Processing
modules, and C,, is one of the setup cameras.

The output of the unprojection stage is a 3D feature map
U* with shape Q, x Qy X Q5 X Nyears, Where Nyeqes is the
number of channels of the 2D feature map R.

To compute the value of the j-th feature of the voxel
U (ig, iy, 1.) We use the formula:

) 1 & )
i i iV = . , AN
Ut (ig, by, 1,) = - ;’Rl(PW(L(zI,zy,zz))) (D)
where recall that P; denotes the projection associated with the
camera C;, and by R;(u,v)’ we denote the j-th channel of
the 2D feature map R; at the point with frame coordinates
(u,v).

This layer is a generalization of the Unprojection introduced
in [2] where a cube is built around each person. It can
be efficiently implemented using vectorized operations and a
differentiable sampling operator [38].

C. Volumetric Processing

Input to this stage is the 3D feature map U/ output of the
Unprojection layer.

The output of this stage is a set of 3D human poses
{Ay,..., A}

The stage is composed of three modules:

o the Volumetric Network,

o the Sub-voxel Joint Detection

o the Skeleton Decoder.

The approach is similar to OpenPose [4]]: the neural part of
the network is trained to predict a Gaussian centered on each
joint; the network should also predict a set of Part Affinity
Fields (PAFs) that are used by the decoder to efficiently build
the skeletons. Our method directly predicts 3D poses, thus the
main differences between our volumetric processing part and
OpenPose are in the use of a different neural architecture to
handle 3D volumes data, and an adaptation to the 3D setting
of the decoding of the output of the Volumetric network.
Moreover, we introduce a Sub-voxel Peak Detector module
to increase the accuracy of the joints predictions.

1) Volumetric Network: This is the trainable neural part of
the volumetric processing. The purpose is to predict a set of
3D Gaussians centered on every joint and a set of 3D PAFs
for the skeleton reconstruction.

The input to this module is the 3D activation ¢/ output of
the unprojection layer with shape Q; X Qy X @ X Nyeqts.

Output of this module is a 3D activation V with shape @, %
Qy X Q; X Ngt, where Nyt = Njoints + 3 - Npap, where
Njoints 1s the number of joints of the pose layout, and Npap
is the number of PAF. This output can also be seen as a pair of
collections V = ((H l)lepose_layout, (V®)separs) where each
H' is a 3D feature map corresponding to a heatmap and each
V# is a collection of 3 (one per each of to the 3-dimensional



directions of the vector) 3D features map corresponding to a
vectormap.

We adopt a V2V network from [39], but we set the
minimum number of channels of the earliest and latest layers
to 64 in wherever layer the original network has 32 channels.
We name this modified V2V network: V2V64. We also ex-
perimented with 32 and 96 channels architectures. Results are
reported in Section [V}

The output V of the module is then confronted with the
ground-truth with an appropriate loss function, which is used
to perform the training of Light3DPose. The dataset labels are
lists of poses of persons in the 3D space. The procedure to
create ground-truth heatmaps and vectormaps is a generaliza-
tion to 3D space of the one in [4], so we omit the details.
We opted to use a SmoothL1 loss function and to weight
equally the loss coming from the heatmap and the vectormap.
We experimented different loss functions and weights between
heatmap and vectormap, the results are reported in

2) Sub-voxel Joint Detector: Several state-of-the-art works
on single-person pose estimation are based on a variation of
the Integral Regression Framework [21]], [2]], [[14] which repre-
sents the unifying approach between heatmap and regression-
based methods. The Integral Pose Regression framework as-
sumes that the point to be localized follows a unimodal
distribution. This is not the case of multiple poses scenarios,
where more than one peak need to be estimated. We present
an alternative formulation of such framework which, under the
correct assumptions, can be used in a multi-person setup.

The sub-voxel joint detector module takes as input one
heatmap H ouput of the Volumetric network, and outputs a
list of peaks S(H) = {p;}. The module is applied to each
joint heatmap {H'}, obtaining a set of peak for each joint
type {{p}}i=1,...n 11-

In order to simplify the notation, we discuss the 1D case,
but operators can be intuitively extended to 2D or 3D. Given
a learned heatmap H, for each spatial location z the values
H(x) represent the probability of such location of being a
joint. We fix a neighbour function N : C — subsets(C) that
associates to each point a neighbor of it (typically, an interval
of a given radius centered at x). Define the non-local maxima
suppression P : C — {0, 1} via the formula :

P(z) =6 ((Irenj\z}gc) H(:Ic)) - H(x)) 2)

where 0 is a Dirac function. P(z) = 1 if and only if z is a
maximum of H|y ). Define the pixel-peaks as

R = {zeC|P)=1}

For each x € R, define the localized heatmap
1

ZiEN(z) H(z) N
Finally, define the sub-pixel peaks as

L.H=

SH)=4q Y z-(LH)(x)|zeR

TEN (z)

TABLE I
ABLATION STUDIES ON PANOPTICD2D VALIDATION SET FOR DIFFERENT
ASPECTS OF OUR ARCHITECTURE. 3D AUGMENTATIONS, LOSS TYPE AND
RATIO BETWEEN HEATMAP LOSS AND VECTORMAP LOSS WEIGHTS.

PCP
EE o2 3
7 g < < 4 3],
MPPE| 2 & 5 5 5 5|2
(cm)
Cube Rotation 3D Augmentations
8.236 [99.1 99.3 87.8 654 969 88.3|89.2
v 4598 99.6 99.7 98.5 90.1 99.3 98.5|97.7
v 5.350 [99.6 99.7 98.6 91.1 99.0 94.9|97.3
v v 3.859 |99.7 99.7 99.5 95.6 99.3 98.8 | 98.8
Number of Volumetric Features
32 4.760 199.6 99.7 97.1 789 99.5 98.6 959
64 3.859 |99.7 99.7 99.5 95.6 99.3 98.8 |98.8
96 3.975 199.7 99.7 99.5 96.2 99.3 98.7|98.9
Loss Type
L1 4.106 |99.6 99.7 99.2 96.2 99.0 98.0|98.7
L2 4.125 199.6 99.7 99.5 96.6 99.4 98.9|99.0
SmoothL1 3.859 |99.7 99.7 99.5 95.6 99.3 98.8 |98.8
Heatmap / Vectormap Loss Ratio
1 3.859 |99.7 99.7 99.5 95.6 99.3 98.8|98.8
3 4.074 |99.7 99.7 99.1 96.6 99.5 98.6|98.9
10 3.935 [99.7 99.7 98.0 90.9 99.5 98.8|97.9
Sub-voxel refinement
4.899 199.7 99.7 99.4 949 99.3 98.8 |98.6
v 3.859 |99.7 99.7 99.5 95.6 99.3 98.8 | 98.8

The assumption we rely on is that for every x, in the neighbour
N () there should be at most one local maximum. In general,
this assumption holds if the radius is small enough w.r.t. the
quantization constant (Js;... In practice, we obtain good results
by choosing N (z) to be a 1 or 2 voxels radius interval centered
at z, see Section

3) Skeletons decoder: This module takes as input the peaks
{S(H l)}lep(,se_layout of the sub-pixel joint detection and the
vectormaps {V*}scpars output of the Volumetric Network
and outputs a list of 3D poses. Our algorithm is a direct
extension of the one proposed by OpenPose [4], with the
only difference that line integrals are computed over three-
dimensional vector fields.

IV. EXPERIMENTAL SETUP
A. Datasets

1) CMU Panoptic dataset [3)]: it consists of 31 Full-HD
and 480 VGA video streams from synchronized cameras
at 29.97 FPS; various scenes (65 sequences with multiple
people, social interactions, and a wide range of actions) for
a total duration of 5.5 hours. The dataset includes robustly
labeled 3D poses, computed using all the camera views. This
dataset is perhaps the most complete, open and free to use
dataset available for the task of 3D pose estimation. However,
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considering that they released annotations quite recently, most
works in literature use it only for qualitative evaluations [36]
or for single-person pose detection [2] discarding multi-person
scenes. To the best of our knowledge only [33] makes use
of CMU Panoptic dataset to train and evaluate multi-person
3D pose estimation. We adopt the same subset of scenes and
the same train/val/test split of CMU Panoptic used in [33]]: 20
scenes (343k images) of which 10, 4 and 6 scenes for training,
validation and test respectively. Only HD cameras are used
with data frame rates downsampled to 2 FPS. Since one of
our concerns is to assess the cross-view generalization of our
model, we split the dataset by scene and by view. Val and test
splits use cameras 2, 13, 16, 18 while the train split uses all
(or a subset of) the remaining 27 cameras. This is the same
camera split used by [2]. We name this dataset: PanopticD2D.
2) Shelf [34]]: we adopt this dataset to evaluate the ability of
our model to transfer to a completely unseen setup. It consists
of a single scene of four people disassembling a shelf at a
close range. Video streams are from five calibrated cameras.
The dataset includes 3D annotated groundtruth skeletons.

B. Evaluation metrics

We employed two commonly used metrics that capture
different types of errors in models prediction:

e MPJPE: Mean Per Joint Precision Error. Given a pair of
skeletons, MPJPE is defined as the average of the square
distance of the predicted joints from the corresponding
ground-truth joints.

e PCP: Percentage of Correct estimated Parts. We imple-
mented this metric according to [36]. A body part is
correct if the average distance of the two joints is less than

a threshold from the corresponding groundtruth joints
locations. The threshold is computed as the 50% of the
length of the groundtruth body part.

Before computing these metrics we associate for each scene
the predicted skeletons to the groundtruth skeletons using
linear assignment.

C. Implementation details

1) Pose Layout: We used a simplified pose layout of 14
keypoints. Apart from the canonical 12 parts of arms and legs,
we only added neck and nose. Sometimes, a layout conversion
was needed across different datasets and labeling standards.
Moreover, we defined 13 PAFs; starting from the neck, a tree-
structure along arms, legs and nose has been defined. In our
setup, increasing excessively the number of joints or PAFs
would not make sense due to the limitations of our quantized
space.

2) Skeleton Decoding: Parameters have been found by
performing a grid search on Panoptic D2D validation set.
Eventually, we opted for an interpolation over a region of size
5 x 5 x 5 voxels. Then, all local maxima with a score lower
than 0.3 are discarded; every PAF where the linear integral
is on average lower than 0.2 is also removed. Finally, only
candidate poses with more than 7 keypoints are retained.

3) 3D space quantization: we set the size of the quantiza-
tion voxel to 7.5 cm. This allows us to maintain a quantization
of 64 x 64 x 32 voxels on Panoptic dataset to efficiently cover
the whole scene of approximately 5 x 5 x 2.5 meters, the last
dimension being the vertical axis.

4) Training recipe: Models have been trained with Adam
optimizer. We set the initial learning rate to 0.002 and used a
step decay policy of 0.3 every 50 epochs. All models have been
trained for 200 epochs with a batch size of 8. We implemented
the architecture in PyTorch.

V. ABLATION ANALYSIS
A. 3D Augmentation

We applied 3D data augmentation techniques to the 3D fea-
ture space between the Unprojection layer and the Volumetric
network. In particular, we implemented the followings:

1) Random cube embedding: During the training, we con-
sider C C S to be strictly smaller, and to be randomly
embedded. This corresponds to take a random crop of the 3D
crop of the scene to be considered for the parameters update.

From the volumetric network point of view, this reflects into
a data augmentation strategy, since moving the cube inside S
corresponds to a change of the observed scene and a change
in the extrinsic parameters of the cameras.

We set C to have 32 x 32 x 32 voxels, and we change the
embedding at the start of each epoch.

2) Random rotation: we implement rotations along the
vertical axis of 90°,180°,270°, to allow a fast implementation.
One should take care of the fact that rotation of the 3D space
is not reflected into images transformation, so when a rotation
is applied we cut the back-propagation graph just before the
unprojection layer. In our specific architecture, this sparse



TABLE II
METHODS COMPARISON ON PANOPTIC D2D TEST SET. MPJPE AND PCP
METRICS FOR SCENES WITH SINGLE PERSON AND MULTIPLE PEOPLE.

MPIJPE (cm) PCP
Model single multi avg| avg
ACTOR [33] (2 views)* 17.21 50.24 33.72 -
ACTOR (4 views)* 8.19 20.10 14.14 -
ACTOR (10 views)* 6.13 1221 9.17 -
Oracle [33] (using GT to select cameras)* 424 9.19 6.71 -
Ours (1 unseen view) 1034 932 943| 80.8
Ours (2 to 4 unseen views depending on scene) | 5.30 4.09 4.22| 98.2
Ours (10 views, from training view pool) 350 356 3.55| 98.6

*ACTOR: number in brackets refers to maximum number of views to choose
from. Oracle means: best views to triangulate are selected using groundtruth.

TABLE III
QUANTITATIVE COMPARISON ON SHELF DATASET. METRIC IS PCP.
Model Actor 1 Actor 2 Actor 3 | Avg | Speed(s)
Belagiannis et al. [34] | 66.1 65.0 832 [71.4 -
Belagiannis et al. [40] 75.0 67.0 86.0 |76.0 -
Belagiannis et al. [41] | 75.3 69.7 87.6 |715 -
Ershadi et al. [42] 93.3 75.9 94.8 |88.0 -
Dong et al. [36] 98.8 94.1 97.8 |96.9 465
Ours 94.3 78.4 96.8 |89.8| .146
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Fig. 4. Adding more views increases computational time by a linear factor.
However, only few modules are affected by this growth. The main CNN block
(in red) has a O(1) complexity, both in the number of views and people.
Inference time is measured on a single NVIDIA GeForce GTX 1080Ti.

back-prop signal does not drastically affect the training since
the only trainable part before the volumetric network is the
Reduction layer which has a limited number of parameters.

B. Architecture

In Table [| we reported the results of different experiments
to evaluate the contribution of our architectural choices.

1) Number of volumetric features: it refers to the channels
of the volumetric input: it involves the 2D feature maps, the
input/output of the unprojection and the volumetric network.
For 32 features we used the original V2V network whereas for
64 and 96 we modified it as described in Section [II=C1} Mod-
els with 64 and 96 channels achieve similar MPJPE and PCP

values but 64 is an obvious choice for being computationally
lighter.

2) Loss: we run experiments with different loss types and
weighted differently the heatmap and vectormap losses. By
evaluating separately PAFs and Peaks quality we noticed that
good peaks have a stronger impact in the final metrics than
good PAFs, thus we weighted more the Peak part of the loss.
Results seem to suggest that the task of predicting good peaks
should be tackled with a more elaborate approach than simply
differentiate loss weights.

3) Sub-voxel refinement: by activating it we achieve a lower
MPIJPE. It has almost no effect on PCP since it improves the
sub-voxel localization but does not reduce false positives.

C. Study on the number of input views

These experiments have a two-fold goal. On one side, we
wanted to understand better the impact on the accuracy of
a short/large number of views in the training pool; on the
other hand, we wanted to check how well our augmentation
strategies could compensate/emulate unseen angles. In Figure
[3] we reported four experiments where we varied the number
of views and the number of simultaneous angles used on each
training inference. In particular, they show that even a few
cameras can produce mildly good results; also, after a certain
number, adding more views gives unnoticeable improvements.

VI. COMPARISON WITH STATE-OF-THE-ART

In Table [ we report a comparison between our method and
the results in [33] (ACTOR and ORACLE). We remark that
the task that authors of [33]] are trying to solve is different from
ours. They train an agent to find what are the best views to use
to triangulate that particular scene. We consider it to be a good
baseline even if the core task of [33]] is not the triangulation
algorithm itself. We select 4 fixed validation views and we
never train on those. Since some recordings have fewer views
available, it turned out that only 36.2% of the test set has 4
views, 31.3% has 3 and 32.5% has just two angles available.
The evaluation metric is the MPJPE expressed in cm. The
MPIJPE of our method is more than 3 times lower compared
to ACTOR with 4 views and on average lower than the Oracle.

We also run our model on the Shelf dataset in order to
test it in a completely new environment with unseen views,
camera parameters, sensors and every other detail that can
bias the evaluation. Results are reported in Table [l Our
method obtains good results even if not on-par with the work
by Dong et al. [36]. However, their approach is much slower
being based on top-down 2D backbones. We detail a speed
comparison between the two methods in Section [VI-A]

A. Inference speed

Being a pure bottom-up approach, our method can scale
well when increasing the number of views and subjects. Even
though our complexity is O(n) in the number of views and
O(n?) in the number of people, adding more cameras affects
only the Backbone, Reduction and Unprojection modules,
which are a small fraction of the cumulative computation
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Fig. 5. Left: geometric triangulation using 2D poses from Lightweight
OpenPose (same 2D backbone weights as ours) and iterative greedy
matching [35]]. Right: direct 3D pose estimation with our model.

Single View Input

Direct 3D Pose Estimation (Our Model)

Fig. 6. Direct 3D pose predictions by our model from a single camera view.
On the frame we projected in red the groundtruth, in white our predictions. In
the 3D plot: predictions in color, groundtruth in dashed-black. The network
“hallucinates” straight legs of non visible body parts relying on a strong
learned prior.

burden (e.g. for 10 views they take all together only 45
ms, see Figure f). On the other hand, post-processing the
CNN output costs even less; Cao et al. [4], implemented
an optimized version which takes 0.58 ms for a 9 people
image. For reference we can compare our method with the
one presented in [36]], see Table [[TI] Their approach starts with
a person detector [43]], which takes around 10 ms per view.
Then, each detection is forwarded to two branches, of which
the 2D pose estimation [11]] is most expensive (we measured
67 ms). From here, the final 3D pose inference takes around
80 ms. We can estimate that a 5 views scenario with 5 people
will take (10 % 5) + (67 % 5) + 80 ~ 465ms, which is about

3.2 times our implementation.

B. Qualitative results

In figure [5| we show a comparison between our model
which performs direct 3D estimations and the result of the
geometric triangulation using the 2D skeletons predicted by
Lightweight OpenPose[16] and the iterative greedy matching
by [33]. Notice that our 2D backbone has exactly the same
weights as the backbone of [16] since we do not train nor
finetune such part of the network. This highlights the power
of estimating directly 3D poses: our volumetric architecture
can learn strong pose priors and implicitly discards false
detections. By exploiting the 3D representation of the space,
it is less prone to occlusion-related errors and it can better
deal with crowded scenes. This behavior is even more evident
in Figure [6] where our method correctly predicts all 3D poses
from a monocular view. In particular, notice that even the legs
of the blue skeleton are predicted even if they are not visible
from that particular view. (View and scene from the validation
set). We suppose that the model hallucinates straight up legs
since most of the people in Panoptic D2D training set are
standing.

VII. CONCLUSION

We present a method for multi-person human pose esti-
mation from calibrated views. Our neural architecture is able
to predict 3D pose representations directly from raw camera
views. To the best of our knowledge, this is the first attempt
to tackle such a task in a completely bottom-up fashion.
The proposed method exhibits good computational scalability
properties: in particular, it is essentially independent of the
number of people in the scene. Moreover, it scales linearly
with the number of input views.

Conducted experiments show state-of-the-art performance
on the Panoptic D2D dataset as well as a good generalization
on the unseen Shelf dataset. We hope that our work can
open new research lines and new scenarios. The method
visibly benefits from a wide variety of configurations of
people, cameras, and environments during training. Simple
3D data augmentation techniques have been explored and
proven effective in enhancing the performance; however, larger
datasets, both real and synthetic, could significantly increase
the model capabilities.
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