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Abstract—Stock price movement prediction is commonly ac-
cepted as a very challenging task due to the volatile nature
of financial markets. Previous works typically predict the stock
price mainly based on its own information, neglecting the cross
effect among involved stocks. However, it is well known that an
individual stock price is correlated with prices of other stocks
in complex ways. To take the cross effect into consideration,
we propose a deep learning framework, called Multi-GCGRU,
which comprises graph convolutional network (GCN) and gated
recurrent unit (GRU) to predict stock movement. Specifically,
we first encode multiple relationships among stocks into graphs
based on financial domain knowledge and utilize GCN to extract
the cross effect based on these pre-defined graphs. To further
get rid of prior knowledge, we explore an adaptive relationship
learned by data automatically. The cross-correlation features
produced by GCN are concatenated with historical records and
then fed into GRU to model the temporal dependency of stock
prices. Experiments on two stock indexes in China market
show that our model outperforms other baselines. Note that
our model is rather feasible to incorporate more effective stock
relationships containing expert knowledge, as well as learn data-
driven relationship.

Index Terms—GCN, Graph Convolutional Network, GRU,
Relationship, Stock Movement, Stock Price.

I. INTRODUCTION

Predicting the future status of a stock has always been of
great interest by many investors for that a little improvement of
prediction accuracy might yield a huge gain. Both traditional
finance and modern behavior finance believe that fluctuations
of stock prices are information-driven. Information affects
beliefs and behaviors of investors, thus changing stock move-
ment. Therefore, understanding how stock market impounds
information into stock prices is paramount in stock prediction
[1].

Recently, researches make substantial effort on modeling
correlations between various information and stock prices by
machine learning [2], [3], [4], [5] or deep learning [6], [7],
[8], [9]. However, the core assumption of these algorithms in
most works is that stocks are independent of each other. They
mainly focus on extracting the autocorrelation of an individual
stock based on its own historical information but neglect the

*Corresponding author: Juanjuan Zhao

cross effect of stocks over time, which affects the stock prices
dynamically [10].

The cross interaction among stocks is attributed to various
connections among corporations, such as the shared industry
information [1], supply chain, payment network [11], business
partnership and shareholder ownership [12]. These complex
and multifaceted connections result in that the price of an in-
dividual stock is highly correlated with other stocks besides its
own information. For instance, considerable empirical findings
have confirmed a pronounced lead-lag pattern in stock prices,
i.e. some stock prices lead or lag other stock prices [10], [1].
Therefore, it is natural to take the corporation relationships
into consideration for better stock prediction.

However, there are three major challenges in utilizing these
relationships: (1) design appropriate representation for corpo-
ration relationships, (2) design a model without independent
instance assumption to extract the cross-correlation among
stocks, (3) predict the target stock movement by jointly
considering its historical observation and the cross-correlation
with related stocks.

To address the first challenge, we follow previous works
[11], [12] to embed the corporation relationships into graphs.
In each graph, a node represents a listed company and the edge
represents interaction between two listed companies. Besides
inheriting the shareholding graph in [12], we novelly define an
industry graph based on lead-lag theory [10] and a topicality
graph based on common topical news [13]. In addition, we
realize that these artificial relational graphs depend on solid
financial knowledge and require more financial data. To over-
come such limitations, we establish a dynamic graph on the
basis of data. We analyze the effectiveness of these graphs and
make necessary comparison.

After establishing relational graphs among stocks, we pro-
pose a deep learning framework called Multi-GCGRU by
jointly combining Graph Convolutional Network (GCN) and
Gated Recurrent Unit (GRU) to tackle the second and the third
challenges. GCN is a state-of-the-art deep learning approach
to handle the complexity of graph data. It has demonstrated its
effectiveness in capturing interdependency between instances
in a graph and has achieved state-of-the-art performance
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in many applications, such as molecular fingerprints [14],
recommendation system [15] and traffic forecasting [16]. In
this paper, we perform graph convolutions on the pre-defined
graph structures to model various interactions among stocks.
Since stock prediction is a time series task and GRU has been
proved to be effective for processing sequential data [17], we
utilize GRU to learn the temporal dependency from historical
market data along with the cross-effect features produced by
GCN. We test our Multi-GCGRU model on two real stock
market indexes. The experimental results show that our model
has better performance than baseline methods.

Specifically, our contributions can be summarized as fol-
lows:

(1) We take the cross effect among a collection of stocks
into consideration for better stock prediction. We construct
multiple graphs based on various corporation relationships to
enrich the representations of cross effect. Further, to get rid of
prior knowledge on financial domain, we explore an adaptive
graph.

(2) We employ Graph Convolutional Network (GCN) to
process these graphs along with historical information to learn
complicated interactions among related stocks, and produce
new features for each individual stock in the collection which
contains cross-impact information from other stocks.

(3) We concatenate the cross-effect features with historical
market information at the same time slice for each stock. These
combined features are fed into Gated Recurrent Unit (GRU)
to learn temporal pattern in stock prices.

(4) Note that our model can be easily extended to in-
corporate more effective relationships among stocks. Even
without any pre-defined relationship, our model is able to
learn a dynamic graph automatically from market price
data. The code of Multi-GCCRU is publicly available from
https://github.com/start2020/Multi-GCCRU.

II. RELATED WORKS

A. Stock Price Prediction

Stock price prediction is a very challenge task due to the
diverse and complicate factors, including corporate financial
performance [18], industry information [1], public news [19],
[13], social sentiment [20], [21]. Recently, various traditional
machine learning and deep learning approaches have been
proposed to extract valuable clues from different types of
information sources for better stock prediction.

The input features of most works are mainly based on
historical market data (e.g. stock prices, trading volume). For
instance, Zhang et al. [8] utilized only historical prices to
capture the multi-frequency trading patterns by a novel State
Frequency Memory (SFM) recurrent network. Feng et al. [6]
focused on addressing the stochasticity of stock price variable
to improve the generalization of prediction model by proposing
an adversarial training solution. However, only historical price
data cannot entirely explain the volatility of stock price. Other
types of information are complementary to enrich the input
features and help to discover more concealed rules in stock
price, such as public news [13], [19], texts from social medias

[22], [23] and web browsing data [24]. For example, Ding et
al. [25] extracted events from news titles to model influence
of events on stock price by a CNN-based framework. Xu et
al. [23] presented a novel deep generative model to learn
opinions from Twitter texts. Cheng et al. [9] explored the
mutual fund portfolio data to extract stock intrinsic properties
for enhancing prediction. Qin [26] integrated CEO’s vocal
features in a conference call into the model.

Despite tremendous efforts have been made to understand
the principle of stock price movement, most of the works
above mainly focused on combining a single stock’s historical
records with other textual information but overlooked the
correlations among stocks. Only a few attempts [27] have been
made to explore the cross effect among stocks which has been
verified by [10]. In this paper, we pay attention to model the
influences from other stocks on the target stock.

B. Graph Convolutional Network

In the last couple of years, many attempts have been made to
generalize neural networks on graph-structured data. Encour-
aged by the success of CNN, researchers have successfully
re-defined the notion of convolution on graph data, called
graph convolution. The corresponding neural network, i.e.
graph convolution network (GCN) has gained much attention
recently since it has demonstrated outstanding performance on
node classification task [28]. GCN takes the graph structure
and node features as inputs and it can capture the complex
interaction between nodes on graph by aggregating informa-
tion from neighbors and doing non-linear transformation on
all feature dimensions to create new features. Such capacity
enables GCN to achieve state-of-the-art performance in graph
related applications [29], [15], [30]. In recent research, Chen
et al. [12] applied GCN in stock prediction and they modeled
the correlations among stocks based on a shareholding graph.
However, such graph is rather limited due to the sparse cross-
shareholdings among public corporations and it is insufficient
to represent the complex correlations among stocks. We would
compare our model with this method in experiments.

III. PROBLEM FORMULATION

Stock price prediction can be divided into stock price return
prediction [9] and stock movement prediction [27], [6], [22],
where the former predicts the exact price of stock while
the latter predicts the up or down of stock price. Due to
the complexity and stochasticity of stock market, it is rather
difficult to predict price return but stock movement prediction
is more achievable. Therefore, most works focus on stock
movement prediction and so do we.

Usually, stock price movement aims to predict the move-
ment of a target stock in a pre-selected stock collection on
a target trading day with historical price information along
with other information [23]. The mathematical formulation is
as follows:

ŷsd = f([xsd−P, · · · , x
s
d−1],E; Θ) (1)



where s is the target stock, d is the target day, P is the lag
size, xst ∈ RF is the F historical features of the target stock
at day t, E is external information, Θ is trainable parameter.
ŷsd ∈ [0, 1] is the predicted probability at day d.

However, such formulation treats each stock independently
and overlooks its complex correlations with other related
stocks. We encode various correlations among stocks as graphs
and focus on exploring relationship-driven influence for stock
prediction (as shown in Figure 1). Therefore, we re-formalize
the problem as follows:

Ŷd = f([Xd−P, · · · , Xd−1],G; Θ) (2)

where Xt ∈ RN×F denotes a snapshot of stock collection S
with N stocks at day t. G is the graph. Ŷd = [ŷ1d, · · · , ŷNd ] ∈
RN is the predicted series labels of collection S at day d. We
use cross entropy function as the loss function:

L = −
1

N

N∑
s=1

[ysdlog(ŷ
s
d) + (1− ysd)log(1− ŷsd)] (3)

where Yd = [y1d, · · · , yNd ] is denoted as the ground truth series
and ysd ∈ {0, 1} for that most works estimate the binary
movement with 1 denoting as rise or positive, 0 denoting as
fall or negative [6], [22].
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Fig. 1. Problem Formulation of Stock Movement Prediction Based on Graph

IV. MULTI-GCGRU

The Multi-GCGRU architecture in our paper aims to pre-
dict the stock price movement by considering both historical
records of individual stock and cross effect from other related
stocks. The first stage is to extract relationships which can
explain the cross effect among stocks by encoding them into
graphs (e.g. Shareholding Graph, Industry Graph, Topicality
Graph). The second stage is to learn more complicated and
dynamic cross-correlation behind stock collection by Multi-
GCN. The third stage is to utilize GRU to learn the temporal
dependency by historical records along with higher features
containing cross effect produced by Multi-GCN. Finally, a
fully connected layer with sigmoid activation function is added
to get the probability prediction. The details of the architecture
are shown in Figure 2.

A. Graph Construction

The cross-autocorrelation of stock returns over time has
long been recognized in stock markets [10]. To capture the
complex cross effect among a clique of stocks, we extract
three types of relationships based on prior financial knowledge

and construct three graphs respectively, including (1) Share-
holding Graph GS = (V,ES,AS) to encode shareholding
influence [12], (2) Industry Graph GI = (V,EI,AI) to
encode lead-lag effect within industry [10], (3) Topicality
Graph GT = (V,ET,AT) to encode topical news impact
[19], where |V| = N refers N public corporations in the
graph, A = (aij)N×N is the adjacency matrix representing
the particular stock network. Element aij in A stands for
the connection strength between company i and company j.
We examine the effectiveness of these relationships in our
experiments.

1) Shareholding Graph: Chen et al. [12] defined a
weighted shareholding graph based on the financial fact that
the performance of a listed company is likely to influence the
stock price of its shareholder which is also a listed company
and vice versa [31]. The mutual influence strength depends on
the shareholding ratio. Therefore, an edge is attached to two
listed corporations which have shareholding relationship. The
edge weight aij is the shareholding ratio in range of [0, 1].
However, we find that the cross-shareholdings among public
corporations are rather rare empirically, which leads to a very
sparse adjacent matrix and weakens its effective representation
for the cross-effect among stocks.

2) Industry Graph: The cross effect among stocks has
displayed a pronounced lead-lag structure [10], which refers
that returns on some stocks systematically lead or lag returns
on other stocks [32]. The main cause of lead-lag effect
in equity market can be explained by industry information
diffusion hypothesis [1], which argues that new information is
usually incorporated into the stock prices of industry leaders
before it spreads to other firms in the same industry. Therefore,
lead-lag effect is related to the firm size and the stock returns
of larger firms generally lead those of smaller ones [10] in the
same industry.

In this paper, we construct an industry graph to model the
lead-lag relationship. Since Hou et al. [1] has verified that
the cross-industry lead-lag effect is rather weak, we mainly
focus on intra-industry lead-lag effect. If two companies are in
different industries, there is no edge between them. Otherwise,
the influence from company i to company j is denoted as
aij = Mi

Mj
, where M denotes the firm size. Note that such

influence is asymmetric. Returns of small firms are correlated
with past returns of big firms, but not vice versa [1]. Since
several studies [10] have shown that stock with larger capital
size tends to be a leading stock, we use registered capital to
measure firm size in this paper.

3) Topicality Graph: The rapid development of Internet
has accelerated the speed of producing and broadcasting news,
enhancing the news impact on investment behaviors. Extensive
studies have been conducted on the correlations between news
and stock prices [19], [13]. On one hand, it can be observed
that a stock responses to a group of similar news with the same
topicality. For example, the news related with 2019-nCoV is
likely to impact a pharmaceutical stock. On the other hand,
the news belonging to one particular topicality impact many
related stocks, leading to the similar volatility of stock prices.
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Fig. 2. The architecture of Multi-GCGRU; GCN: Graph Convolution Network; GRU: Gated Recurrent Unit; FC: Fully connected layer. XGCN
t is the output

of Multi-GCN at day t. XCon
t is the concatenated features based on XGCN

t and the historical records of stock collection Xt at time t. XGRU
d is the final

output of GRU at target day d.

For instance, news related with 2019-nCoV have influenced
pharmaceutical stocks (e.g. ABIO), entertainment stocks (e.g.
Disney) and caterers stocks (e.g.YUM).

In this paper, we novelly define a topicality graph to
model the correlation among stocks due to topical news
impact. The stock datasets we collect from a public API
(https://tushare.pro/) have already contained topical informa-
tion for each stock, where a stock has more than one topicality
and a topicality is shared by more than one stock. Based
on these datasets, we measure the connection strength by
the number of topicalities shared by two listed corporations.
Intuitively, the more topicalities corporations share, the more
similar their prices volatility might be. Specifically, if company
i owns Mi topicalities, company j owns Mj topicalities and
they share Tij topicalities, the connection strength from i to
j is denoted as aij =

Tij

Mi
. Similarly, the connection strength

from j to i is denoted as aji =
Tij

Mj
. Note that if there is no

topicality shared by two companies, their connection strength
is zero.

B. Multi-Graph Convolutional Network

In this section, we introduce the architecture of Multi-Graph
Convolutional Network (Multi-GCN) in our paper. We first
introduce the traditional graph convolutional layer proposed
by [33]. Then we novelly propose its variant, i.e. multi-graph
convolutional layer, to incorporate multiple pre-defined stock
graph structures into our model. As an alternative, we also
design a dynamic graph convolutional layer to learn graph
topology from data automatically in case that we don’t have
sufficient domain knowledge and data to pre-define a stock
graph. Finally, the mathematical formalization of our Multi-
GCN is defined.

1) Graph Convolutional Layer: When processing graph
data, researchers hope to extract high level representation
containing graph structure information. Inspired by convo-
lution on images, Bruna et al. [34] defined convolution on
graph in spectral domain. The normalized graph Laplacian
matrix L = IN − D− 1

2 AD− 1
2 ∈ RN×N is decomposed as

L = UΛUT to get a graph Fourier basis U which contains
the graph topology information, where D is the degree matrix
of A, U is the eigenvectors matrix and Λ is the eigenvalues
matrix. The graph signal x ∈ RN is first transformed to the
spectral domain by the graph Fourier basis U, then filtered
by a parameterized kernel Θ, finally transformed back by the
inverse graph Fourier basis UT to get the convolution result
as y = Θ∗Gx = UΘUTx, where ∗G is the graph convolution
operator. However, all the nodes in the graph are considered
during convolution by the kernel Θ with N parameters. To
extract spatial localization in graph, Defferrard et al. [33]
restricted the kernel Θ as a polynomial of Λ to get the K-hop
graph convolution:

y = Θ(Λ) ∗G x = U(

K−1∑
k=0

θkΛk)UT x =

K−1∑
k=0

θkLkx (4)

where θ ∈ RK is a vector of polynomial coefficients. K is
the kernel size of graph convolution, which determines the
maximum radius of the convolution from central node.

In this paper, we generalize this definition to a signal
X ∈ RN×F with F input features and C filters as Z =
(
∑K−1

k=0 θkLk)XW , where Z ∈ RN×C is the result and
W ∈ RF×C is a trainable parameter. The corresponding graph
convolutional layer is denoted as follows:

H(l+1) = ρ((

K−1∑
k=0

θkLk)H(l)W (l)) (5)



where L represents a graph based on one particular corporation
relationship. H(l) ∈ RN×F is the input at l-th layer and
H(l+1) ∈ RN×C is its output. W (l) ∈ RF×C is the trainable
parameter at lthlayer. ρ(·) denotes the activation function, e.g.
tanh, sigmoid, ReLU.

As we can see above, there are two main steps in graph
convolution. The first step is to aggregate the information
from surrounding stocks by multiplying Laplacian matrix and
features matrix. Then a fully connected layer is implemented
on the aggregated features to create high level representations
for each stock. Note that with small K, the feature aggregation
will focus on close neighbors within K hops. Increasing the
value of K enables model to capture larger range of cross-
effect.

2) Multi-Graph Convolutional Layer: To model the cross
effect from multiple graphs, we propose the multi-graph
convolution as follows:

H(l+1) =ρ((

K−1∑
k=0

θk(θSLS
k+θILI

k+θT LT
k))H(l)W (l)) (6)

where {LS,LI,LT} are the Laplacian matrices corresponding
to adjacency matrices {AS,AI,AT}. {θS, θI, θT} are the
trainable coefficients respectively.

Intuitively, different relationships are likely to contribute dif-
ferently for stock prediction. However, it is hard to assign them
weights artificially. Therefore, we leave it to the algorithm and
hope to learn the weights from data automatically. Note that
our multi-graph convolution is not limited to the relationships
above. It can be easily extended to incorporate more effective
relationships for better stock prediction.

3) Dynamic Graph Convolutional Layer: All the pre-
defined relationships require prior knowledge in financial
domain and need more financial data which is unavailable
sometimes. To get rid of the expert knowledge, we design
a dynamic Laplacian matrix learned by data and the corre-
sponding layer is defined as follows:

H(l+1) = ρ(L̂H(l)W (l)) (7)

where L̂ ∈ RN×N is trainable and can be initialized just as
other trainable parameters. We compare the performance of
data-driven relationship with that of hand-crafted relationships
in the experiments.

4) Multi-GCN: In this paper, following Kipf’ work [28],
we design our Multi-Graph Convolutional Network with two
layers. The formulation of our Multi-GCN is defined as
follows:

XGCN
t = ρ(f(L)ρ(f(L)XtW

1)W 2) (8)

where f(L) can represent one pre-defined relationship (see
Equation 5), or the combination of various relationships (see
Equation 6), or dynamic relationship (see Equation 7). Xt ∈
RN×F is the input features matrix at day t, XGCN

t ∈ RN×C

is the output of Multi-GCN at day t, which is fed into GRU
later. Equal graph convolution operation with the same kernel
is implemented on each day in parallel.

C. Gated Reccurent Unit

Stock prediction is a typical time-series task [8]. RNN
has shown its powerful capacity to process time-series tasks
to capture long-term dependency and recent stock prediction
studies have demonstrated its effectiveness [9], [26]. Among
various variants of RNN (e.g. vanilla RNN, Long Short Term
Memory Network (LSTM), GRU), GRU is more complex than
RNN and can ease gradient vanishing/exploding problems in
RNN. What’s more, GRU is simpler than LSTM with fewer
parameters which enables it to have shorter training time. But
Chung et al. [17] has demonstrated that GRU is as effective
as LSTM empirically in many applications. Thus we choose
GRU for stock price prediction.

In this paper, we consider not only the historical market data
(e.g. trading prices and trading volume) but also the cross-
correlation among stocks for stock movement prediction. We
concatenate the high level cross-effect features produced by
Multi-GCN with historical market data to form new features
for prediction. These new features are put into GRU to
discover temporal patterns for prediction. Our GRU hidden
layer is formulated mathematically as follows:

rt = σ([Ht−1, Xt, X
GCN
t ] ·Wr + br)

ut = σ([Ht−1, Xt, X
GCN
t ] ·Wu + bu)

Ĥt = tanh([rt �Ht−1, Xt, X
GCN
t ] ·Wh + bh)

Ht = ut �Ht−1 + (1− ut) � Ĥt

(9)

where Xt ∈ RN×F is the historical records of stock collection
at time t and t ∈ [d − P, · · · ,d]. XGCN

t ∈ RN×C is the
output of Multi-GCN which contains cross-effect information
at time t. Ht−1 ∈ RN×H is the hidden state at time t−1. rt is
the reset gate, ut is the update gate. σ ∈ [0, 1] is the sigmoid
activation function. Operator · is the matrix multiplication,
� is the element-wise product. The output layer of GRU is
XGRU

t = σ(HtWg), where XGRU
t ∈ RN×G, Wg ∈ RH×G.

D. Predictor

The final output of GRU is XGRU
d ∈ RN×G where d is

the target day. A fully connected layer with sigmoid function
is stacked on GRU to get the final probability prediction of
stock collection. The formulation of Predictor is as follows:

Ŷd = σ(XGRU
d W ) (10)

where Ŷd ∈ RN×1 is the probability prediction at day d and
W ∈ RG×1 is trainable parameter.

V. EXPERIMENTS

A. Datasets

To demonstrate the effectiveness of our model, we collect
our datasets from a public API ((https://tushare.pro/), which
are the best-known CSI (China Securities Index) 300 and CSI
500 in Chinese stock market. CSI 300 is composed of three
hundred large-cap listed corporations with good liquidity. CSI
500 consists of constituent stocks chosen from top 500 mid-
cap and small-cap listed companies. Their versions are defined
every half a year and we fix them on 2015 January [27].



Each stock in our datasets has three kinds of attributes: (1)
Input Features: opening price, high price, low price, trading
amount. All the input features are Min-max normalized. (2)
Relationship Features: shareholder and shareholding ratio, in-
dustry category, registered capital, topicality. They are utilized
to construct relational graphs. (3) Label Feature: closing price.
Given the closing price of a stock at day t as Pt, if Pt > Pt−1,
we attach price movement at this day as positive with yt = 1,
otherwise as negative yt = 0.

We retrieve the historical data from June 2015 to December
2019. All prices are adjusted for dividends and splits. We
delete the delisted stocks during the collection period. Finally,
it remains 287 stocks in CSI 300 and 489 stocks in CSI
500. To solve the problem that some stocks lack trading data
for temporary suspension in some trading days, we align the
historical trading days of all the stocks and fill up the missing
data with trading data in most recent day.

TABLE I
THE SPLIT OF DATASET

Indexes Training set Validation set Testing set Total

CSI 500 383,719 54,817 109,633 548,169
CSI 300 225,209 32,173 64,345 321,727

We split the dataset into three parts: 70% for training, then
10% for validation and the last 20% for testing. Details of the
division of these two indexes are shown in Table above.

B. Evaluation Metrics

The stock movement prediction is a binary classification
problem. Several metrics [21] are selected to justify the effec-
tiveness of all the approaches, i.e. Accuracy (ACC), Precision,
Recall, F1-score and Matthews Correlation Coefficient (MCC)
[6]. ACC measures the ratio of correct predictions over all
examples. Precision focuses on the correct prediction ratio of
example predicted as positive class. Recall is used to measure
the fraction of positive examples that are correctly classified.
F1-score is the harmonic mean of Precision and Recall. MCC
can avoid bias due to data skew. All metrics are calculated on
all the constituent stocks in each CSI index. The formulation
of MCC is as follows:

MCC=
TP × TN − FP × FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
(11)

where TP is true positive, TN is true negative, FP is false
positive, FN is false negative.

C. Baselines

The baselines in this paper can be divided into two groups.
The first group only takes the historical records of the target
stock as input for its movement prediction, which contains (1)
Logistic Regression, (2) ARIMA (Autoregressive Integrated
Moving Average) [35], (3) SVM (Support Vector Machine)
[2], (3) RF (Random Forest) [36], (4) ANN (Artificial Neural
Network) [7], (5) LSTM (Long Short Term Memory) [37].

The second group considers both historical information and
stock relationships, which contains (1) GCN-S: The GCN
model with shareholding graph in [12], (2) GCGRU-S: Our

model with Shareholding Graph, (3) GCGRU-I : Our model
with Industry Graph, (4) GCGRU-T: Our model with Topical-
ity Graph, (4) Multi-GCGRU: Our model with three graphs
above, (5) GCGRU-D: Our model with Dynamic Graph.

D. Parameter Settings

We set the length of lag P = 5 for all the baselines for that
there are 5 trading days in a week. The optimized length of
P is explored in our Multi-GCGRU. We train Multi-GCGRU
utilizing Adam optimizer [6] with an initial learning rate of
0.01 and setting the mini-batch size as 32. Following Kipf’
work [28], we set K = 1 and build our Multi-GCN with two
layers. The number of corresponding hidden units are tuned
within the ranges of [8, 16, 32, 64] on the validation set.
The best performance is observed on [16, 32]. Our model is
implemented with Tensorflow 2.1.

E. Experiment Analysis

In this paper, we aim to answer the following research
questions:

(1) Does taking the cross effect among stocks into con-
sideration enhance the stock movement prediction? Does our
proposed model provide a better solution to incorporate the
cross effect?

(2) Which kind of corporation relationship is more effective
for stock prediction and why? Can we get rid of artificial rela-
tionships based on prior knowledge and learn the relationship
on the basis of data?

(3) How does our proposed Multi-GCGRU framework per-
form with different length of historical information?

To answer the research questions above, we conduct various
experiments and deliver the final experiment results on the test
datasets. Table II answers the first and second questions and
Table III answers the third question.

1) Effectiveness of Cross Effect among Stocks: In this
paper, we design two groups of approaches. The first group
only considers the auto-correlation of an individual stock
by taking its historical records as input. The second group
considers both the auto-correlation of the target stock and
cross-correlation among stocks by taking historical market
data along with corporation relationships as input. By com-
paring the performance of these two groups, we can test the
effectiveness of cross effect among stocks for prediction.

As we can see in Table II, statistic methods perform
worst for their linear and stationarity assumptions against
the non-linear and dynamic properties in stock data. LSTM
outperforms ANN by almost 3% in accuracy which justifies
that temporal dependency exists in stock prices. The perfor-
mance of RF is nearly as better as LSTM probably due to
the randomness in RF which can model the stochasticity in
stock market. Besides, the GCN-S [12] based on sharehold-
ing relationship performs slightly better than LSTM, which
indicates that the cross effect is at least as important as
the temporal dependency. When considering both cross effect
represented by shareholding relationship and temporal pattern
in our GCGRU-S, the performance increases nearly 1% in



TABLE II
THE EXPERIMENTAL RESULTS

Input Feature Models CSI300 CSI500
Accuracy Precision Recall F1 MCC Accuracy Precision Recall F1 MCC

Historical Records

LR 0.5145 0.9746 0.5133 0.6724 0.0228 0.5149 0.9723 0.5148 0.6732 0.0117
SVM 0.5197 0.9498 0.5165 0.6691 0.0412 0.5253 0.9662 0.5202 0.6763 0.0636
RF 0.5375 0.9298 0.5271 0.6728 0.0957 0.5433 0.9900 0.5294 0.6899 0.1587
ANN 0.5191 0.9724 0.5158 0.6740 0.0463 0.5202 0.9900 0.5170 0.6792 0.0576
LSTM 0.5435 0.9756 0.5291 0.6861 0.1443 0.5461 0.9662 0.5318 0.6860 0.1384

Historical Records
& Corporation
Relationships

GCN-S 0.5472 0.9609 0.5317 0.6845 0.1421 0.5463 0.9675 0.5423 0.6950 0.0717
GCGRU-S 0.5505 0.9321 0.5346 0.6795 0.1338 0.5521 0.9635 0.5458 0.6969 0.0938
GCGRU-I 0.5598 0.9561 0.5392 0.6895 0.1739 0.5678 0.9814 0.5540 0.7082 0.1655
GCGRU-T 0.5628 0.9512 0.5412 0.6899 0.1782 0.5751 0.9837 0.5581 0.7122 0.1916
GCGRU-D 0.5602 0.9442 0.5402 0.6871 0.1667 0.5697 0.9844 0.5549 0.7097 0.1756
Multi-GCGRU 0.5754 0.9603 0.5484 0.6981 0.2171 0.5885 0.9894 0.5658 0.7199 0.2377

accuracy. All the models integrated with relational features
achieve better performance than those without relationships,
which proves the effectiveness of the cross effect represented
by corporation relationships.

Fig. 3. The Visualization of Relationship Matrices
2) Relationships Comparison: We have pre-defined three

corporation relationships based on financial knowledge, i.e.
shareholding relationship, industry relationship, topicality re-
lationship. As shown in Table II, model fed with share-
holding relationship has the worst ACC performance, while
performance of model with topicality relationship is the best
on both CSI300 and CSI500. The results indicate that the
impact from common news on stock price is stronger than
that of shareholder. This can be explained by the fact that
many investors are not familiar with the shareholding structure
of the corporation but they are more sensitive with public
news, especially those good news and bad news. The model
integrated with industry relationship also performs better than
that with the shareholding relationship by at least 1% increase
of accuracy. Compared with model based on topicality re-
lationship, it has nearly the same performance in CSI 300
and a better performance in CSI500. To further explore the
correlation between relationships and their performances, we
visualize the corresponding matrices (as shown in Figure 3)
and have an interesting finding that the shareholding matrix
is the sparsest and the topicality is the densest. Perhaps the
dense matrix contains more information helpful for prediction
than the spare matrix. The result that the Multi-GCGRU with
three relationships performs better than model with any single
one can enhance this inference. The results above show that
some relationship is more effective than other relationship,
which indicates that we can further improve the performance
of Multi-GCGRU through adding more effective relationship
and we leave it to the interested readers.

However, all the pre-defined matrices depend on domain
knowledge and extra financial data. To overcome such limi-
tations, we explore a dynamic matrix learned by data auto-
matically. The results show that the performance of model
with data-driven matrix is between that with industry relation
and topicality relation. Although the model with data-driven
relationship does not have the best performance, it can also be
a choice when financial knowledge and data are insufficient.

TABLE III
MULTI-GCGRU WITH DIFFERENT LAG SIZES

Length CSI300 CSI500
ACC MCC ACC MCC

3-days 0.5623 0.1513 0.5752 0.1742
5-days 0.5754 0.2171 0.5885 0.2377
7-days 0.5790 0.2196 0.5901 0.2821
9-days 0.5769 0.1869 0.5783 0.1965
11-days 0.5705 0.1378 0.5691 0.1221
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Fig. 4. Accuracy of Multi-GCGRU with Different Lag Sizes

3) The Length of Historical Information: We conduct
experiments on different length of days, specifically [3, 5, 7,
9, 11] previous days. As shown in Table III and Figure 4,
our model achieves the best performance at 7 days , with the
accuracy 57.90% on CSI300 dataset and 59.01% on CSI500.
The worst performance occurs at 3-days with accuracy 56.23%
on CSI300 and at 11-days with accuracy 56.91% on CSI500.
Therefore, the length of historical information has an impact
on prediction performance.

VI. CONCLUSION

The price movement of an individual stock is inevitably
influenced by other related stocks. This paper justifies that
taking cross effect among stocks can effectively improve the



prediction accuracy. Our contribution is that we model the
cross effect by encoding various corporation relationships into
graphs, based on which we propose a Multi-GCGRU frame-
work to capture both auto-correlation and cross-correlation
properties in stock prices. We first employ Multi-GCN to
extract cross effect among stocks based on three pre-defined
graphs. Then we utilize GRU to process the cross-effect
features produced by Multi-GCN along with historical market
information to model temporal pattern in stock prices. Further,
we explore a data-driven graph to overcome dependency on
prior financial knowledge. Our model can be easily extended
to incorporate more effective relationships among stocks.
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